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ABSTRACT:

Owing to the presence of many sensors and geographic/seasonal variations, domain adaptation is an important topic in remote sens-
ing. However, most domain adaptation methods focus on close-set adaptation, i.e., they assume that the source and target domains
share the same label space. This assumption often does not hold in practice, as there can be previously unseen classes in the target
domain. To circumnavigate this issue, we propose a method for open set domain adaptation, where the target domain contains
additional unknown classes that are not present in the source domain. To improve the model’s generalization ability, we propose a
Progressive Weighted Graph Learning (PWGL) method. The proposed method exploits graph neural networks in aggregating sim-
ilar samples across source and target domains. The progressive strategy gradually separates the unknown samples apart from known
samples and upgrades the source domain by incorporating the pseudolabeled known target samples. The weighted adversarial learn-
ing promotes the alignment of known classes across different domains and rejects the unknown class. The experiments performed
on a multi-city dataset show the effectiveness of the proposed approach.

1. INTRODUCTION

Satellite Remote Sensing (RS) enables us to obtain contact-free
large-scale information about physical properties of the Earth
system from space. Thanks to the large number of such satel-
lites launched by different space agencies, timely Earth mon-
itoring is currently possible with a variety of sensors that can
capture different properties. While the multi-temporal, multi-
sensory, and large coverage information can benefit Earth ob-
servation classification tasks, such temporal, spectral or geo-
graphy shifts also serve as a challenge for training models. Dif-
ferent geographic locations exhibit different characteristics on
remote sensing imagery. The impact of geographic locations
on the earth observation can be observed by the difference in
climate, which impacts the type and growth of vegetation and
crops, as well as the cultural and anthropogenic divides that
result in various building styles and densities. Such shifts will
degrade the performance of the model when it is applied on the
dataset that has a different data distribution to the training set.

Capabilities of deep learning models are generally dependent
on the annotated training data used to train the model. How-
ever, data labeling is a tedious and expensive process, espe-
cially for the RS data (Zhu et al., 2017). Models trained for
one setting may not generalize well for the other settings. Nar-
rowing the distribution shift is crucial to enhance the robustness
of the models (Gawlikowski et al., 2021). To deal with the shift
between training and test data, the research on Domain Adap-
tion (DA) has sprung up (Saha et al., 2016). Given the labeled
source domain(s) and unlabeled target domain(s), the DA aims
at training a classifier for the target domains.

Most DA methods assume the source and target domains share
the same classes of objects, which is not always true in many
practical scenarios. A more practical setting is the open-set ad-
aptation, where the target domain has more classes than the
source domain. These classes that have not been seen by the
source domain are collectively referred as ’unknown’ class. Thus
∗ Corresponding author

the open-set DA is aiming at identifying the unknown class
while classifying the known classes.

A number of works have been proposed in the computer vis-
ion literature to solve the open-set domain shift problem. (Luo
et al., 2020) proposed an end-to-end Progressive Graph Learn-
ing (PGL) framework. The target data is pseudo labeled as un-
known or one of the known classes based on the confidence
score in a progressive paradigm whose rate is controlled by an
enlarge parameter. (Zhang et al., 2021) explored the transfer-
ability and discriminability for RS image scene classification.
Transferability is minimized to suppress the global distribution
difference among domains as well as the local distribution dis-
crepancy of the same classes in different domains. The discrim-
inability is encouraged to enlarge the distribution divergence of
different classes in different datasets.

Inspired by (Luo et al., 2020) and (Roy et al., 2021), we ex-
ploit a graph neural network (GNN)-based architecture. We
follow the curriculum learning scheme to progressively separate
the unknown away from known samples. Besides, adversarial
training can effectively close the gap between known source
samples and known target samples.

The contributions of our work include:

1. Devise a graph neural network based architecture to en-
courage the within-class compactness and domain close-
ness while forcing the unknown class farther away from
known classes. The proposed architecture can benefit from
all source and target samples in a batch.

