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ABSTRACT: 

Contour detection is better for monitoring dynamic and long-term changes to surface water bodies. For that purpose, we present a  

semi-automated method for collecting and labeling water contours from Landsat-8 and Sentinel-2 images. Due to the need for human 

inspection, the method has thus far generated 14K labeled images from more than 1.5M images. Given the cost of data labeling, we 

propose a deep semi-supervised self-learning system performed in two training stages, known as teacher-student. The teacher is trained 

on the accurate human-labeled data, then used to pseudo label the remaining unlabeled data. The student is trained on both human-

labeled and machine pseudo-labeled data. For both teacher and student, we use a uniquely designed multiscale UNet classifier that 

uses fewer parameters and is more accurate than other state-of-the-art classifiers. Random augmentations are used to “noise” the 

student model and improve its generalization, and normalization schemes are used to blend the human-labeled loss with the machine-

labeled loss. Comparisons to existing water body detection classifiers and segmentation classifiers show the superiority of our proposed 

system in detecting water contours. 

1. INTRODUCTION

Monitoring surface water from remote sensing data is a critical 

GIS task for risk evaluation, resource management, public 

policy, emergency response, cartography, and education. Many 

remote sensing technologies (Huang et al., 2018) are currently 

available, providing data that vary in cost, temporal resolution, 

spatial resolution, spectral resolutions, and the number of 

spectral channels.  

Surface water monitoring techniques (Gao, 1996; Xu, 2006; 

Fisher et al., 2016; Feyisa et al.,2014; Wang et al., 2018; Friedl 

& Brodley, 1997; Mueller et al., 2016; Aung & Tint, 2018; 

Cordeiro et al., 2021; Isikdogan  et al., 2017; Isikdogan  et al., 

2020) have focused on the multispectral detection of water 

bodies that is sensitive to the infra-red (IR) channels. In the 

planar view, contour detection is more effective in capturing 

dynamic and long-term changes to surface water than water body 

detection. Additionally, the dependence on the IR channels 

makes the detectors expensive and requires recalibration of the 

system to IR sensing technology (bandwidth, central 

wavelength, sensitivity, etc.) We propose RGB-based detection 

that – much like humans – can detect contours without relying 

on multispectral data.  

To aid in this effort, we have started collecting satellite data 

representing a variation of Landsat and Sentinel waterbody 

images (lakes, rivers, shores, etc.) from across the globe. We 

employed rule-based metrics and basic image processing to label 

the contour data and used visual (human) inspection to isolate 

and remove inaccurately labeled portions. The process has been 

extremely slow, thus far yielding only 14K useful images from 

over 200K candidates, with over 1M images still unchecked.  

Given the cost of data labeling, we propose to use a deep semi-

supervised self-learning framework in which our unique 

__________________________ 
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multiscale UNet-style classifier is trained on a small subset of 

the labeled data. The trained classifier, also known as a teacher 

model, is then used to pseudo-label the more extensive set of 

unlabeled data. Then the classifier is retrained with both human 

and pseudo-labeled data to achieve a more robust classifier, 

known as the student model. During the student model training, 

50% of each batch is randomly selected from the human-labeled 

data, and the human-labeled loss is weighted more heavily than 

the machine-labeled loss. This is done to prevent the pseudo-

labeled data from dominating the learning process. The student 

model batch also undergoes random augmentations of vertical 

flip, horizontal flip, and rotation to make it “noisier.” The 

training process reiterates, with the student model becoming the 

new teacher. We found that after three iterations, the 

performance improvements become negligible.  

In the proceeding sections, we will describe our data collection 

process (section 2), the architecture of our unique multiscale 

classifier (section 3), semi-supervised self-training (section 4), 

and experimental results (in section 5) that demonstrate the 

superiority of the proposed classifier.  

2. DATA COLLECTION AND LABELLING

1.1. Collection 

We collected data for both Landsat-8 and Sentinel-2 satellites. 

There are two datasets that we created for each of the satellite 

data. One was fully supervised training the second was for semi-

supervised (self-training).  

