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ABSTRACT: 

 

Over recent decades, Change Detection (CD) has been intensively investigated due to the availability of High Resolution (HR) multi-

spectral multi-temporal remote sensing images. Deep Learning (DL) based methods such as Convolutional Neural Network (CNN) 

have recently received increasing attention in CD problems demonstrating high potential. However, most of the CNN-based CD 

methods are designed for bi-temporal image analysis. Here, we propose a Three-Dimensional (3D) CNN-based CD approach that can 

effectively deal with HR image time series and process spatial-spectral-temporal features. The method is unsupervised and thus does 

not require the complex task of collecting labelled multi-temporal data. Since there are only a few pretrained 3D CNNs available that 

are not suitable for remote sensing CD analysis, the proposed approach starts with a pretrained 2D CNN architecture trained on remote 

sensing images for semantic segmentation and develops a 3D CNN architecture using a transfer learning technique to jointly deal with 

spatial, spectral and temporal information. A layerwise feature reduction strategy is performed to select the most informative features 

and a pixelwise year-based Change Vector Analysis (CVA) is employed to identify changed pixels. Experimental results on a long 

time series of Landsat 8 images for an area located in Saudi Arabia confirm the effectiveness of the proposed approach.  

 

1. INTRODUCTION 

Recently, the availability of High Resolution (HR) satellite 

images with detailed spatial, spectral and temporal information 

have increased the range of possible applications of the Change 

Detection (CD). CD has been regularly used to observe 

phenomena such as urbanization (Lu et al., 2011), disaster 

management (Stramondo et al., 2006), natural industrial disasters 

(Hulley et al., 2014) and Land Cover Changes (LCC) (Zanetti 

and Bruzzone, 2018), (Solano-Correa et al., 2020). In order to 

effectively exploit HR Satellite Image Time Series (SITS) in 

LCC detection, new challenges should be addressed in terms of 

data processing and algorithm development. In this context the 

main challenge refers to the complexity of the temporally dense 

SITS that requires computationally heavy processing algorithms. 

The first introduced methodologies in the CD context mostly 

focused on bi-temporal change detection like image differencing 

and Change Vector Analysis (CVA) (Malila, 1980) (Bovolo et 

al., 2012). Such approaches benefited of the use of specific 

features like Principal Component Analysis (PCA) (Celik, 2009), 

advanced statistical parameters estimation (Bruzzone and Pietro, 

2000), Parcel-based (Bovolo and Bruzzone, 2005) and Markov 

random field (Kasetkasem and Varshney, 2002) paradigms for 

multi-level and multi-temporal spatial context information 

modelling.  

In recent years, Deep Learning (DL) has become mainstream in 

image understanding tasks  (Krizhevsky et al., 2016) (Ren et al., 

2015), including remote sensing image understanding (Zhang et 

al., 2016). Deep learning has also been introduced for CD and it 

is considered as a methodology of choice for CD over the past 

few years (Khan et al., 2017). Deep learning-based change 

detection methods that have been applied to satellite image 

analysis are both supervised (Mou et al., 2018) and unsupervised 

(Louis de Jong and Sergeevna Bosman, 2019). A supervised deep 

learning method for CD is chosen when the labelled multi-

temporal training data are available. An example of supervised 

change detection method is proposed in (Mou et al., 2018), where 

a recurrent convolutional neural network (ReCNN) architecture 

for extracting joint spectral-spatial-temporal features is 

developed. The main idea is to combine convolutional neural 

network (CNN) and well-established RNN for remote sensing 

applications. In this work, a CNN is employed to model the 

spectral-spatial features for a pair of multi-spectral data patches 

and a RNN is used to represent the temporal information in the 

bi-temporal satellite images. Considering the state of the art, the 

main issue of the supervised deep learning models in remote 

sensing analysis is the need of collecting and constructing ground 

reference data for the system-training phase which are difficult to 

obtain. This is even more true when we deal with long time series 

(more than two images).   

It has been shown that a deep network trained with images of a 

certain domain can become useful to treat images of other 

domains (Volpi and Tuia, 2016). As a result, some unsupervised 

CD methods have been designed in this context. In (Hou et al., 

2017) a CNN already pretrained on a large-scale natural image 

data set is used in a remote sensing context. To get better results 

they fine-tune the CNN-based architecture to adapt it to their 

optical remote sensing image. They show that deep learning-

based feature extraction has better generalization capability than 

traditional hand-crafted features. The feature maps are produced 

by means of convolutional layers which result from applying 

multiple kernels to the original image. 

