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ABSTRACT:

Building change detection is essential for monitoring urbanization, disaster assessment, urban planning and frequently updating the
maps. 3D structure information from airborne light detection and ranging (LiDAR) is very effective for detecting urban changes.
But the 3D point cloud from airborne LiDAR(ALS) holds an enormous amount of unordered and irregularly sparse information.
Handling such data is tricky and consumes large memory for processing. Most of this information is not necessary when we are
looking for a particular type of urban change. In this study, we propose an automatic method that reduces the 3D point clouds into
a much smaller representation without losing necessary information required for detecting Building changes. The method utilizes
the Deep Learning(DL) model U-Net for segmenting the buildings from the background. Produced segmentation maps are then
processed further for detecting changes and the results are refined using morphological methods. For the change detection task,
we used multi-temporal airborne LiDAR data. The data is acquired over Stockholm in the years 2017 and 2019. The changes in
buildings are classified into four types: ‘newly built’, ‘demolished’, ‘taller’ and ’shorter’. The detected changes are visualized in

one map for better interpretation.

1. INTRODUCTION

With the population growth and rapid development, it became
crucial to monitor uncontrolled urbanization. The rate of people
moving from villages to cities is increasing at a threatening
level. Urban changes can be due to the construction of new rail-
way tracks, roads, construction of the new residential area, de-
molition of old or illegal properties, filling lakes, and many oth-
ers. For sustainable urban planning, regular updating of foot-
prints and maps is becoming challenging every year. In such
a scenario, remote change detection can play a significant role
in monitoring and understanding the local and global changes.
Change detection can also facilitate environmental monitoring,
resource exploration, and disaster assessment. Conventionally,
the urban changes were detected using methods developed on
multi-temporal remote sensed multi-spectral or optical images.
The high-resolution optical data is useful in change detection
but is dependent on sunlight, fog, and multiple other environ-
mental conditions. On the other hand, LiDAR and Radar active
remote sensors are immune to these factors and better at de-
tecting urban changes. Radar data is difficult to process and
involves a lot of noise issues. In this scenario, LiDAR data is
an effective alternative. LiDAR provides 3D data, which helps
in monitoring volumetric changes as well as 2D changes. ALS
has dramatically changed the monitoring and 3D modeling of
districts, cities, etc. LiDAR provides information such as el-
evation, intensity, and 'number of returns’, which helps in se-
gregating different features in the scene. These attributes are
significant in detecting buildings.

In previous studies, ALS data has shown great potential in de-
tecting changes in buildings. The methods are further explored
in combination with aerial images. One example of such work
is (Matikainen et al., 2010), where a combination of aerial and
ALS data is used to detec the buildings. For detecting build-
ings, elevation information from ALS is used and arial images
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are used to segregate trees from buildings. Changes in build-
ings are detected using object based matching algorithm. In
(Murakami et al., 1999) study, multi-temporal high resolution
DSM is prepared from the ALS data and changes are detected
by calculating difference between the DSM. Authors of study
(Teo and Shih, 2013), also explored the multi-temporal DSM
prepared from ALS data. DSM are first classified on the basis
of surface roughness and the changes in buildings is detected by
change in the land cover class. In (Vu et al., 2004) study, au-
thors proposed a building change detection method on LiDAR
data in highly dense urban area. Here high resolution ALS grid
data is used instead of point data. Building changes are detected
by manually thresholding the difference histogram of the two
grids. In (dos Santos et al., 2020) study also authors subtract
two DSM from the two time stamps and refined the changes
using a height entropy concept.

This work is conducted on multi-temporal ALS data to detect
urban changes over the Stockholm area. In the proposed change
detection method we first use DL segmentation methods to de-
tect all buildings and then proceed with the change detection
process. Pointnet (Qi et al., 2017a) and pointnet++ (Qi et al.,
2017b) are the two recent segmentation methods popular for
there state of the art performance on 3D point cloud data. These
DL methods work on consistent LIDAR data but ALS suffers
from the problem of random irregular data issues. In our ALS
dataset, For the majority of sites, LIDAR data points are avail-
able only on the building rooftop. Since, 3D structure informa-
tion is missing randomly across the data, using 3D point-cloud
segmentation methods will cause false change detection in the
later process. With this knowledge, we decided to drop the idea
of using 3D point cloud segmentation and figure out a way to
segment building in 2D keeping all important features intact.

