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ABSTRACT:

Developing a remote sensing-based monitoring system for detecting marine plastics requires a thorough investigation of their dis-
crimination possibilities from other floating objects. To this end, this study aims to explore the ability to discriminate marine debris
from other floating materials and sea features using high-resolution multispectral satellite data. To perform our analysis, we utilized
the open-access Marine Debris Archive (MARIDA), which contains several marine classes on Sentinel-2 (S2) data and benchmarks
machine learning frameworks. In particular, we investigated well-established spectral indices, GrayLevel Co-occurrence Matrix
(GLCM), Local Binary Pattern (LBP) texture and other spatial features at multiple scales. A Random Forest (RF) classifier was
also applied for the classification procedure, and the spectral and spatial features which contributed the most were underlined. The
quantitative and qualitative assessment indicated that the spectral information alone is insufficient to distinguish marine plastic from
other floating materials which exhibit similar spectral behavior, such as vessels. However, a strong potential even for challenging
discrimination tasks is presented when combined with spatial information. By further evaluating our results qualitatively, significant
insights are gained, and specific combinations are proposed for challenging floating materials discrimination.

1. INTRODUCTION

Marine debris pollution is one of the most growing issues on
a global scale, which endangers human health, marine life
and maritime safety. Plastics infiltrate the marine environment
through diverse land-based and sea-based activities. Addition-
ally, plastics’ fate in the marine environment is not predeter-
mined but is influenced by a variety of factors such as the
characteristics of the plastics themselves (size, shape, dens-
ity), climatic conditions (precipitation, air intensity, temperat-
ure, solar radiation), sea currents and waves, and biological in-
terference (Galgani et al., 2015; Van Sebille et al., 2020).

Various studies on investigating marine debris behavior have
been conducted in recent years. These studies involve the de-
velopment of models for estimating the volume and the source
of plastics in the marine environment (Lebreton et al., 2017)
and the tracking and sampling of debris accumulation to get a
better knowledge of their behavior (Ruiz-Orejón et al., 2016).
In addition to terrestrial methods, airborne and satellite remote
sensing methods have also recently been employed to detect
marine plastic concentrations focusing on coastal areas. How-
ever, detecting marine debris is challenging due to the inher-
ent properties of plastics, the complexity of the marine pro-
cesses and the variability of the sea conditions (Maximenko et
al., 2019). Monitoring marine debris and discriminating from
other floating materials is considered a complex and demanding
problem requiring advanced techniques and improved satellite
sensors (Martı́nez-Vicente et al., 2019).

To address the challenging task of floating materials (e.g., mac-
roalgae species, plastic debris) detection, most remote sensing
studies conducted on multispectral data have been focused on
spectral patterns analysis (Hu et al., 2015; Acuña-Ruz et al.,
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2018; Qi and Hu, 2021). For instance, to discriminate mar-
ine debris and Sargassum macroalgae, Kikaki et al. (2020) util-
ized observations from satellite imagery (Planet, S2, Landsat-
8) verified by in situ data, indicating that marine plastics can
be spectrally differentiated from dense Sargassum macroalgae.
Other studies have investigated the spectral discrimination of
marine debris from different floating features by employing
spectral indices or pure spectroscopy. Most of these experi-
ments have been performed in a controlled or simulated en-
vironment enhancing efforts in marine debris detection (Bier-
mann et al., 2020; Topouzelis et al., 2020; Themistocleous et
al., 2020; Hu, 2021).

Additionally, machine learning methods have recently gained
recognition for plastics identification. Generative Adversarial
Network (GAN), as well as shallow Support Vector Machine
(SVM) and Random Forest (RF) models, have been trained
using artificial plastic targets for binary classification tasks
(debris/ non-debris) (Jamali and Mahdianpari, 2021). Basu et
al. (2021) have investigated the performance of unsupervised
and semi-supervised algorithms in identifying the presence or
absence of plastics, highlighting the need to validate the per-
formance of the classification models at a global scale. Seg-
mentation architectures such as U-Net and DeepLabV3+ have
also been successfully used in Solé Gómez et al. (2022) to pre-
dict three classes, i.e., debris, water and other, on S2 data in
rivers. To discriminate floating objects from non-floating ob-
jects on the sea surface, Mifdal et al. (2021) relied on Convolu-
tional Neural Networks (CNNs), suggesting that these models
are able to predict the spatial characteristics of the annotated
floating features correctly.