2. Propose a curriculum learning based strategy for the target
domain adaptation.

3. Conduct the experiment on a dataset with geographical
shift showing the effectiveness of the proposed method.

The rest of the paper is organized as follows. Related works
are discussed in Section 2. We present the proposed method
in Section 3. Experimental results are discussed in Section 4.
Finally, we conclude the paper in Section 5.
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2. RELATED WORK

2.1 Domain Adaptation

A large number of domain adaptation methods focus on the stat-
istics alignment. Towards this, the most popular indices are
maximum mean discrepancy (MMD), HδH-distance, KL diver-
gence, moments, etc. (Blitzer et al., 2007), (Pan et al., 2019),
(Peng et al., 2019), (Rakshit et al., 2019). (Venkateswara et
al., 2017) proposed an unsupervised Domain Adaptive Hashing
(DAH) network. The domain shifts are addressed by minim-
izing multi-kernel Maximum Mean Discrepancy (MK-MMD).
The Hash technique helps to encode the samples from the same
categories similar hash code, and the hash values are used to de-
velop a unique loss function for the target data. Though MMD
helps to reduce the distribution shift, it fails to prompt within-
domain and within-class compactness (Chen et al., 2019). To
solve this problem, a complementary term derived from graph
embedding is appended to the empirical MMD to revise the
similarity matrix of the intrinsic graph. A popular paradigm
in domain adaptation is adversarial training, which is generally
achieved using a Gradient Reversal Layer (Ganin and Lempit-
sky, 2015). Such models train the network for domain predic-
tion in addition to the usual classification in the label-space.
Using the GRL layer, the model can effectively extract both
discriminative and domain-invariant features. Most of the ad-
versarial networks solely match the feature representation across
domains but ignore multimodal distributions. Conditional do-
main adversarial networks (CDAN) (Long et al., 2017) com-
pensate for such shortcomings by conditioning the adversarial
adaptation models on the discriminative information conveyed
in the classifier predictions. Generative adversarial networks
(GANs) provide a way to learn deep representations without
using extensively annotated training data (Goodfellow et al.,
2014). (Tzeng et al., 2017) proposed an unsupervised Adversarial
Discriminative Domain Adaptation (ADDA) approach. When
the source and the target feature representations become suffi-
ciently inseparable that a domain discriminator fails to separ-
ate them, the source classifier can be tasked to classify target
samples on the common feature space.

The open-set DA assumes the target domain has more number
of classes than the source domain while for the universal DA it
allows each domain to hold private classes that are not seen by
other domains. Here we mainly focus on the open-set domain
adaptation (Panareda Busto and Gall, 2017). Formally speak-
ing, the open-set DA is formulated as the following. Assume
that we have a labeled source dataset S = {(xs,i, ys,j)}ns

i=1 ∼
P s, where ns is the number of labeled samples; and the un-
labeled target dataset T , where T = {xtj ,k}

nj

k=1 ∼ Qt
X with

each having nj unlabeled samples. P s is the joint probability
distribution of the source domain, and Qt

X is the marginal dis-
tribution of the target domain. The data distribution of source
and target domain is different. The goal is to learn an optimal
target classifier h : Qt

X → Yt. Here the target label space
Yt = {Ys, unk} = {1, ..., C + 1} includes the additional un-
known class C+1, which is not present in the source label space
Ys. The research towards DA in remote sensing images has
sprung up recently (Adayel et al., 2020), (Zhang et al., 2020),
(Damodaran et al., 2018), (Saha et al., 2011), (Tuia et al., 2016).
(Saha et al., 2022) explores the graph neural networks to ad-
apt the model on several target domains. (Nirmal et al., 2020)
applies the domain adaptation technique on the hyperspectral
images to enhance the model efficiency (Saha et al., 2022).