Despite differences, CD methods emphasize the importance of 

using spatial context information, object-level information, and 

complex nonlinear features (Desclée et al, 2006) (Francisco et al, 

2021). Moreover, a majority of existing CNN algorithms 

exploited 2D CNNs (Zhan et al., 2017) (El Amin et al., 2016). 

But a 2D CNN is unable to properly model the temporal features 
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since it averages and collapses the temporal information to a 

scalar in the convolutional layers. These methods have limited 

capability in capturing temporal context information, complex 

visual features and most of them have focused on bi-temporal CD 

instead of SITS (more than two images). There is still limited 

work on CD in image time series with more than two images as 

input data.  

The nature of a 3D CNN with 3D kernels suits to spatio-temporal 

representation of the satellite images and can provide dynamic 

information extracted as temporal features. Recently a 3D CNN 

has been applied to several studies such as human action 

recognition (Funke et al, 2019), spatio-temporal feature learning 

(Li et al., 2017), (Sexton, et. al, 2013) and spatial-spectral image 

classification (Lifan et al., 2021). Considering the feasibility and 

efficiency of spatio-temporal feature representation of 3D CNN, 

a 3D CNN architecture is promising for SITS CD. There are rare 

studies that have applied 3D CNN to extract temporal 

information from remote sensing SITS, and in most of them 

temporal features are partially ignored or represented by 

simplistic models. In (Meshkini et al., 2021) authors developed 

an unsupervised deep learning-based 3D CNN method by using 

HR remotely sensed images in the CD context. The 3D CNN 

architecture was trained on a large-scale supervised video dataset 

for the purpose of image classification. The features were 

extracted and stacked from all the convolutional layers in order 

to generate a hyper feature map for representing the spatio-

temporal information of the images. Finally, a pixel wise distance 

was computed to produce the change map. These 3D CNN 

architectures have some limitations: 1) they are usually trained 

targeting scene classification by using the back propagation 

method and the error is computed by considering the entire 

image, not at pixelwise level; 2) the architecture is restricted 

based on the fully connected layer and they can only accept a 

fixed size input; 3) most of the pretrained 3D CNNs are trained 

on RGB spectral channels, while the Near Infrared Red (NIR) 

channel is important for CD, especially for vegetation analysis; 

4) since the architecture is not trained on remotely sensed data, 

the performance of the method is accurate only on the detection 

of very sudden abrupt changes (changes that happen in a short 

time with a great magnitude) and it is suitable for CD in small 

areas only. Thus, a shift is required in the paradigm of CNN from 

scene classification to pixelwise image segmentation. In (Volpi 

and Tuia, 2016), the authors proposed a new kind of architecture 

where all the learnable layers are convolutional with a series of 

convolutional, pooling, and activation layers followed by a series    

of deconvolutional and activation layers. It can accept input of 

any spatial dimension, produce pixelwise output for the entire 

image and effectively encode the spatial context information of 

each pixel. By exploiting the CNN-FPS network developed in 

(Volpi and Tuia, 2016) that is available for downloading, we 

design our proposed pretrained deep learning-based CD 

architecture that: 1) is automatic and fully unsupervised; 2) 

considers a multi-layer 2D CNN architecture designed for 

semantic segmentation which is trained on remote sensing 

images and can accept NIR spectral band; 3) is able to analyse 

the spatio-temporal features, since a transfer learning technique 

is developed to adapt 2D CNN to 3D by weights transformation; 

4) performs a pixelwise time series feature extraction that 

implicitly models the spatio-temporal context information of 

each pixel; 5) locates the position and the time of the changes by 

means of CVA. The method is performed on each two adjacent 

years covering SITS, effectively extracts change information by 

representing spatio-temporal features and detects changes in 

space and time. Some qualitative and quantitative analysis is 

provided on a region in Saudi Arabia for the period 2013 to 2019 

using ten images per year. The CD maps have been compared 

with the 3D CNN CD methodology developed in (Meshkini et 

al., 2021). 

The rest of this paper is organized as follows. A structure for the 

3D CNN CD for SITS with details is presented in section 2. 