In this direction, this study takes a step forward. It investigates
the contribution of both spectral and spatial features to floating
marine debris separation from other materials on multispectral
satellite data. The current study concentrates mostly on challen-
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ging cases, i.e., distinguishing features with similar spectral sig-
natures and/or spatial patterns. To accomplish that, we exam-
ine the ability of spectral indices, texture features GLCM (Har-
alick et al., 1973), Local Binary Patterns (Ojala et al., 2002),
and other characteristics that offer information on spatial pat-
terns (Gaussian, Sobel, Hessian Eigenvalues), extracting signi-
ficant insights about competing classes. To perform our ana-
lysis, we utilize the benchmark Marine Debris Archive (MAR-
IDA) (Kikaki et al., 2022); a recently published open-access
dataset that contains observations of marine debris, floating ob-
jects and water types on S2 data. A Random Forest classifier
was also applied, and a feature selection methodology was per-
formed to understand the underlying properties of the studied
spectral and spatial features that contribute to the classification
process. Finally, a quantitative and qualitative assessment of
our approach is performed, whereas insights and challenges are
discussed in detail.

2. THE MARIDA DATASET

Recently, Marine Debris Archive (MARIDA) has been intro-
duced, aiming to fill the gap regarding the limited availabil-
ity of open-access multispectral datasets and benchmarks for
marine debris detection. To construct MARIDA, the image-
interpretation experts annotated the S2 images taking into ac-
count in situ reports, very high-resolution satellite images,
weather data, and considering the spectral and spatial patterns
of the studied features. As a result, the dataset provides geor-
eferenced polygons in shapefile format, annotated masks (i.e.,
patches) ready for machine learning tasks, as well as machine
learning baselines for the challenging task of floating materials
classification on the sea surface. Further details about MAR-
IDA dataset can be found at marine-debris.github.io.

Clouds, Cloud shadows, Natural organic material, Sargassum, Marine water,
Ship, Wakes, Waves Turbid water Clouds, Cloud shadows

Marine debris, Ship, Sediment-laden water, Clouds, Cloud shadows,
Shallow water Turbid water, Foam Shallow water

Figure 1. Example of S2 patches provided in MARIDA (Kikaki
et al., 2022)

The employed nomenclature of MARIDA contains fifteen
classes in total (Figure 1): i) man-made materials (Marine
Debris, Ships), ii) organic debris, i.e., vegetation, tree branches
(Natural Organic Material), iii) floating seaweed (Sparse Sar-
gassum, Dense Sargassum), iv) water-related classes (Marine
Water, Sediment-Laden Water, Foam, Turbid Water, Shallow
Water, Wakes, Mixed Water, Waves), v) other features (Clouds,
Cloud Shadows).

In this study, we focused on the major competing cases for mar-
ine debris detection on the sea surface, as indicated by Kikaki
et al. (2022). For this reason, we investigate the discrimina-
tion between Marine Debris, Sargassum macroalgae, Natural
Organic Material, Ship and Foam.

3. METHODOLOGY

This section presents our workflow, including the spectral and
spatial features that were performed along with the Random
Forest classifier which was applied for the classification pro-
cedure.

3.1 Spectral Indices and Spatial Features

Spectral information is necessary to differentiate the various
sea surface features on multispectral satellite data. Kikaki et
al. (2022) proposed a set of spectral indices used in MARIDA
classification baselines. To further investigate the degree of sea
surface feature separation, we used a more extensive set of spec-
tral indices. These indices were chosen to enhance the spectral
differences of competing classes.

More specifically, we used the following spectral indices: i)
Floating Debris Index for marine debris detection (FDI) (Bier-
mann et al., 2020) ii) Normalised Difference Vegetation Index
(NDVI), Floating Algae Index (FAI) (Hu, 2009), Near Infrared-
Red Difference (NRD) (Hu, 2021) and Enhanced Vegetation In-
dex (EVI) for vegetation and Sargassum macroalgae mapping
iii) Normalised Difference Water Index (NDWI), Normalised
Moisture Index (NDMI), Modified Normalised Water Index
(MNDWI) and Automated Water Extraction Index (AWEI) for
water-features extraction, and iv) Normalised Difference Snow
and Ice Index (NDSII), Bare Soil Index (BSI) and Shadow In-
dex (SI) to highlight bright or other objects.