For the Landsat-8 data collection, a single method was used. The 

shapefile from DeepWaterMapV2 (Isikdogan et al., 2020) was 

used to determine potential global water body locations. Using 

the metadata in the shapefile, locations with any less than 1% 

water were removed. Google earth engine (GEE) was used to 

download the data.  

. 
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Figure 1. UNET Architecture, (a) full architecture and (b) encoder, (c) decoder, (d) bottleneck, and (e) conv blocks. The ⊕ operator 

represents the channel concatenation operation. 

 

 

Two methods were used for Sentinel-2 data collection, one for 

supervised learning and one for semi-supervised learning. For 

supervised learning, a shapefile from BlueDotWater1 was used 

to determine the locations of inland water bodies. These were 

downloaded using Sentinel’s python API. For semi-supervised 

learning, data was collected using the same method used in 

Landsat-8 data collection. The satellite images were labeled 

using NDWI (Gao, 1996) to detect water bodies. The water 

contour is then labeled by subtracting NDWI from its 

morphological image dilation. The process yield many 

inaccuracies in the contour even within the same image. To 

improve the yield, the satellite images were split into 128 × 128 

tiles. Human inspection is then used to identify accurately 

labeled tiles from inaccurate ones.   

 

Currently, we have two sets of data in our repository2, one for 

__________________________ 

(1) www.blue-dot-observatory.com/ 

(2) https://github.com/mbsyed/Deep-Surface-Water-Contour-

Detection  

unlabeled and the second for labeled data. There are over 1M+ 

Landsat tiles and 1.4M+ unlabeled Sentinel tiles. To make sure 

that the used data has a contour, we eliminate tiles with with less 

than 1% water. This means than only 490,070 Landsat tiles and 

400,682 Sentinel tiles are used for unlabeled self-training from 

the unlabeled dataset for Landsat and Sentinel. 

 

The labeled data was hand-selected from the unlabeled data set. 

This is an extremely slow process with a minimal return. 200,000 

images were visually inspected to create a labeled dataset 

containing 7,000 tiles for Landsat and 7,174 images for Sentinel. 

We balanced the dataset to avoid an abundance of water-only or 

land-only tiles. 

 

Each tile in the datasets is stored as 16-bit raw satellite data with 

six channels in the following order: blue (b1), green (b2), red 

(b3), NIR (b4), SWIR1 (b5), SWIR2 (b6). As we will be working 

with RGB data, we convert the raw data into True color images 

(TCI). For Landsat, we recommend subtracting the min and 

dividing by the max. For Sentinel, clip it at 3558 first and then 

divide by the same number. Each image has metadata, including 
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satellite source and water percentage for each image. The data 

also contains JRC (Pekel et al. 2016) water labels for each 

Landsat tile for reference. 

 

3. Multiscale UNet 

 

Our proposed UNet-based water contour detector can be seen in 

Figure 1. Our architecture design has encoder/decoder layers that 

are based on the multiscale convolution block seen in Figure 

1(b). Our model uses multiscale 2D filters that are effective in 

capturing contours. The 1x1 filters are effective in controlling 

data expansion and help weigh the channels going forward. Each 

convolution has a Batch Normalization (BN) layer before it to 

avoid outlier data in a batch.  

 

We chose to use a stirded convolution instead of max-pooling for 

the down-sampling process. This adds a few parameters to the 

architecture but the overall performance increases. “Skip” 

connections between corresponding encoder and decoder blocks 

are a general attribute of UNet systems that have been shown to 

improve training and provide better localization in the output. A 

sigmoid output is used to classify each pixel output as a contour 

or non-contour (i.e., 1 or 0). 

 

4. Semi-Supervised Self-Training 

 

Supervised vs. unsupervised learning models are determined by 

the labeled vs. the unlabeled data used for learning. Semi-

supervised learning (SSL) aims to combine labeled and 

unlabeled data to improve the learning task. SSL consists of a 

variety of techniques (van Engelen & Hoos, 2019) that can be 

generalized as one of two scenarios: either the system is a 

supervised learning model that benefits from unlabeled data 

(inductive) or an unsupervised learning model that is improved 

by labeled data (transductive). 