2.2 Curriculum learning

Curriculum learning describes a type of learning in which the
model starts out with only easy examples of a task and then
gradually increases the task difficulty. It is popular in many DA
methods. (Roy et al., 2021) determine the ’easy-to-hard’ learn-
ing sequence for Multi-target DA by computing the entropy
of target domains returned by the current model. (Luo et al.,
2020) gradually select the target samples with extreme confid-
ence score in multiple steps to separate unknowns and upgrade
the source domain. (Liu et al., 2019) follow a ’coarse-to-fine’
learning strategy to incrementally force the unknown samples
far away from any known sets. More importantly, it has been
proven that the curriculum strategy can achieve a tighter up-
per bound of the target error (Luo et al., 2020). However, how
to estimate the difficulty level of samples and the right pacing
function for introducing more difficult tasks are the key chal-
lenges for the curriculum learning (Narvekar et al., 2020).

Inspired by the above works, in this paper, we explore the level
of difficulty in the sample’s level and rank their difficulty using
the confidence score, which is the maximum of the softmax of
the prediction logits. For in-domain examples which are con-
fidently predicted, the cross-entropy loss maximizes the logit
value of the correct class. On the contrary, the network tends to
produce uniformly negative logits for the unknown class. Our
model uses a single GCN head for prediction. With the simpli-
fied architecture, our model is still capable to achieve compar-
able accuracy to the dual heads in (Roy et al., 2021). Moreover,
only a small set of the target samples are pseudolabeled to avoid
the possible negative transfer in (Luo et al., 2020).

2.3 Graph neural networks

Recently GNNs have shown excellent performance in many re-
mote sensing tasks owing to their capability to handle both local
and global context and complex interrelationship between data.
GNN encodes the local information by generating a node’s rep-
resentation as an aggregation of its own features and those of
its neighbors. Similarly, the global information is encoded by
stacking multiple graph convolution layers. Semi-supervised
frameworks are popular in GNN, especially for node-level clas-
sification (Kipf and Welling, 2016). Given a graph for which
some nodes have known label, the GNN is capable to assign la-
bels to the unknown samples. Our work borrows from the same
idea where labels for the source domain samples are known and
labels for target domain samples are assigned by the GNN in
the adaptation process. For the creation of a graph, some works
decompose an image into many superpixels and treat each su-
perpixel as a node in the graph (Saha et al., 2020). Other works
treat each image as a node in the graph (Roy et al., 2021). In
this work, we treat each image as a node in the graph and form
minibatches drawing images from both source and the target
domain. Following this, the adjacency matrix is formed by de-
fining the relationship among images (i.e., nodes) in the mini-
batch.

3. PROPOSED METHOD

The proposed architecture consists of a backbone feature ex-
tractor F , a graph network Ggcn, and a domain discriminator
D, as shown in Figure 1. Batches of images are processed
by the feature extractor F . Extracted features are fed to the
Ggcn that outputs the class label of samples. Ggcn is first pre-
trained on the batches sampled solely from source domain for
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K epochs. Following this, the target samples are also used to
form batches and GCN is used to assign pseudolabels to the
target samples in a progressive scheme. The confidence score
of the target samples gives us an indication to separate known
classes and the unknown class in the target domain. Besides,
the confidence scores are also propagated to the domain dis-
criminator for the weighted adversarial learning to promote the
alignment of the known class while forcing the unknown class
to be far from the shared feature space. We call the proposed
framework as Progressive Weighted Graph Learning (PWGL).

3.1 Pretrain on source samples

Labels of source domain samples are known and hence to learn
class-specific discriminative features we firstly train the Ggcn

only on the source domain samples using the cross entropy loss
of fnode and binary cross entropy loss of fedge. fedge is a neural
network that receives the node representation and outputs the
activation between 0 and 1 that encodes the similarity between
every two samples. The output is an affinity matrix indicating
the graph structure in image batches. The ground truth affinity
matrix connects the samples from the same class as neighbors.
fnode is another neural network that allows the communication
from edge embedding to node embedding and produces the up-
dated node representation. The final output of fnode has C lo-
gits, corresponding to C classes.

