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ABSTRACT: 
 
Synthetic aperture radar (SAR) coherent change detection (CCD) often utilizes the degree of coherence to detect changes that have 
occurred between two data collections. Although having shown some performances in change detection, many existing coherence 
estimators are still relatively limited because the change areas do not stand out well from all decorrelation areas due to the low 
cluster-to-noise ratio (CNR) and volume scattering. Moreover, many estimators require the equal-variance assumption between two 
SAR images of the same scene. However, the assumption is less likely to be met in regions of significant differences in intensity, 
such as the change areas. To address these problems, we proposed an improved coherence estimator that introduces the parameters 
about the true-variance ratio as the weights. Since these parameters are closely related to the ratio-change statistic in intensity-based 
change detection algorithms, their introduction frees the estimator from the need for the equal-variance assumption and enables 
detection results to largely combine the advantages of intensity-based and CCD methods. Experiments on simulated and real SAR 
image pairs demonstrate the effectiveness of the proposed estimator in highlighting the change, obviously improving the contrast 
between the change and the background.  
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Synthetic aperture radar (SAR) has been an important modality 
in remote sensing because of its capability to obtain high-
resolution images with weather and lighting conditions 
independent. As one of the popular applications, SAR change 
detection utilizes two SAR images of the same scene taken at 
different times to detect changes that have occurred between the 
two acquisition dates (Massonnet, Feigl, 1998).  There are 
generally two forms of traditional SAR change detection: 
coherent and incoherent change detection. Incoherent change 
detection uses SAR intensity images to identify large-scale 
changes, whereas coherent change detection (CCD) utilizes 
SAR phase and intensity to estimate the coherence to detect 
small-scale changes (Cha et al., 2015).   
As a measurement of the change, the coherence statistics often 
provide low value in change areas. However, low coherence or 
decorrelation can be caused by many sources, such as the 
baseline or geometric decorrelation, thermal or system noise, 
volume decorrelation, and temporal terrain decorrelation 
(Hanssen, 2001). For a given pair of spatial-registered SAR 
images, the sources of decorrelation to be considered mainly 
contain temporal decorrelation, volume decorrelation, and low 
clutter-to-noise ratio (CNR) decorrelation. Among them, 
temporal decorrelation is caused by physical changes in the 
terrain. Obviously, changes that have occurred between two 
data collections, the interest of change detection, can lead to 
this temporal decorrelation. Volume scattering due to the 
penetration of the radar wave in the scattering medium often 
happens in vegetation terrain where vegetation growth can also 

inevitably cause temporal decorrelation, bringing about 
disturbances for most change detection tasks. The last low-CNR 
decorrelation can occur for many features in the SAR scene, 
such as shadow areas, hard-packed roads, and smooth surfaces 
(Wahl et al., 2016). As we know CCD aims at detecting 
changes between two SAR images, therefore, the capability of 
coherence estimators in distinguishing change areas from all 
decorrelation areas has an important influence on the accuracy 
of the detection results. 
Now many coherence estimators have been proposed. In the 
beginning, the coherence statistic is often used for terrain height 
measures for interferometric SAR images (Rodriquez, Martin, 
1992).  In 1996, the coherence estimator was first introduced 
into change detection to detect anthropogenic temporal changes 
(Jakowatz et al., 1996). In order to overcome low coherence 
measurements caused by low CNR in SAR images, some 
workers suggested masking the potential low-CNR areas using 
the CNR information from SAR images (Yocky, Johnson, 
1998). Other authors proposed some log-likelihood change 
statistics (Preiss et al., 2006; Wahl et al., 2016; Zhao et al., 
2017). In addition, some changes methods combining coherent 
and incoherent algorithms have been presented for SAR change 
detection (Cha et al., 2015; Yang et al., 2015). Among them, 
coherent approaches similarly utilize the above-mentioned 
coherent estimators. Although achieving some performance, 
these estimators are still limited because the change areas do 
not stand out well from all decorrelation areas due to low CNR 
and volume scattering. In particular, the boundaries between 
change and no-change regions are fuzzy and difficult to 
determine, unfavorable for obtaining fine change maps. 
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Besides, many existing coherence estimators require the equal-
variance assumption should be met between two SAR images. It 
has been investigated that the variance of a given pixel in a 
SAR image is determined by the scattering amplitudes and is 
closely related to the average intensity (Oliver and Quegan, 
2004). However, there are often significant intensity differences 
in change areas, which makes the equal-variance assumption 
less likely to be met in these areas. Consequently, the change 
information may not be nicely highlighted using these 
estimators.  
In this paper, a novel weighted estimator has been proposed to 
address the above problems. The estimator is derived based on 
the statistical characteristics of SAR images by using the ML 
principle. As the weighted parameters are closely related to the 
ratio change statistic used in intensity-based noncoherent 
algorithms, its introduction into the derivation makes the 
estimator largely combine the advantages of coherent and 
noncoherent algorithms. Experiments on simulated and real 
SAR image pairs show the effectiveness of the weighted 
estimator in highlighting changes, significantly improving the 
contrast between the change and the background. 
The main contribution of this paper is the introduction of the 
ratio change statistic into the estimation of the coherence 
estimator. The organization for the remainder of this paper is as 
follows. Section 2 presents some common coherence estimators 
and their limitations. Section 3 derives the new coherence 
estimator. Section 4 evaluates the performance of the proposed 
estimator on simulated and real SAR image pairs. Section 5 
concludes this paper.  
 