Highlighting spectral properties via spectral indices is essential
for detecting and classifying materials and features on the sea
surface. However, in challenging cases, this information alone
seems to be insufficient. For this reason, following MARIDA
analysis, we propose the combination of spectral information
with spatial indices that utilize information about the texture
(i.e., GLCM, LBP), as well as edges, corners, and flat image
regions (i.e., Gaussian, Sobel, Hessian Eigenvalues). It should
be noted that this combination has not been widely investigated
in the literature for this challenging task.

Kikaki et al. (2022) proposed a classification baseline in which
GLCM features are used to provide texture information. We
experimented with the Contrast (CON), the Correlation (COR),
the Homogeneity (HOMO), the DIS (Dissimilarity), the ASM
(Angular Second Moment) and ENER (Energy) (Hall-Beyer,
2017). These features are computed on a quantized version of a
single-band image. In this work, we used grayscale images de-
rived by RGB composites (Robinson et al., 2021) and quantized
them in 16 bins level. To extract a GLCM feature for a specific
region (window around a pixel), the associated GLCM matrix
has to be computed first. In our case, a GLCM is a 16 x 16
(defined by the number of bins) matrix containing the probab-
ility of each pixel value i co-occurring with a pixel value j, for
defined distance offsets inside the selected window (we used a
sliding 13 x 13 window). Finally, the GLCM is multiplied by a
weight factor which depends on the selected texture feature.
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Although GLCMs provide useful spatial information for distin-
guishing sea surface features, they are computationally expens-
ive, especially when calculated for multiple scales. To over-
come this obstacle and include the scale information into the
process while ensuring low computational costs: we utilized
the Gaussian of the grayscale images derived by RGB compos-
ites, the Sobel of the Gaussian image, and the Eigenvalues λ
of the Hessian Matrix of the Gaussian image at different scale
levels (for standard deviation σ = 1, 2, 4, 8, 16 ).

In order to enhance the included texture information, we also
utilized the Local Binary Patterns features (LBP, LBP UNI),
which inform about the uniformity of local texture. Intuitively,
LBP examines the neighbors of a center pixel and determines if
the neighbor pixel values are more or less than the center pixel
value (Ojala et al., 2002).

3.2 Feature Selection and Machine Learning

In order to assess the impact of the extended spectral and spatial
information, we adopted a Random Forest classifier following
MARIDA quick start guide github.com/marine-debris/marine-
debris.github.io. Followingly, we compared our results with
baseline outcomes, and selected the most important features by
performing a feature selection.

Finally, to better understand the combination effects derived
from the selected features for the challenging cases, we visu-
alize them and discuss the extracted insights.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents a quantitative and qualitative evaluation
based on the extracted results after exploiting the 51 spectral
and spatial features (S2 bands values, GLCM, Local Binary
patterns, Gaussian, Sobel of Gaussian Hessian Eigenvalues of
Gaussian) and applying the Random Forest classifier.

4.1 Feature Selection using Machine learning

Firstly, we quantitatively assess the performance of the ap-
plied Random Forest classifier (i.e., RF+). To evaluate our res-
ults and compare them with the corresponding outcomes from
MARIDA, we relied on three metrics, i.e., IoU, Recall and F1.
The Table 1 demonstrates the scores for all metrics per class
obtained by our RF+, as well as by MARIDA baseline mod-
els (RF∗ and U-NET∗). Overall, we observe that the proposed
spectral and spatial features improve the classification perform-
ance, as it is indicated by the higher average scores that our
model achieves for all metrics.

Regarding scores per class, Sediment-Laden Water still has the
highest IoU, Recall and F1 scores (i.e., 0.99 - 1.00). For Dense
Sargassum, Sparse Sargassum, Ship, Clouds, RF+ achieves an
improvement of > +2% for IoU, > +1% for Recall and +2%
for F1 compared with the RF∗ and U-NET∗. Interestingly, for
the Foam class, RF+ improves IoU by +23%, Recall by +11%
and F1 by +16%. Additionally, a significant improvement of
+21% for IoU, +18% for Recall and +25% for F1 can also be
seen for the Natural Organic Material class. However, both RF
models provide the same results for the Marine Debris class. As
far as the class Shallow Water is concerned, the U-Net model
still achieves the highest scores for all metrics.