Section 3 and 4 provide some information on the study area and 

the experimental analysis together with a discussion on the 

results. In section 5, the conclusion together with the discussion 

on scope of future research are presented. 

 

2. PROPOSED 3D CNN APPROACH TO CHANGE 

DETECTION IN SITS  

Figure 1 shows the block scheme of the proposed 3D CNN-based 

approach to CD in SITS. Let 𝑆𝐼𝑇𝑆 = {𝑆𝐼𝑇𝑆1, … ,
𝑆𝐼𝑇𝑆𝑚, … , 𝑆𝐼𝑇𝑆𝑀} be a pre-processed time series covering 𝑀 

years including images acquired over the same geographical area. 

Let 𝑆𝐼𝑇𝑆𝑚 = {𝑋1, … , 𝑋𝑛, … , 𝑋𝑁} and 𝑆𝐼𝑇𝑆𝑚+1 = {𝑌1, … ,
𝑌𝑛, … , 𝑌𝑁} be two time series with non-uniform time sampling for 

the 𝑚th year and (𝑚 + 1)th year, respectively. Let 𝑁 correspond 

to the total number of images for each year (𝑁 > 2).  
 

 

Figure 1. Block scheme of the proposed 3D CNN-based CD approach for 𝑆𝐼𝑇𝑆𝑚 and 𝑆𝐼𝑇𝑆𝑚+1.
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Let 𝐵𝑎𝑛𝑑 = {𝑏1, 𝑏2, … , 𝑏𝐵} be the set of bands that compose 

images 𝑋𝑛 ∈ 𝑆𝐼𝑇𝑆𝑚 and 𝑌𝑛  ∈  𝑆𝐼𝑇𝑆𝑚+1 (𝐵 is the total number 

of bands). Given an image 𝑋𝑛 or 𝑌𝑛, the size of the input image 

is 𝐵 × 𝐼 × 𝐽 where 𝐼 and 𝐽 correspond to the number of rows and 

columns of 𝑋𝑛 and 𝑌𝑛, respectively.  

The proposed method aims at detecting changes between the pre-

processed 𝑆𝐼𝑇𝑆𝑚 and 𝑆𝐼𝑇𝑆𝑚+1 thus involving 2N (>>2) images. 

It consists of four main steps: i) 2D to 3D transition where the 

weights and convolutional layers of the base 2D CNN are 

transformed to three dimensions to generate a new 3D CNN 

architecture; ii) 3D CNN feature extraction where features are 

extracted from SITS to obtain a hyper change vector; iii) feature 

reduction based on a variance measure; iv) land cover change 

detection by a pixelwise distance calculation among 𝑆𝐼𝑇𝑆𝑚 and 

𝑆𝐼𝑇𝑆𝑚+1. The proposed 3D CNN architecture automatically 

processes 𝑏1, 𝑏2, 𝑏3, 𝑏4 bands at a time and the output is a change 

map representing the LC changes and the year of change in 𝑆𝐼𝑇𝑆. 

  

2.1 2D to 3D transition 

The proposed approach starts from a 2D CNN trained on remote 

sensing images to develop a new 3D CNN architecture for feature 

extraction in SITS. Figure 2 represents the overview of the 

proposed strategy to exploit 2D weights for training a 3D CNN 

architecture. First, the weights of a pretrained 2D CNN are 

transformed to 3D to be used as the weights of the 3D CNN. 

Second, the 2D CNN is adapted to the 3D CNN by using 3D 

convolutional layers instead of 2D convolutional layers. Finally, 

the 3D CNN extracts the 3D features that will be passed to the 

feature reduction module. 

 

 

Figure 2. Structure of the proposed strategy for 2D to 3D 

transition. 

 

In order to transform the convolutional layers and weights of 2D 

CNN to three dimensions, two techniques are considered as 

described in (Merino et al., 2021). Since the weights can be 

represented as 2D matrices, a 2D matrix can be transformed into 

a 3D tensor to generate the 3D weights. Let 𝑊(𝑥, 𝑦) = (R, G, B, 

NIR) be the matrix of weights in the position 𝑥 and 𝑦 of the 2D 

CNN, so the transformed matrix of weights can be represented as 

𝑉(𝑥, 𝑦, 𝑧) = (𝑅, 𝐺, 𝐵, 𝑁𝐼𝑅) where 𝑥, 𝑦, 𝑧 ∈  ℕ and 𝑅, 𝐺, 𝐵,
𝑁𝐼𝑅 ∈  ℝ. Two strategies Extrusion and Rotation have been 

developed as the transformation functions from 2D to 3D. 