2. COMMON COHERENT ESTIMATORS 

As a change metric of CCD, the coherence γ is often estimated 
using a classical coherence estimator (Rodriquez and Martin, 
1992): 
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where f, g = N-sample, zero-mean Gaussian random vectors  
 kf , kg = kth observation of vectors f and g 
 * = complex conjugate operation 
 ∧ = estimator of the parameter 
 
The estimator ĉγ  and its modifications (Guarnieri and Prati, 
1997) are mainly used in interferometric SAR tasks for terrain 
height generation. As a measure of the similarity degree, ĉγ will 
provide low coherence values in low-similarity regions such as 
change, low-CNR, and many vegetation regions, leading to the 
mixture of all decorrelation regions and the failure of 
distinguishing change areas. To address this problem, a 
complex reflectivity change model was introduced into CCD 
and expressed as (Jakowatz et al., 1996):  
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The estimator ˆmγ has been demonstrated better than ĉγ , having 
the ability to differentiate the changes from the background. As 
we know, change regions generally have low-coherence values 

as well as obvious intensity differences. However, in low-CNR 
regions, such as hard-packed roads and smooth water surfaces, 
or many vegetation areas with the property of volume scattering, 
if not changed, the intensity of two SAR images would not 
significantly differ from each other. Several methods have been 
proposed to overcome low-CNR decorrelation, typically the 
complex reflectance change detection (CRCD) metric (Wahl et 
al.): 
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where  2

nfσ , 2
ngσ  = variances of the additive system thermal 

noise of vectors f and g 
 
Although these estimators have achieved some performance in 
change detection, it is still a difficult task for them to identify 
change areas because of the decorrelation due to low CNR and 
volume scattering. Besides, most of them require equal 
variances of two SAR images. However, the equal-variance 
assumption is unlikely to be met due to the presence of scene 
disturbances during the two collections as well as antenna-
pointing errors arising in the data collection and radiometric 
miscalibration in the image formation (Preiss et al., 2006), 
especially in change areas with significant intensity differences. 
Therefore, the effective identification of changes and the 
assumption of equal variance are two key problems to be solved 
for an optimal coherence estimator. 
 