To qualitatively evaluate the performance of our Random Forest
model (RF+), we visually inspected the produced prediction

Method RF∗ U-Net∗ RF+

IoU Recall F1 IoU Recall F1 IoU Recall F1

Marine Debris 65 92 79 33 70 50 65 92 79
Dense Sargassum 87 93 93 60 60 75 90 94 95
Sparse Sargassum 83 90 91 66 89 79 86 91 93
Natural Organic Material 18 31 31 02 02 04 39 49 56
Ship 67 82 80 62 76 76 69 83 82
Clouds 84 86 91 62 62 76 87 88 93
Marine Water 75 93 86 61 88 76 80 95 89
Sediment-Laden Water 99 100 100 99 99 100 99 100 99
Foam 60 74 75 55 55 71 83 83 91
Turbid Water 88 92 94 84 95 91 90 92 95
Shallow Water 30 37 46 45 67 62 31 45 47
Average 69 79 79 57 69 69 74 83 83

Table 1. Quantitative evaluation of the proposed RF+, compared
with MARIDA (Kikaki et al., 2022) RF∗ and U-Net∗ models.

(a) (b) (c) (d)

RGB

U-Net∗

RF∗

RF+

Marine Debris Dense Sargassum Sparse Sargassum
Ship Clouds Marine Water
Foam Turbid Water Shallow Water
Natural Organic Material Sediment-Laden Water Land Mask

Figure 2. Classification results obtained by our RF+ and
MARIDA baseline (Kikaki et al., 2022) RF∗ and U-Net∗

models.
(a) S2 12-12-20 16PCC 6, (b) S2 22-12-20 18QYF 0,
(c) S2 27-1-19 16QED 14, (d) S2 14-9-18 16PCC 13.

maps and compared them to the respective classification results
extracted by MARIDA baselines (Figure 2). Although RF+ and
RF∗ provide the same scores for Marine Debris (Table 1), it
seems that RF+ predicts better the specific class (Figure 2b).
Especially, the prediction of Sargassum (Figure 2c,d) by RF+

is significantly improved; this fact is also consistent with the
higher scores that our model achieves (Table 1). Finally, the
performance of RF+ appears to be better than the U-Net∗ and
RF∗ models over the coastal region (Figure 2a), where Foam,
Shallow Water, and Turbid Water co-exist. Overall, it seems
that using the spatial information at multiple scales leads to bet-
ter classification results with less noise (e.g., less isolated pixels
classified as Marine Debris) and improved shape of predicted
features (e.g., Clouds).

For further experimentation, we calculated Spearman Correla-
tion to form highly correlated groups among the included spec-
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tral and spatial features and keep only one from each group.
More specifically, we grouped the classes with Spearman Cor-
relation higher than a cut-off threshold. The selected features,
each of which represents a different group, are demonstrated in
Figure 3. By re-training the RF classifier on the non-highly cor-
related features we obtained almost the same results. This fact
indicates that the selected features represent the same amount
of information. Then, by applying the permutation feature im-
portance as described in (Kikaki et al., 2022) on the non-highly
correlated features, we managed to identify the most import-
ant features, i.e., NDWI, H EIG 2 S16, CON, NDVI, FDI and
SOBEL S16. Instead, individual bands (e.g., green) and the
LBP group do not contribute to the classification process. Inter-
estingly, H EIG 2 seems to be more important than H EIG 1.

Figure 3. Mean Accuracy Pixel Decrease of 29 non high
correlated features based on Random Forest Permutation
method. SOBEL σ sort for Sobel filter of the Gaussian of

standard deviation σ. H EIG λ σ sort of Hessian Eigenvalue λ
(1st or 2nd) of the Gaussian of standard deviation σ.

4.2 Further Qualitative Analysis

Finally, in order to further examine the ability of spectral and
spatial features in competing classes discrimination, we visual-
ize them per couple, and discuss the extracted insights based on
the scattergrams analysis (Figure 4).