Extrusion transforms the 2D matrix to 3D tensor by copying the 

R, G, B, NIR values along one axis. Given a matrix W of size 

𝐼 × 𝐽,  the transformed tensor 𝑉 has in size of  𝐼 ×  𝐽 ×  𝑁 where 

𝑁 is the total number of images per year and 𝐼 =  𝐽. The 

Extrusion can be done along the three main axes and is defined 

as: 

 

∀𝑥, 𝑦, 𝑧 ≤ 𝐼 : 𝑉(𝑥, 𝑦, 𝑧) = 𝑊(𝑥, 𝑦) (1) 

 

Rotation transforms 2D to 3D weights by performing a 0 to 90 

degrees rotation with respect to the fixed axis 𝑍. Equation 2 

represent Rotation transformation from 2D matrix to 3D tensor: 

 

𝑉(𝑥, 𝑦, 𝑧) = 𝑊 (𝑥, min (⌊√𝑦2 + 𝑧2⌋ , 𝐼)) (2) 

 

2.2 3D CNN feature extraction 

Our challenge in the development of an unsupervised method for 

CD in time series is obtaining a suitable pretrained CNN 

architecture that can properly model spatio-temporal information 

of SITS. Several pretrained architectures exist in literature that 

accept only RGB input (Nogueira et al., 2017), thus losing a large 

amount of information embedded in the NIR band. Among the 

pretrained CNN architectures, we use the best of 2D CNN 

architectures (CNN-FPS network) that is developed by (Volpi 

and Tuia, 2016) and is trained on remote sensing images for 

semantic segmentation however other architectures can be 

considered. The CNN-FPS network processes a five channel 

input composed of Blue, Green, Red, NIR and digital surface 

model (DSM). We exclude the DSM input since it is seldom 

available in the context of change detection and it becomes even 

more rare as temporal series becomes longer and denser. 

Removing the kind of input from the pre-trained network does 

not significantly impact the feature extraction performance as it 

is presented in (Saha et al., 2019) . The 2D convolutional network 

is transformed to a 3D convolutional network by considering the 

two transformation strategies explained in section 2.1. Extrusion 

and Rotation transformations have been applied separately to 

generate a 3D tensor from the 2D weight matrices. Moreover, the 

2D convolutional layers have been transformed to 3D 

convolutional layers. The resulting 3D CNN architecture has a 

more complex network structure with the convolution and 

pooling operations that perform spatio-temporally to preserve the 

temporal information and extract relevant features from multi-

temporal data. A convolutional layer 𝑙 in the 3D CNN structure 

extracts features from the local neighborhood of feature maps in 
the previous layer 𝑙 − 1.  The output at position (𝑥, 𝑦, 𝑧) denoted 

as 𝑓𝑥𝑦𝑧, is given by equation (3) (for simplification, we omit the 

layer notation l): 

 

    
𝑓𝑥𝑦𝑧 = 𝜎(∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑛

ℎ 𝑋(𝑥+𝑖)(𝑦+𝑗)(𝑧+𝑛)
ℎ + 𝑎)

𝐽

𝑗=0

𝐼

𝑖=0

𝑁

𝑛=0ℎ

 (3) 

 

Where 𝑤𝑖𝑗𝑛
ℎ  is the 3D tensor for the (𝑖, 𝑗, 𝑛)th value of the kernel 

connected to the ℎth feature map in the previous layer, and 𝐼 and 

𝐽 are the height and width of the kernel, respectively. 

 𝑋𝑥𝑦𝑧 represents the input activation at location (𝑥, 𝑦, 𝑧), 𝑛 is the 

temporal indicator with length 𝑁 (the number of images per year) 
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and ℎ refers to the set of SITS feature maps of the previous layer. 

Choosing the right layers to extract features is also important. 