3.2 Target adaptation

When the pre-training finishes, we expect that unknown samples
will produce a uniformly low probability belonging to any one
of the shared classes. Here we use the confidence score in Equa-
tion 1 as an indication to measure the similarity between each
target sample to the source data.

wi = max
{
σ(gi)

}
= max

{ exp(gi,j)∑C
j=1 exp (gi,j)Ci=1

}
(1)

Target samples of the shared known class will have relatively
higher wi compared with target unknown samples, since the
latter has low probability to all classes in the source sample.

The target adaptation is performed using progressive pseudo-
labeling strategy. In each step, firstly, we filter the target samples
with extreme high and low confidence score. We assume that
the subset of the target samples whose similarity is extreme
provides us a relatively reliable indicator of whether the samples
are from unknown set. To select the samples with extreme sim-
ilarities, we follow the incremental learning strategy. There are
two parameters controlling the pseudolabeling procedure. First
is the enlarge factor ϵ similar to (Luo et al., 2020), which is a
decimal number that lies between 0 and 1. In each progress-
ive step, ϵ of unlabeled target samples will be pseudolabeled as
one of the known classes or unknown according to their con-
fidence score, and the pseudolabeled known target samples will
join the source set for the next adaptation. However, we no-
tice that there is computation redundancy and potential negat-
ive transfer if all target samples are pseudolabeled. To over-
come this, we introduce another parameter which is the extreme
percentage γ ∈ (0, 1]. Only γ of the total target samples will
be pseudolabeled because only the extreme part gives us reli-
able information. Also, other pseudolabel selection methods
could be used. For example, we can use the fixed value as the
threshold, or to filter the pseudolabeled samples based on the
statistics of the confidence score distribution.

With the above progressive separation procedure, unknown samples
from the target domain will be gradually identified by Ggcn.
The target sample being pseudolabeled is noted as Sp. If len{Sp} ≤
γ × len{T }:

ŷ(m) =

{
C + 1, if rankmaxi∈Ys p(i|x)) ≤ τm

m
u

ŷ, if rankmaxi∈Ys p(i|x)) ≥ τm
m
k

(2)

m is the labeling step ranging from 0 to γ/ϵ. τmm
u = r · ϵ · nt

and τm
m
u = r · (1 − ϵ) · nt. The hyperparameter r controls

the openness of the target domain which is defined by the ra-
tio of the number of unknown samples to the number of known
samples. rank(·) is a global ranking function that ranks the pre-
dicted probabilities in ascending order and returns the index list
as an output (Luo et al., 2020). After the pseudolabeling, the
target sample with the extreme high rank (≥ τm

m
k ) will be as-

signed to one of C classes and the samples with the extreme low
rank (≤ τm

m
u ) will be assigned to C + 1 class (unknown). The

pseudolabeling procedure considers the openness of the target
domain and the ratio of unknown samples to known samples
remains as r during the training.

The upgrade of the source domain is done by progressively con-
catenating source samples with the pseudolabeled known target
samples Sp. The new source batch bs is sampled from this up-
graded source domain, and the target batch bt is sampled from
the remaining target samples that have not been upgraded to the
source domain.

S ← S ∪ Sp (3)
T ← T \Sp (4)
bs ∼ S; bt ∼ T (5)

Ggcn is further trained using the cross entropy of fnode and the
binary cross entropy of fedge on the updated bs. The ground
truth affinity matrix Ag encodes the samples from the same
class as neighbors, i.e., ag

i,j = 1 if sample i and j are from
the same class and 0 otherwise.