3. METHODOLOGY 

3.1 Statistical Properties of SAR Image Pair 

The SAR data, known as the complex image, is consisted of the 
observed in-phase and quadrature components, 1 cosz A φ=  and 

2 sinz A φ= where A is the amplitude andφ is the phase. Two 
components will be independent identically distributed zero-
mean Gaussian random variables whose joint probability 
density function (PDF) can be expressed as: 
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where  2σ = average intensity 
 
Given two spatial-registered SAR images, one can form a joint 
data vector [ , ]T=X f g from the corresponding N-pixel local 
neighborhoods. And the PDF of the vector X is given by: 
 

 ( )1
12

1( | , ) exp ,
| |

N

N kN
p γ ϕ

π
−

=
= −∑ H

kkX X Q X
Q

 (5) 

 
where H = complex conjugate transpose operation 
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where *2 ( )f Eσ = ff  

 *2 ( )g Eσ = gg  
 γ = magnitude of complex coherence 
 ϕ = constant phase difference  
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          |Q| = determinant of Q 
 Q-1= inverse matrix of Q 
 
3.2 Proposed weighted coherence estimator 

As an unknown parameter, the coherence magnitude γ can be 
estimated by maximizing (5) or, equivalently, the log of (5), 
based on the ML principle. The log of  (5) is easily gotten as: 
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In the rest of this paper, the summation symbol 1

N
k =∑ is 

replaced with ∑ to simply the notation. Then taking the 
partial derivative of (6) with respect to γ and setting the result 
to zero gives: 
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Here, |Q| and Q-1 can be easily gotten according to the 
definition of the covariance matrix Q. Then we can obtain the 
following partial derivations after a number of algebraic 
manipulation: 
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Substituting |Q|, Q-1, and (8) into (7) and setting the result to 
zero, we have: 
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Substituting the following reasonable approximations: 
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into (9), then dividing through by 21 γ+  and simplifying, we 
can obtain: 
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Using the ML estimate of the phase difference ϕ (Rodriquez, 
Martin, 1992), we get the following relationship: 
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Substituting (12) into (11) and setting the ratio of the true 
variance as 2 2 gfR σ σ= , we have: 
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The coherence metric γ̂  can be viewed as a weighted form of 
the estimator ˆmγ . A comparison between γ̂ and the above-
mentioned estimators ĉγ  and ˆmγ is firstly performed below. 
According to the inequality properties, we can easily get the 
following relationship: 
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Therefore, γ̂ is less than or equal to ĉγ . Combing the definition 
of R and (10), we can obtain: 
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Then the difference ∆ of the denominators of estimators γ̂  and 
ˆmγ can be expressed as: 
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Thus, γ̂ is more than or equal to ˆmγ . Consequently, γ̂ seems 
more likely a compromise between estimators ĉγ and ˆmγ , 
indicating the introduction of the weights in γ̂ can improve the 
values of ˆmγ to some extent. However, in CCD, we expect to 
lower the coherence magnitude in change regions to improve 
the contrast between the changed areas and the background 
(unchanged areas). Inspired by the idea, the new weighted 
estimator is defined as 
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Notice that the weights of ˆwγ are replaced with the reciprocals 
of that of γ̂  to decrease the coherence in change areas. The 
rationality of the definition will be experimentally demonstrated 
on simulated SAR images in Section 4. 
 

4. EXPERIMENTAL RESULTS 

In order to assess the effectiveness of the proposed estimator, 
we first performed a simulation with known true-variance ratios 
to compare the change detection performance of ĉγ , ˆmγ , and 
the proposed ˆwγ . Then we compared the detection performance 
of ˆwγ with the other three estimators ĉγ , ˆmγ , and α̂γ  on the real 
SAR images. Furthermore, a brief comparison between ˆmγ , the 
mean-ratio operator, and ˆwγ was performed to illustrate the 
advantages of the introduction of weights. 
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4.1 Simulated Data Example 

To verify the theoretical feasibility of the method, we simulated 
a SAR image pair with a size of 2000×2000. In the simulation 
process, we adopt the hypothesis tests as (Cha et al., 2015): 
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According to the tests, there are four possible combination 
cases: 1 2

0 0
st ndH H+ , 1 2

0 1
st ndH H+ , 1 2

1 0
st ndH H+ , and 1 2

1 1
st ndH H+ . 