 

Self-learning (aka self-training or wrapper methods) is an 

inductive SSL that aims to train a classifier on a small, accurately 

(human) labeled set of data. The trained classifier is then used to 

pseudo-label a larger unlabeled data set. The accurately labeled 

data and the machine pseudo-labeled data are then combined to 

train a new classifier. The two classifier stages are sometimes 

referred to as teacher-student models.  

 

A variety of approaches for self-training have been proposed, see 

(Triguero et al., 2013) for a review. These vary in the number of 

classifiers used, the type of classifiers, how the pseudo labeled 

data is incorporated into retraining, and how many iterations of 

teacher-student training cycles are used. Implementations such 

as (Yalniz et al., 2019) use a more powerful teacher model, while 

others such as (Xie et al., 2020) use a more powerful student 

model. In (Xie et al., 2020; (Zoph et al., 2020)) noise is added to 

student model data in the form of random augmentations to help 

improve the system’s generalization. In (Sohn et al., 2020; Tang 

et al., 2021), the pseudo-labeled data is ranked prior to student 

model training.  

 

4.1. Proposed Training Process: Teacher Model  

 

We start with 7,000 Landsat, and 7,174 Sentinel true-color RGB 

images and their corresponding accurately labeled contours. 

Each dataset is randomly split into training/testing. Landsat has 

5,000 images for training and 2,000 images for testing. Sentinel 

has a few more images, with 5,121 for training and 2,053 for 

testing. The teacher model is our multiscale UNet that is trained 

using an Adam optimizer (learning rate of 0.003, beta1 is set at 

0.9, and beta2 is 0.999). The maximum batch size that our GPU 

can support is 64. We allowed the model to train for 50 epochs.  

We used a combination of three loss functions, Binary cross-

entropy (BCE), Dice, and IoU. BCE captures the pixel-level loss 

in the image, and intersection over union (IoU) and Dice loss are 

used to capture contour object-related loss. All three losses are 

combined equally.  

 

𝐿 = 𝐿𝐵𝐶𝐸 + 𝐿𝐼𝑜𝑈 + 𝐿𝐷𝑖𝑐𝑒  (1) 

 

Due to the significant imbalance between contour and non-

contour pixels, the pixels are first weighted by the ratio of non-

water pixels to the number of water pixels. Additionally, a 𝑛 × 𝑛 

border makes errors closest to the contour count more heavily 

than those outside the 𝑛 × 𝑛 border. We found a border of 9 × 9 

to be optimum. 

 

4.2. Proposed Training Process: Student Model  

 

The trained teacher model is used to provide machine pseudo-

labels for 490,070 unlabeled Landsat and 400,682 unlabeled 

Sentinel images. Our multiscale UNet is selected again as the 

student model and retrained from scratch using both human and 

machine labels. Due to the large number of pseudo-labels to 

human labels, half the batch (32) is randomly sampled from the 

human-labeled data, while the other half is sampled from the 

pseudo-labeled data. Additionally, 50% of the entire batch is 

randomly selected for augmentation to add noise to the system. 

When an image is selected for augmentation, one of four 

augmentations is randomly chosen: vertical flip, horizontal flip, 

and 90 rotations. In each training batch, the loss from human 

and pseudo labeled data is normalized as such  

 

𝐿̂ =
1

1+𝛾
(𝐿ℎ + 𝛾

𝐿ℎ̅̅̅̅  

𝐿𝑝̅̅̅̅
𝐿𝑝)  (2) 

where 𝐿ℎ and 𝐿𝑝 are the human-labeled loss and the pseudo-

labeled loss for that batch, while 𝐿ℎ
̅̅ ̅ and  𝐿𝑝

̅̅ ̅ are the exponential 

moving average losses with a decay rate of 0.9997. The weight 

rate (𝛾 = 3) was found to be optimum. The student model was 

trained for nine epochs for Landsat data (7.7K iterations) and 

eight epochs (6K iterations) for Sentinel. 

 

4.3. Proposed Training Process: Iterations 2 and 3 

 

Following the student model training, we convert the student 

model into a teacher model and use it to pseudo-label the 

unlabeled data again. The multiscale UNet is reinitialized, and 

step 4.2. is repeated. Due to a large number of training batches, 

we employ a cosine annealing schedule for the learning rate.  