3.3 Known-set only alignment

Except for the hard pseudolabels, Ggcn is capable to give the
confidence of its prediction. A smaller wj means a higher prob-
ability that xt,i comes from the unknown class, i.e we inter-
pret 1 − wj as the probability that a target sample is unknown.
Instead of aligning the whole source domain to the target do-
main, here we only concentrate on the known classes to pro-
mote the samples in the same class from the different domain
getting closer and to force the unknown class far away. The ad-
versarial training is performed on aligning known classes only,
and wj is used to exploit the known-set only alignment forming
the adversarial loss by

ℓadv =
1

|Bs|

Bs∑
i=1

ys,i logD(F (xs,i))

+
1∑

xj∈|Bt| wj

Bt∑
i=1

wj(1− yt,i) log[1−D(F (xt,i))] (6)

A simple yet effective solution is to make use of the hard label ŷ
computed from Equation 2 and reject all the unknown samples
directly by setting their weight as zero.
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Figure 1. Openset DA Model

The overall objective is

ℓ = λnodeℓnode + ℓedge − λadvℓadv (7)

The Ggcn is trained to minimize the loss while the D is trained
to maximize the loss.

4. EXPERIMENTAL VALIDATION

4.1 Dataset

We conduct experiments on a multi-city subset from So2Sat
LCZ42 Dataset (Zhu et al., 2020). More specifically, we se-
lect two cities Moscow and Mumbai from Europe and Asia,
respectively. Due to their geographic and anthropogenic vari-
ation, they exhibit significant difference. We chose 6 classes
(Compact mid-rise/low-rise, Open high-rise/mid-rise/low-rise,
Large low-rise, Sparsely built, Trees, and Bush and Low plants)
and approximately 800 images per class per city. We show res-
ults taking Mumbai as source city and Moscow as the target city
and vice-versa.

4.2 Settings

We use the pretrained ResNet-50 as the feature extractor back-
bone. Among 6 classes, the last one is set as unknown (present
only in the target domain) in our experiments and the rest as
known classes (present in both source and target domains). While
there are several hyperparamters, the most important paramet-
ers are listed as bellow. The number of known classes (C) is
5. The openness (r) is set as 1/C, i.e., 1/5. K is 1000 epochs.
The extreme percentage (γ) is 0.2, and ϵ is 0.05. In total, 20%
of the target samples is pseudo labeled in 5 steps. The network
is optimized by ADAM with the weight decay of 5e-5 and an
initial learning rate 1e-4. The λadv is 1 and λnode is 0.3. In
each adaptation iteration, the size of both bs and bt is 32.

We use the normalized accuracy for all classes (OS) and nor-
malized accuracy for the known classes (OS*) to evaluate the
performance of the model.

OS =
1

C + 1

C+1∑
i=1

x : x ∈ Di
t ∩ ŷ(x) = i

|x : x ∈ Di
t|

(8)

OS∗ =
1

C

C∑
i=1

x : x ∈ Di
t ∩ ŷ(x) = i

|x : x ∈ Di
t|

(9)

Di
t is the target samples in the i-th class, and ŷ is the prediction

of the node classifier.

4.3 Compared methods

Our work is one of the first works in remote sensing for open-
set domain adaptation. We compare the proposed method to the
following methods:

1. Without adaptation (w.o). The model is trained on the
labeled source domain and tested directly on the target do-
main.

2. Curriculum Graph Co-Teaching for Multi-Target Domain
Adaptation (CGCT) (Roy et al., 2021). Two classifier
heads GCN and MLP that co-teach each other to identify
known and unknown samples using the fixed thresholds
(we adapt the original CGCT by adding another mask for
selecting low-confidence samples). We report the accuracy
returned by the GCN head.

4.4 Result

Table 1 reports the accuracy of each class, OS, and OS∗. We
notice that some of the class accuracies are high, such as class
1, while for some classes the performance is bad, such as class
2. The adaptation Mumbai → Moscow achieves the best per-
formance: 67.17% samples are correctly classified with 74.5%
of the total unknown samples is recognized. The accuracy of
Moscow → Mumbai is less prominent. Such deviation could
be explained by the difference of the data distribution. The
model learnt on an intrinsically abundant domain obtains higher
generalization ability and is able to achieve better performance
on other domains. Figure 2 is the t-SNE visualization of fea-
ture distribution on Mumbai → Moscow task. The left one is
the feature distribution at the beginning of the adaptation and
the right one is the feature distribution after the adaptation by
PWGL. When the model is not well trained, the unknown class
is mixed with other known classes and the features cluster to-
gether make them indistinguishable. However, after the adapta-
tion, the unknown class is forced farther away from any known
set and the rest known classes are grouped into C clusters.