Similarly, we also accept 1 2
1 0

st ndH H+ is unlikely to happen. 
Therefore, only the other three cases are considered in the 
simulation. One point to be mentioned here is that the 
simulation depends on the real and imaginary components of 
the SAR complex image are the independent identically 
distributed zero-mean Gaussian random variables. 
Under hypothesis test 1 2

0 0
st ndH H+ , SAR images are simulated 

with similar intensities and high coherence values, indicating 
that no changes have occurred between the simulated images. 
For this purpose, two components of one complex SAR image 
are firstly randomly simulated, then the other image is 
simulated by adding a Gaussian noise for two components, 
respectively. 
In the condition of 1 2

0 1
st ndH H+ and 1 2

1 1
st ndH H+ , the simulated 

SAR images have low coherence values. The corresponding 
SAR image pairs of the two cases are thus generated using a 
random Gaussian complex simulation to keep the low-
coherence property. Test combination 1 2

0 1
st ndH H+  happens 

mainly in vegetation or low-CNR areas. For two repeat-pass 
SAR images, although decorrelation, there is unlikely to exist 
significant intensity differences in these areas where no features 
have changed. Differently, low coherence and obvious intensity 
differences generally indicate a true temporal change has 
occurred between two SAR images. This situation is in accord 
with 1 2

1 1
st ndH H+ . Therefore, we would expect the coherence 

estimator to be able to distinguish the two cases, identifying 
change regions from low-coherence regions instead of just 
highlighting all low-coherence areas.  

 

 
                (a)                             (b)                             (c) 
 
Figure 1. The simulation frame and the real components of the 

simulated SAR image pair. 
 

To better demonstrate the effect of the estimator, the simulated 
SAR image is divided into three parts: the upper-left block of 
the size of 1000×1000 based on 1 2

1 1
st ndH H+ , the upper-right 

block of the size of 1000×1000 based on 1 2
0 1

st ndH H+ , and the 
lower block of the size of 1000×2000 based on 1 2

0 0
st ndH H+ (see 

the simulation frame shown in Figure 1 (a)). Since adopting the 
same simulation way of two components, here we just give the 
real components of the simulated image pair as shown in Figure 
1(b) and (c). Note that the upper two blocks correspond to low-
coherence areas, and the lower block to the high-coherence area. 

In this experiment, the true variance of the second image 2
gσ  is 

assumed to 1.0. The ratio R is set to 0.5 and 0.9 for the upper-
left and upper-right blocks, respectively. For the lower block, 
the variance of the additive noise is set to half of 2

gσ . 
Practically, raw estimator outputs are often called SAR change 
detection images in CCD (Cha et al., 2015). Figure 2 shows 
SAR change detection images of the simulated images 
estimated using ĉγ , ˆmγ , and the proposed ˆwγ , respectively. The 
following conclusions can be drawn. 
1) In low-coherence areas, all estimators can get low 

coherence values. However, the detection image 
estimated by ĉγ has no obvious difference between blocks 
with different R values, which means that ĉγ fails to 
identify change areas from all decorrelation areas. The 
estimator ˆmγ is comparatively better than ĉγ , keeping 
consistent with the conclusion proved by Cha et al.. Note 
that the proposed ˆwγ yield the higher-contrast detection 
image among three estimators. In the simulated image 
block based on 1 2

0 1
st ndH H+ , the detection results obtained 

by the three estimators are visually similar in brightness 
but significantly different in the block based on 

1 2
1 1

st ndH H+ . The proposed estimator can provide much 
lower coherence values than ĉγ and ˆmγ  in the block with 
obvious intensity differences and low coherence, making 
the boundary between the two types of decorrelation areas 
much clearer. Since the two blocks in the low-coherence 
case are simulated in the same way, the only difference is 
the true variance ratio used. Therefore, the proposed 
coherence estimator ˆwγ is also sensitive to the ratio R and 
more effective for highlighting changes. 

2) In high-coherence areas, all estimators can provide high 
coherence values, making the detection image blocks fill 
with bright pixels. And there are no obvious differences 
between the detection results of the three estimators. 

 

 
               (a)                             (b)                             (c) 

 
Figure 2. SAR change detection images of the simulated SAR 

image pairs using different coherence estimators. (a) ĉγ . (b) ˆmγ . 
(c) Proposed ˆwγ . 