In this study, we propose one single stream segmentation net-
work which works on selected LiDAR attributes. The same
network can be trained on a segmentation task for sparse optical
data associated with LiDAR data points. We also presented one
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Figure 1. Data Sample Visualization. From left to right, we have RGB image which is the orthophoto projection on LiDAR point
cloud, second is Ground truth used for the Building Segmentation task. First row is showing data from year 2017 and second from
2019.

dual-stream segmentation architecture where selected LiDAR
features and optical features are fused to get more accurate seg-
mentation predictions. Before calculating changes between the
two-year buildings, we complemented our segmentation results
with interpolation and morphology-based methods. The presen-
ted method attempts to perform the task in multiple steps, which
are namely data processing, 2D projection, segmentation, build-
ing map preparation, area and elevation-wise change detection
of buildings, refining the change maps using morphological al-
gorithms, final change map visualization, and qualitative as-
sessment of the results.

2. STUDY AREA AND DATA

In this study, the dataset used is recorded over multiple sites
in Stockholm during April 2017 and April 2019. The data is
private and belongs to the Stockholm city government. The
dataset is 3D point cloud data recorded using LiDAR airborne
scanners with the point density of 12 points per meter square
ground area.

In total, 27 different sites are scanned and for each site, we have
two points clouds from the years 2017 and 2019. Every point
cloud files contain 6 million to 35 million points. Each point is
associated with 12 different information, such as point coordin-
ates, RGB values, intensity, elevation, number of returns, scan
angle rank, GPS time, and point source id. For the change de-
tection task explained in the following section, we extracted the
point coordinates and corresponding six attribute values R, G,
B, elevation, intensity, and ‘number of returns’. In the dataset,
Building size varies from 60 meter square to 1700 meter square.
Also, Ground surfaces are relatively continuous and flat. For a

better understanding of the area, one sample from both 2017
and 2019 is visualized in Figurel.

There are few black sites in the dataset, where data is not avail-
able. In multiple areas, LiDAR data points are sparse and miss-
ing. RGB color information is collected by projecting the Or-
thophoto of each area on to corresponding 3D point cloud. Hence
the RGB information in the dataset is also affected by the black
thin line and other Lidar point cloud issues. The most frequent
case is missing data on top of the building, creating small holes.
These data points are missing inconsistently between the two-
year data and cause false change detection. Since, the changes
are really small in area, to a large extent we handled this using
interpolation.

3. METHOD

The complete workflow of the building change detection is il-
lustrated in Figure 2 and the steps involved are explained in the
following subsections.

3.1 Pre-Processing

Handling a 3D point cloud containing millions of points is com-
plicated to process as well as heavy on memory. Due to random
order of missing 3D building structure information, it is dif-
ficult to maintain the data consistency between the two years.
Detecting changes using inconsistent data will cause false de-
tection. For detecting building changes, it is not necessary to
utilize all information associated with each point in the point
cloud. The idea is to extract necessary information from the 3D
point cloud and then perform the change detection task. Since
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Figure 2. Building Change Detection Workflow.

we are interested in detecting spatial changes and the changes
in elevations, the top view from the point cloud is sufficient. For
the top view, we need to gather the surface data from the point
cloud, which is done by extracting the surface point for each
pixel. The surface point at a given location is the data point
with the maximum elevation value. The extracted surface data
is then projected on a 2D plane.

From the data, a 3-channel matrix is prepared, where each chan-
nel is the 2D projection of the 3D point cloud. The first channel
is holding the ’elevation’ information. The second and third
channel contains ’intensity’ and ‘number of returns’ data re-
spectively. Both 2017 and 2019 point cloud is processed in the
same way. Similarly, we extract the RGB values of the 2D pro-
jected points and place them in 3 channels.

3.2 Single Stream Segmentation Network

For the segmentation task, lightweight U-net (Ronneberger et
al., 2015) architecture is proposed. U-Net is one of the widely
used CNN architectures originally designed for the pixel-level
classification of medical images. This network consists of an
encoder-decoder architecture. The encoder extracts the sali-
ent features from the input using several convolutional blocks,
max-pooling, and batch normalization. The output of the en-
coder is a smaller set of feature maps. These small features
are decoded back to the bigger feature maps guided to have a
limited number of classes. The output is a segmentation map,
where each pixel is classified.

Conventionally, Resnet (He et al., 2016) is the encoder in U-
net architecture. In our proposed network, we replaced resnet

backbone with a much smaller network known as Efficientnet-
B4 (Tan and Le, 2019). In addition to this, we only used 3
levels of the encoder, unlike most U-net architectures. In the
decoder network, the encoded feature maps are up-sampled us-
ing a series of transpose convolution, convolutional layer, and
batch normalization layers. Overall our proposed network set-
tings contain one-fourth of the parameter in comparison to res-
net based U-net, which makes it significantly lightweight.