There is a significant difference in characteristics of features 

depending on the layer from which they are extracted. The initial 

layers of the CNN capture low-level visual concepts such as 

edges, curves, and color patches. As we go deeper, filters capture 

more complex concepts by combining lower level features of the 

previous layers (Zeiler and Fergus, 2014). Since both high and 

low level features are useful to analyse HR images, a 

combination of them should be considered in the feature 

extraction step to catch information (Hariharan et al., 2015). To 

extract features from the 3D CNN architecture, we choose more 

convolutional layers than deconvolutional ones to form the 

hypervector since the convolutional layers learn the semantics of 

the image at a degraded resolution and the deconvolutional layers 

mainly learn to reconstruct the spatial arrangements. The first 

convolutional layer is excluded as it learns very primitive 

features that are significantly noisy. The convolutional and 

deconvolutional layers that have been used in this study for the 

3D CNN feature extraction are shown in Table I. Considering 

equation (3) and Table 1, a feature map for each layer 𝑙 is 

obtained as 𝑓𝑙 = {𝑓1
𝑙 , … , 𝑓𝑚

𝑙 , … , 𝑓𝑀
𝑙 } for each SITS after applying 

3D convolutions in the spatio-temporal domain of images and 

accumulating the outputs of the spectral bands.  

 

2.3 Feature reduction 

The 3D CNN model that is used in the feature extraction provides 

a large number of features for each layer (up to 512). Not all of 

them carry relevant information for CD. Thus, a feature selection 

technique is developed in order to maintain only informative and 

reliable features.  

 
 Layer number Layer type Feature dimension 

2 convolutional 64 

5 convolutional 128 

8 convolutional 256 

10 convolutional 512 

11 convolutional 512 

20 deconvolutional 512 

23 deconvolutional 512 

Table 1. Structure of convolutional and deconvolutional layers 

used in the 3D CNN. 

The applied feature selection strategy is the one proposed in 

(Bovolo and Bruzzone, 2017), which is based on the variance 

measurement. The feature selection is performed for each layer 𝑙 
of the 3D CNN architecture and the hyper feature vector for every 

𝑆𝐼𝑇𝑆𝑚 ∈ 𝑆𝐼𝑇𝑆 is obtained by concatenating the selected features 

from each layer 𝑙, 𝑙 = 1, … , 𝐿 (𝐿 is total number of the layers). 

For a given layer 𝑙, a layerwise difference vector 𝑑𝑙  is computed 

by subtracting 𝑓𝑚
𝑙   from 𝑓𝑚+1

𝑙 . Then, a subset 𝑑𝑙′ of 𝑑𝑙  is 

considered that contains features more sensitive to change 

information. The variance measurement is used as an index of 

sensitivity to change information. The assumption is that features 

containing potentially relevant change information have higher 

variance than those less affected by changes. Inspired by (Bovolo 

and Bruzzone, 2017), features are spatially divided into 𝑆 =
{𝑆1, … , 𝑆𝑠} splits. For a given split 𝑠, feature variance (𝜎𝑙,𝑠

2 ) is 

calculated for all features in 𝑑𝑙 . Features having higher 𝜎𝑙,𝑠
2  values 

are assumed to have potentially relevant change information. 

Thus, features in 𝑑𝑙  are sorted as per the descending order of 𝜎𝑙,𝑠
2  

values. A subset 𝑑𝑙𝑠 is selected by retaining a certain percentile 

of sorted 𝑑𝑙 . All the selected features 𝑑𝑙′  for the layer 𝑙 are 

obtained by taking features selected on each split, i.e., 

𝑑𝑙′ =  ⋃ 𝑑𝑙𝑠

𝑆

𝑠=1

 (4) 

Selected features from each layer in 𝐿 are concatenated to obtain 

change hyper feature vector 𝐹: 

 
𝐹 = [𝑑

1′ , … , 𝑑
𝑙
′ , … , 𝑑

𝐿′] (5) 

 

2.4 Land cover change detection 

The hyper feature vector 𝐹 with dimension 𝐷 created in the 

feature selection step represents effectively the behaviour of 

changed and unchanged pixels between 𝑆𝐼𝑇𝑆𝑚 and 𝑆𝐼𝑇𝑆𝑚+1. In 

order to provide a comprehensive comparison between changed 

and unchanged pixels the magnitude of 𝐹 is calculated by 

considering the CVA technique proposed in (Bovolo and 

Bruzzone, 2007) that is extended in the context of time series CD 

for means of the proposed 3D CNN. The magnitude of the hyper 

feature for each pixel (𝑥, 𝑦) is given by: 

 

𝑀(𝑥, 𝑦) =  √∑(𝐹𝑥,𝑦
𝜎 )2

𝐷

𝜎=1

  (6) 

 

Where 𝐹𝑥,𝑦
𝐷  is the feature value on the 𝐷𝑡ℎ dimension of the 

positions 𝑥 and 𝑦 of the hyper feature space. Although by 

calculating the magnitude a strong compression of the hyper 

feature map is performed, the main information about the 

changes are preserved.  