 
To sum up, the new estimator can give the best performance 
among the three estimators in theory: the contrast between low- 
and high-coherence areas is most obvious and the two types of 
low-coherence regions can be effectively distinguished. As we 
know, CCD aims at detecting changes that have occurred 
between two SAR images, therefore, an optimal coherence 
estimator should provide a change detection image where the 
contrast of the change areas and the background (unchanged 
areas) should be as obvious as possible, restraining the 
information of the background and enhancing the change 
information to the greatest extent (Gong et al., 2012). Therefore, 
our weighted estimator is comparatively more suitable for CCD 
tasks. 
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4.2 Real Data Example 

The weighted estimator was also used on a section (1000×1000 
pixels) of the real SAR image pair taken by the TerraSAR-X 
satellite in an area with various features, such as buildings, 
water, and mountains, in February and May 2013, respectively. 
Between the two data acquisitions, the ice in water areas melts 
as the weather warms up. Therefore, this image pair is selected 
for detecting ice-change areas. The available ground truth 
(reference image) shown in Figure 3(c) was determined by 
visual inspection based on the input images in Figures 3(a) and 
(b). In this experiment, the proposed ˆwγ is compared with the 
other three coherence estimators: ĉγ , ˆmγ , and the CRCD metric 
that will be referred to as α̂γ for ease of comparison.   
For all methods, the window size to estimate the coherence 
values for each pixel is set to 3×3. Since the additive noise is 
regarded as constant throughout the scene, it can be measured in 
regions with low average backscatter coefficient (Carrara, 
Goodman, and Majewski, 1995). Here, the additive noise values 
required by estimator α̂γ are measured in a manually selected 
shadow area following the process introduced by Wahl (2016). 
As the proposed ˆwγ  needs the ratio R corresponding to each 
pixel in the SAR image, the window size for estimating R is set 
to  3×3 to reduce the influence of speckles.  
 

 
               (a)                             (b)                             (c) 
 

Figure 3. Multitemporal SAR image pair used in the 
experiment. (a) Image acquired in February 2013 covering 

frozen water areas. (b) Image acquired in May 2013 covering 
unfrozen water areas. (c) Ground truth. 

 
Figure 4 illustrates SAR change detection images of ĉγ , ˆmγ , 
α̂γ , and the proposed ˆwγ , respectively, prior to thresholding. 

Notice that the coherence values of most areas are very low 
except for some building areas in the detection images. One 
point to be mentioned here that some low-CNR areas in the 
detection image of α̂γ , such as roads and shadow areas, are 
filled with bright pixels with high coherence values due to the 
introduction of the additive thermal noise. In Figure 4(a), all 
decorrelation regions caused by different sources exhibit similar 
characteristics in brightness, indicating the failure of ĉγ in 
detecting changes. The image in Figure 4(b) with ˆmγ  
differentiates the ice-change areas, filling them with darker 
pixels. Meanwhile, we found that α̂γ  gives a similar detection 
result as ˆmγ  except for some low-CNR areas. Although the two 
estimators have achieved some performance, the boundaries 
between the changed and unchanged areas in detection images 
are not particularly clear, , which can be further demonstrated 
by the close-up images in Figures 5(b) and (c). By contrast, the 
image in Figure 4(d) with the novel estimator significantly 
improves the result from ˆmγ by effectively emphasizing the 
changes, presenting the highest contrast among the four 
estimators. 
 

 
                      (a)              (b) 

 
                      (a)              (b) 
 
Figure 4.  SAR change detection images of the real SAR image 
pair estimated using different estimators. (a) ĉγ . (b) ˆmγ . (c) α̂γ . 

(d) Proposed ˆwγ . 
 

 
               (a)                             (b)                             (c) 

 
               (d)                             (e)                             (f) 
 

Figure 5. The close-up view of the red rectangle in Figure 4 
with (a) ĉγ , (b) ˆmγ , (c) α̂γ , and (d) Proposed ˆwγ , (e) the mean-

ratio operator, and (f) corresponding ground truth. 
 