Table 2 is the performance comparison between PWGL and
other methods. We adapt the CGCT to open-set adaptation
problem by adding another mask to select the low confidence
samples as unknown set. Without adaptation, very few samples
are identified as unknown, due to the reason that the cross en-
tropy is computed based on the known class only and the model
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Figure 2. T-SNE before and after adaptation, taking Mumbai as the source and Moscow as the target

Result Mu-Mo Mo-Mu
Class 1 71.9 69.6
Class 2 35.4 21.1
Class 3 62.6 60.4
Class 4 74.1 86.4
Class 5 84.5 65.9

Unknown 74.5 31.2
OS 67.17 55.77

OS* 65.70 60.68

Table 1. Performance of the proposed model for Mumbai (Mu)
as source and Moscow (Mo) as target and vice-versa. Individual

accuracies on the 5 known classes and the unknown class are
shown. Furthermore, OS and OS* are shown.

Domain Mu-Mo Mo-Mu
Index unk OS unk OS
w.o 1.40 37.69 0.25 40.00
CGCT* 24.10 62.93 0.63 31.21
Proposed 74.51 67.17 31.23 55.77

Table 2. Performance comparison of the proposed method to the
existing methods.

hasn’t seen unknown data. The improvement of the unknown
accuracy brought by CGCT is very small, but PWGL improves
the accuracy of unknown to a large extent. These data demon-
strate that the known-set only alignment in PWGL is neces-
sary for unknown separation. It tries to force the unknown set
away from the common feature space and thus it’s easier for
PWGL to recognize the unknown samples. On the contrary,
CGCT attempts to close the gap between the source domain and
the target domain without differentiating known or unknown
samples. As a result, the unknown samples become closer to
the source domain and make the model hard to identify them.
More importantly, the rank-based filtering strategy guarantees
that in each round, there is a sufficient number of samples are
labeled as unknowns despite of the shift of the confidence distri-
bution during the training procedure. Generally speaking, our
experiment verifies the efficacy of PWGL in identifying both
unknown and known classes. This also emphasizes the role of
extreme percentage γ in suppressing negative transfer.

Figure 3. Impact of the progressive step to the OS accuracy

4.5 Effect of progressive learning step

One important parameter in the proposed method is the pro-
gressive learning step size. To further understand its impact on
the model performance, we use different values of ϵ, i.e., we
use ϵ = 0.05, ϵ = 0.01, and ϵ = 0.1. The OS is plotted as
Figure 3. The figure reveals that the smaller step size can return
a smoother increase of the normalized accuracy over all classes
(OS), and it produces a higher final OS that the model could be
able to deliver. But it increases the computation cost. The OS
improvement from ϵ = 0.01 to ϵ = 0.05 is 7.02%, but the train-
ing effort is increased by 5 times. With the aggressive learning
strategy, the computation cost is reduced with the compromise
of accuracy.

5. CONCLUSION

This paper proposes a method for open-set domain adaptation,
which is a practical however challenging extension of the more
popularly addressed close-set domain adaptation. Towards this,
we propose a GNN-based architecture PWGL to recognize the
additional unknown set in a progressive way while encouraging
within-class compactness. We start from the observation of the
logits distribution of unknown set and known set. The unknown
samples are separated by identifying low confidence samples.
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PWGL utilizes the GNNs to aggregate similar samples across
domains by promoting the communication between edge and
node embedding. The unknown class is rejected in the process
of closing domain gaps to force the unknown samples away
from the shared feature space. The result on multi-city data-
set validates the effectiveness of the proposed method. In the
future, we plan to experiment on other settings, e.g., domains
described by different sensors. Furthermore, we plan to extend
the task by considering the scenario where some classes from
the source domain are not present in the target domain. In ad-
dition, the work can be extended to semantic segmentation to
address the shifts between various semantic scenarios.
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