𝑀(𝑥, 𝑦) is assumed to have relatively large values for the 

changed pixels and small values for the unchanged ones. 

Therefore, a thresholding strategy is implemented in order to 

separate them. In the literature, several thresholding techniques 

have been proposed such as local adaptive threshold (Kieri, 

2012), (Wellner, 1993) and Otsu thresholding (Otsu, 1979). 

Local adaptive thresholding selects an individual threshold for 

each pixel based on the range of intensity values in its local 

neighbourhood and changes dynamically over the image. Otsu 

thresholding processes the image histogram and segments the 

objects by minimization of the variance on each of the classes. In 

this research, we examine both thresholding strategies to check 

the performance of each methods for our proposed CD approach. 

 

3. STUDY AREA AND EXPERIMENTS 

To evaluate the effectiveness of the proposed 3D CNN CD 

approach, a study area is selected in North-West of Saudi Arabia 

where several central pivot crop fields have been built. Desert to 

central pivot cropland is the most relevant change class and the 

pivot crops can be easily identified by checking the images in 

Figure 3.  

The dataset is downloaded directly from USGS Landsat 8 

Surface Reflectance Tier1 database and with cloud coverage 

higher than 70% are ignored. A cloud/cloud shadow mask is 

imposed to filter cloudy pixels in each image and the data are 

atmospherically corrected. For each year in the period January 

1st, 2013 and December 31st, 2019, ten images of 600 × 600 

pixels (18km × 18km) (see Figure 3) are selected being 

distributed over the seasons to guarantee variability in temporal 

behaviours. To proceed with the experiments, two 3D CNN 

architectures have been developed based on the two 

transformation strategies, Extrusion and Rotation. The developed 

3D CNN CD algorithm has been applied six times considering 

each couple of adjacent years in the acquisition period (2013 to 

2019) with four spectral bands (Blue, Green, Red and NIR).   
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2014 2015 2016 

   
2017 2018 2019 

   

Figure 3. Examples of Saudi Arabia dataset for each year from 2013 to 2019. 

 

The proposed method extracts features from layers 𝐿 =
{2, 5, 8, 10} and generates the feature vector (𝑓) for upcoming 

feature reduction. To select a subset of features being sensitive to 

change about 10 percent of the features are selected after 

arranging the feature variances in a descending order for each 

split. The dimension of 𝑓 after feature subset selection is d = 106 

and features have been selected with a split size of 200 × 200 

pixels. Larger split size reduces the sensitivity of variance to 

change class thus increasing possible missed detection. Smaller 

split size allows to capture features that increase false alarm. 

Experiments were conducted to see the effect of using different 

thresholding strategies for discrimination of changed and 

unchanged pixels, the results are reported for each of the local 

adaptive thresholding and Otsu segmentation method separately 

(see Figure 4). The algorithm automatically takes as an input all 

the images for each couple of years, detects the changes and 

shows the changes for the entire processing period. 

 

4. DISCUSSION 

As it is shown in Figure 4, changes for each year have been 

visualized by different colors in order to make a better 

comparison between the different transformation and 

thresholding strategies. By analysing Figure 4 (a) and (b) (where 

the Extrusion transformation method is tested) and Figure 4 (c) 

and (d) (where the Rotation transformation method is tested), it 

is clear that both Extrusion and Rotation methods have a reliable 

performance and the changed areas are detected correctly. 

However, by looking deeply at the change maps it is revealed that 

Rotation transformation better models the borders of the crop 

fields, while Extrusion method has merged some of the crop 

fields together. 