The network takes The 3 channel input(ZIN) containing elev-
ation(Z), intensity(I), and the number of returns(N) informa-
tion. The output of the network is a segmentation map with two
classes named building and background. This is a single stream
lightweight U-net architecture. For better understanding, the
network is represented using a block diagram in Figure 3.

g0

Segmentation
Map

3 Channel Efficientnet Decoder

Input Encoder

Figure 3. Single Stream Segmentation Network.
3.3 Dual Stream Fusion Segmentation Network

As mentioned in subsection3.1, we have the RGB values cor-
responding to all the LiDAR data points. We wanted to com-
pliment our network with optical information. To achieve that,
we propose a dual-stream segmentation network where the net-
work takes two 3-channel input streams, one with RGB values
and the second(ZIN) stacking elevation, intensity, and the num-
ber of returns. The inputs from the two streams are encoded
separately using two Efficientnet-B4 encoders. The encoded
features are then fused and supplied to the decoder network to
prepare a binary segmentation map. The encodes feature maps
from the two streams are fused using a concatenation operation.
The block diagram of our dual-stream segmentation network is
presented in Figure 4.

Encoder 1

—
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Figure 4. RGB and LiDAR Fused Dual Stream Segmentation
Network.

These segmentation networks are trained on input patches of
size 128x128. The LiDAR samples in our data are of different
dimensions. These samples are divided into small patches of
size 128x128 and fed into the network with a batch size of 4.
We also applied a list of data augmentation to the input patches.
Some of the augmentations are horizontal, vertical flips, rota-
tions, crop, pad, translate. The model is trained for 150 epochs
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Figure 5. Segmentation Result Samples. From left to right, we have RGB image, ZIN 3-channel representation, ground truth,
prediction from the Single Stream Segmentation Network on RGB input, prediction from the Single Stream Segmentation Network on
ZIN input and prediction from the Dual Stream Fusion Segmentation Network.

using binary cross-entropy loss and Adam optimizer. The learn-
ing rate is set to 0.001 along with the decay rate of 0.1 after
every 20 steady epochs. These hyperparameter settings are ap-
plied for all experiments. We implemented everything in py-
thon using Keras framework and the training is conducted on a
single Google colab GPU.

3.4 Change Detection

For change detection, a 3D matrix with 2-channels is prepared.
The first channel is the segmentation prediction from the trained
model. The second channel contains elevation values corres-
ponding to the points which are predicted as buildings by our
model. This 3D matrix data is prepared for both the 2017 and
2019 samples covering the same area. Now, the channel-wise
difference is calculated between the two-year 3D matrix. This

difference is then categorized into positive and negative changes.

The difference in the first channel represents the changes in
area or the changes from the ground. The positive change here
can be the construction of a new building in the year 2019 and
this area used to be either empty or under a different class in
2017. The negative changes can be due to the demolishment of
a building after recording the first data samples in 2017. The
difference in the second channel is only about changes in elev-
ation i.e building getting taller or shorter. This covers the scen-
arios, where a particular area was classified as building in 2017
as well as in 2019. But, in one of the years, it was a construc-
tion site and in another year the building height has increased by
some floors or decreased(i.e while reconstructing the top floor,
partially damaged in some disaster event).

Morphological operations are applied to reduce the noise in the
change results. The operations used are ’closing’ and ’open-
ing’ with the kernel size 3. Once the results are refined, the
change maps for each category are prepared. Both maps con-
sist of negative and positive changes. For better interpretation,
the two change maps are overlaid with the building footprint
from 2019. These final change maps are further explained in
the result section.

4. RESULTS AND EVALUATION

First, we present the quantitative and qualitative comparison of
segmentation methods described in the method section. The
best segmentation method is chosen to conduct the change de-
tection task. In the later section, a qualitative analysis of the
change detection results is shown and discussed in detail.

4.1 Segmentation Evaluation

Network performance is assessed in terms of IOU score taking
into account True Positives (TP), False Positives (FP) and False
Negatives (FN). The IOU score is described in equation 1.