Smaller portions corresponding to the red rectangle in Figure 4 
are shown in Figure 5(a)-(d) to further demonstrate the 
difference between the four methods in ice-change regions. 
Figure 5(f) is the corresponding ground truth in this area. Notice 
that the detection result of ĉγ mixes the change areas with other 
decorrelation areas, failing to identify changes. Although 
having similar detection results, α̂γ performs slightly better than 
ˆmγ by filling the ice-change areas with darker pixels. However, 

it can be seen that the boundaries between the changed and 
unchanged regions are very unclear, making it difficult to get 
the high-precision detection result. Compared with ˆmγ and α̂γ , 
we observe from Figure 5(d) a significant contrast enhancement 
using ˆwγ , providing much lower coherence values in change 
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areas. Therefore,  the proposed ˆwγ is more effective than the 
other estimators in highlighting changes. 
Since ˆwγ can be seen as a weighted form of ˆmγ by introducing 
the corresponding parameters about the ratio change statistic of 
noncoherent intensity-base methods, we also validate the 
robustness of our method by comparison with ˆmγ and the mean-
ratio operator. Two points need to be noted here: one is the 
difference image obtained using the change statistic in 
intensity-based methods is also referred to as SAR change 
detection image for consistency; the other is the mean-ratio 
operator used in this paper, different from the commonly used 
one (Inglada, Mercier, 2007),  does not need to be subtracted by 
1.0, making the change areas of its detection result fill with 
dark pixels as the same as the coherence estimators.  
 

 
               (a)                             (b)                             (c) 
 
Figure 6. SAR change detection results using different change 

statistics. (a) ˆmγ . (b) Mean-ratio operator in noncoherent 
intensity-based methods. (c) Proposed ˆwγ . 

 

 
               (a)                             (b)                             (c) 

 
               (d)                             (e)                             (f) 
 
Figure 7. The close-up view of the yellow rectangle in Figure 4 
with (a) ĉγ , (b) ˆmγ , (c) α̂γ , and (d) Proposed ˆwγ , (e) the mean-

ratio operator, and (f) corresponding ground truth. 
 
Figure 6 shows the raw outputs of ˆmγ , the mean-ratio operator, 
and ˆwγ , respectively. As an intensity-based method, the mean-
ratio operator is sensitive to the difference in intensity, 
providing low values in ice-changed areas. However, it is the 
sensitivity that leads to low values in regions of weak changes 
that can be caused by vegetation growth and other reasons. The 
close-up views of the red and yellow rectangles in Figure 4 are 
shown in Figures 5 and 7, respectively, to further illustrate the 
effectiveness of the new estimator. It is observed from Figure 
5(e) that the mean-ratio operator can provide low values in 
change areas of significant intensity difference and yield a high-
contrast detection image. However, in weak-change regions, as 
circled by the yellow rectangle, this operator can still provide 
low values (see Figure 7(e)). The coherent detection results in 

Figure 7(a)-(d) and the result of manual visual interpretation in 
Figure 7(f) show that no changes have occurred between the 
two collections in this region. These low-value areas estimated 
by the mean-ratio operator thus would bring trouble in 
obtaining final detection results. By comparison, the novel 
estimator ˆwγ combines the advantages of the mean-operator and 
the coherent estimators, displaying a clear boundary of the 
change area and not so sensitive to intensity differences in 
weak-change regions (see Figure 5(d) and Figure 7(d)). It can 
be concluded that the introduction of the ratio change statistic 
into the coherence estimator enables the new statistic to largely 
combine the advantage of the two types of change detection 
algorithms. 
 

5.  CONCLUSION 

In this paper, we have derived a new weighted coherence 
estimator for SAR CCD based on the statistical properties of 
SAR images and the ML principle. The estimator has been 
shown to have a better change detection performance over the 
current classic estimators by effectively highlighting the 
changes. The significant improvement in detection performance 
was achieved due to the introduction of the weights of the ratio 
change statistic, combining the advantages of the coherent and 
noncoherent change detection algorithms.  Furthermore, the 
introduction of weights also makes the estimator no longer need 
to satisfy the equal-variance assumption. The proposed 
coherence estimator was calculated for both simulated and real 
SAR images, experimentally demonstrating its effectiveness 
and feasibility. 
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