Figure 5 provides an RGB image of a zoom area (112 

× 112 pixels) for the years from 2014 to 2018. For it a change 

reference map has been designed by photointerpretation  

 

 No-Change             
2014 2015 2016 

    2017     2018     2019 

   

    
(a) (b)  (c) (d) 

 

Figure 4. CD maps for the years 2013 to 2019 using: (a) Extrusion transformation and adaptive thresholding, (b) Extrusion 

transformation and Otsu thresholding, (c) Rotation transformation and adaptive thresholding and (d) Rotation 

transformation and Otsu thresholding. 
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Change reference map 2014 2015 (a) 

    
2016 2017 2018 (b) 

    

  
No-Change 2014 2015 2016 2017 

 
    2018 

      

Figure 5. Change reference map, Landsat images of the years 2014 to 2018 and the CD maps using: (a) proposed approach with 

Rotation transformation and Otsu thresholding, (b) methodology developed in (Meshkini et al., 2021) 

 

and prior knowledge on the evolution of the geographic area. For 

this area, 13 crop fields have been constructed during the 

processing period (2013 to 2019) resulting in 4583 changed 

pixels. A quantitative and qualitative performance analysis is 

conducted in terms of false and missed alarms in space and time. 

Figure 6 locates false/missed alarms showing that they mostly 

exist along the borders of crop fields. A detailed quantitative 

performance analysis is provided in Table 2. It clearly shows that 

the portion of false and missed alarms is considerably low in 

terms of pixels (less than 5% and 2%, respectively). In addition, 

an object-based analysis is conducted considering the 13 crop 

fields being changed in reference map. Three fields have been 

detected correctly in space, but they represent false alarms in time 

since the year of change is imprecise (i.e., the change is detected 

later or earlier than expected) (Figure 5 (a), red squares). One 

crop filed is a pure false alarm both in space and time (Figure 5 

(a), red square bottom left corner). 

In order to further prove the robustness of the proposed approach, 

the performance is compared with the 3D CD methodology that 

is presented in (Meshkini et al., 2021). In (Meshkini et al., 2021), 

a pretrained 3D CNN CD technique trained on a largescale video 

dataset is used that accepts a specific size of images with only 

three spectral bands (for more details refer to (Meshkini et al., 

2021)). As it is clear, the proposed approach has outperformed 

the method in the literature in detecting the changes and defining 

the edges of the crop fields. Furthermore, by looking at the 

sample images provided in 2017 and 2018, there are two crop 

fields (one in the top left and another one almost right centre) that 

have started to be built in 2017 and continued in 2018. The 

reference method failed to recognize the crop field located in the 

right centre of area and it was unable to specify the year of the 

change correctly for the crop field in the top left (purple squares 

in Figure 5 (a)). 

 

Year 

False 

alarms 

(pixels %) 

Missed 

alarms 

(pixels %) 

False 

change 

fields 

False 

change 

years 

2014 3.97 0 0 0 

2015 4.86 0.02 0 1 

2016 3.67 0.35 1 0 

2017 2.35 0.05 0 1 

2018 2.47 1.05 0 1 

Overall 14.03 1.49 1 3 

Table 2. Validation result of the proposed CD method. 

 

5. CONCLUSION 

An unsupervised CD approach to the analysis of HR SITS based 

on a 3D CNN has been proposed. The approach uses a pretrained 

2D CNN architecture for semantic segmentation to design a 3D 

CNN model that can deal with multi-temporal information. A 2D 

to 3D transformation module is implemented to transform 2D 

weights to 3D weights by using the Extrusion and Rotation 

strategies. The 2D convolutional layers have been replaced by 3D 

convolutional layers, the relevant features are extracted from 

some of the convolutional layers and are reduced by considering 

a variance measurement as an index of sensitivity to change 

information. The CD map is produced by extending the CVA 

strategy to SITS analysis that separates changed from unchanged 

pixel calculating the magnitude of the hyper feature map for each 

pixel. The reliability of the proposed approach is demonstrated 

by comparing with a 3D CNN-based CD from the literature. 

Quantitative analysis shows a decrease of false/missed alarms, a 

better capability to recognize the year of change and locate the 

object borders.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-143-2022 | © Author(s) 2022. CC BY 4.0 License.

 
148



 

     
2014 2015 2016 2017 2018 

                       False alarms                            Missed alarms 

Figure 6. False/missed alarms of CD maps derived from the proposed method. 

 

As a future work, we aim to improve the performance of the 

proposed method by employing a fine-tuning technique for the 

3D CNN feature extraction, adding more comparisons using 

features extracted via 2D CNNs and performing the proposed 

method on the other areas with different change classes. 
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