TP
1 = 1
o TP+ FP+FN M

For the quantitative comparison, Table 1 list IOU scores of
the three methods; single stream segmentation on ZIN, single
stream segmentation on RGB and the dual stream fusion net-
work on both RGB and ZIN. The single stream network trained
on ZIN input achieved higher IOU score than the one trained on
RGB input. The 10% performance difference is considerably
high. The performance is enhanced further by approximately
by 2%, when both RGB and ZIN inputs are fused in training
the dual stream fusion network.

The qualitative comparison of the three segmentation methods
is visualized in Figure 5. The visualized samples show agree-
ment with the quantitative results and give more insight into
specific differences. The performance of the RGB input-based
single stream network is substantially low in comparison to
others. This can be visually demonstrated by the prediction
samples shown in the second row of Figure 5. In the first row,
a small area is highlighted using a dashed circle. According
to the label, there are four small buildings with low elevations.
The single-stream network detected either one building when
trained on ZIN data or none when trained on RGB data. Whereas,
the fusion network successfully detected three small buildings.
The possible explanation here is that the RGB adds specific
building color information to the network. Elevation, intens-
ity, and color information together provide better features to the
fusion network, which help in recognizing small buildings.
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Figure 6. Change Detection Result Samples.
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Figure 7. Negative Change Detection sample.

Our proposed fusion network scored 86.7% IOU. We analyzed
the remaining 13% of the building which are not detected by
our network. These are the small buildings with low elevations.
Network struggles more if these small buildings are partially
covered by dense trees. These small buildings or partly not vis-
ible in optical images. With current point density the intensity
and 'number of returns’ also fail to differentiate small buildings
from other.

Methods | I0U
RGB Single Stream 75
ZIN Single Stream 85

RGB+ZIN Dual Stream | 86.7

Table 1. Performance Comparison of Segmentation Methods.
4.2 Change Detection Evaluation

Two samples are shown in Figure 6 for qualitative analysis of
the change detection. The first row of the figure contains the
data from the year 2017 and the second row is for 2019 data.
From left to right we have: First the RGB visualization of the
area, which is not an orthophoto but the RGB information cor-
responding to the points in 2D surface data. The second is the
visualization of the building footprints. The buildings are in
blue color and the background is in black. In the third column
holds the two change maps. The first change map contains
changes corresponding to newly built(positive changes) and de-
molished buildings(negative changes). The new buildings are
in white and demolished buildings are in black. It is crucial to
note that this map indicates the area-wise changes along with
elevation changes. The second change map contains only el-
evation changes. These changes exclude all elevation changes
pointed by the first change map and focused on increase or de-
crease in number of floors. The fourth is the visualization of the
final change map, where all the changes are projected onto the
2019 building footprint. In the final change map, buildings are
in blue, (newly built and demolished buildings) are in red and
elevation changes are in off-white.

Following the presented workflow, we have prepared and ana-

lyzed the change maps for all the sites in the dataset. The entire
process is automatic and can be performed end to end. The
detected changes were confirmed by the officials along with
comments on false building detections which are are mainly
the sheds installed on top of the building during construction.
These sheds give an impression of extra height to the building
and these elevation differences are falsely detected as building
changes. One of such examples is shown in Figure 7. From
left to right, we presented RGB visualization of samples from
2017 and 2019 in the first and second row respectively. The
second column is the 3D visualization of the point cloud where
2017 data is in Green color and 2019 data is in blue. The prob-
lem area is highlighted with a white circle. The third column
is the change map, where elevation changes are detected in the
highlighted building. The detected change is false positive and
happened due to shed installment during the reconstruction of
the top floors of the building. It is noteworthy that these false
positives are still an indicator of ongoing construction on top of
the building and can be utilized for monitoring purposes.

5. CONCLUSION

In this paper, we presented a an approach to handle the irreg-
ularity of 3D point cloud data from ALS and utilize efficiently
for building change detection. Our method explores the bene-
fit of several LiDAR attributes in 2D which are extracted from
the 3D point cloud. We proposed two lightweight networks for
segmenting buildings from the background and presented the
performance comparison. First architecture operates on single
modality either optical or ALS whereas the second architecture
benefits from both optical and LiDAR features.

Our findings indicate that the segmentation results are better
when both optical and ALS dat are fused. Our change detection
approach generate three change maps explained in the previ-
ous section. All change maps are georeferenced and can be
visualized in tools like QGIS, ArcGIS, GEE, and CloudCom-
pare. These change maps and quick visualization can help in
enhancing the monitoring of construction of new buildings, ho-
rizontal extension of building such as illegal balcony extension
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if visible in top view, demolishment of old buildings, comple-
tion/ongoing construction, partial or complete building damage
due to disaster events and many others.
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