 

5. RESULTS 

 

Tables 1 and 2 compare our multiscale UNet architecture against 

other popular object segmentation systems found in the 

literature. DeeplabV3+ (Chen et al. 2018), UNet- Resnet 

(Ronneberger et al. 2015), UNet++ (Zhou et al. 2018), and PAN 

(Li et al. 2018) are popular DL-based segmentation techniques. 

DWM is a DL waterbody detection model that was retrained on 

our data specifically for contour detection. Waterdetect 

(Cordeiro et al. 2021) is also a water body detector, but it relies 

on hierarchical clustering of rule-based metrics.  
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Figure 2. Results on Landsat data. The rows are RGB image, ground truth, teacher model’s prediction, and student model’s 

prediction. The F-score for an individual image can be in the bottom right corner. 

 

 

 

 
Figure 3. Results on Sentinel data. The rows are RGB image, ground truth, teacher model’s prediction, and student model’s 

prediction. The F-score for an individual image can be in the bottom right corner. 
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Model 
Time 

(per iter.) 

Param 

(M) 

Landsat 

F-score AP 

DeepLabV3+ 21.4  26.68 0.4586 0.3386 

UNet-Resnet  23.5 32.52 0.6428 0.6435 

PAN  20.7 24.26 0.4361 0.3261 

UNet++  60.7 48.99 0.6579 0.6559 

DWM   17 37.21 0.5583 0.4377 

WaterDetect  N/A N/A 0.6025 NA 

UNet-

Multiscale 

(Ours) 

 44 22.85 0.6920 0.7106 

Table 1. Comparison of Water Contour Detection using our 

RGB dataset for Landsat. 

 

 

Model 
Time 

(per iter.) 

Param 

(M) 

Sentinel 

F-score AP 

DeepLabV3+  24.7 26.68 0.5739 0.5125 

UNet-Resnet  26.2 32.52 0.6683 0.7068 

PAN  23.6 24.26 0.5297 0.4677 

UNet++  62.9 48.99 0.6634 0.7059 

DWM   19 37.21 0.6237 0.5806 

WaterDetect  NA NA 0.6436 NA 

UNet-

Multiscale 

(Ours) 

 47 22.85 0.7379 0.7980 

Table 2. Comparison of Water Contour Detection using our 

RGB dataset for Sentinel.  

 

 

Model 

Time  

Iteration 

Landsat 

epoch/s 
F-

score 
AP 

UNet-

Multiscale 

(Ours) 

 43s NA 0.6920 0.7106 

 410m 

1 0.7239 0.7587 

2 0.7337 0.7695 

3 0.7358 0.7754 

Table 3. Self-training for Landsat-8 

 

 

Model 
Time Iteration Sentinel 

epoch/s F-score AP 

UNet-

Multiscale 

(Ours) 

 47s NA 0.7379 0.7980 

 330m 
1 

0.7538 0.8193 

Table 4. Self-training for Sentinel-2 

All systems are trained with our RGB data for accurate water 

contour detection. The results indicate that our base system uses 

fewer parameters, has a faster training time, and is more accurate 

at detecting water contours.  

 

Tables 3 and 4 contain the results of self-training for Landsat and 

Sentinel, respectively. A clear improvement can be seen in the 

model’s performance, where there is a 2% improvement for 

Sentinel’s F-score and a 6% improvement for Landsat. We can 

also see a clear improvement in the model’s output before and 

after self-training as the F-score for individual images increases.  

 

Although both models were trained for three iterations of 

teacher-student iterative training, there was no improvement in 

the performance of the F-score for Sentinel data after the first 

iteration. 

 

6. CONCLUSION 

 

It is laborious and time-consuming to hand-select training data; 

we present a self-training technique that enhances our baseline’s 

performance and removes the need to hand-select data. Due to 

the lack of well-labeled data, we present a dataset that can be 

used in training deep learning models. We also present a deep 

learning model that can accurately detect contours faster and use 

fewer parameters than state-of-the-art segmentation and object 

detection models.  
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