Marine Debris vs Sparse Sargassum (Figure 4a and Figure
4b): Regarding the spectral patterns of the considered floating
materials, Marine Debris presents slightly lower peak at NIR
and higher values at SWIR. Well-established vegetation index
NDVI tends to have positive values for Sparse Sargassum and
negative values for Marine Debris (4a). Nevertheless, there is
an overlapping area where NDVI values are close to zero, pos-
sibly reflecting the cases with low subpixel proportions (i.e.,
sparse conditions). Concerning FDI, it significantly contributes
to the classification process, as it is the fourth most important
feature (Figure 3). For this index there is a strong theoretical
justification (Tasseron et al., 2021) as well, yet we confirm that
FDI alone does not adequately separate the specific materials
based on S2 data (Biermann et al., 2020). This fact probably
corresponds to the level of marine debris submersion, which is
higher at the sea surface than in a controlled environment. On
the other hand, the concurrent use of NDVI seems to highlight
Sparse Sargassum and Marine Debris spectral patterns differ-
ences. The combination NDVI & EVI could potentially separ-
ate these features as well (Figure 4b).

Marine Debris vs Ship (Figure 4c): Marine Debris and Ship
present similar spectral properties due to the same polymer
composition. Additionally, they can be distributed in similar

spatial patterns. For instance, small vessels and marine debris
pixels can be depicted as individual pixels, leading to a challen-
ging discrimination task. This is can also be observed in Figure
4c, as none of the considered models is able to predict the small
ship correctly. Due to these challenges, the well-established
NDVI and FDI fail to distinguish Marine Debris from Ship.
On the contrary, the GLCM CON texture feature appears to be
promising in this case. The GLCM CON presents the high Ship
contrast to is background; thus, the variety of its value might be
linked to the ship size. Moreover, improved results are achieved
by combining CON with the NDMI index. Marine Debris has
higher NDMI value than Ship, based on the fact that in the case
of floating and partially submerged marine debris the moisture
is higher.

Marine Debris vs Natural Organic Material (Figure 4d): The
Natural Organic Material class consists of woody and veget-
ation debris which tends to accumulate on the sea surface in
very similar patterns to Marine Debris. As shown in Figure
4d, NDVI seems to contribute to the discrimination of the con-
sidered materials, as it captures the reflectance values difference
at the red and NIR bands. The additional use of MNDWI en-
hances their separation. The specific spectral index, by using
green and swir bands, extracts water information and removes
background noise (i.e., built-up area, vegetation) (Xu, 2006).
Marine Debris has higher values in MNDWI and lower (mostly
negative) values in NDVI than Natural Organic Material.

Marine Debris vs Foam (Figure 4e): Foam, compared to Mar-
ine Debris, has higher reflectance values across spectral spec-
trum, presenting a peak at green and a local minimum at 740nm
as well (Kikaki et al., 2022). Furthermore, Foam accumula-
tion patterns in the wave breaking zone are different to Marine
Debris. The concurrent use of NDWI and Hessian Eigenvalue
2 of the Gaussian of standard deviation σ = 16 seems to en-
hance the discrimination of these two classes. The NDWI has
lower values for Marine Debris than for Foam; this is propably
due to the fact that Foam is a water-related class. Additionally,
the Hessian Eigenvalue 2 of the Gaussian of standard deviation
σ = 16 is higher for Marine Debris than for Foam.

Sparse Sargassum vs Natural Organic Material (Figure 4f):
Sparse Sargassum and Natural Organic Material are floating
organic debris which follow similar linear trajectories. Except
for the common spatial patterns, the specific floating materials
can present similar spectral signatures, as natural organic debris
may contain vegetation such as leaves or plants. The EVI, as
expected, highlights the vegetation, yet there is an overlapping
area where vegetation debris and Sparse Sargassum macroalgae
cannot be discriminated. Instead, BSI decreases the overlap-
ping area, further enhancing the separation between these two
classes. Specifically, the BSI index receives higher values for
Natural Organic Material, which properties appear to be closer
to the soil, than Sparse Sargassum that mostly exhibits negative
values.

5. CONCLUSIONS

In this paper, a comprehensive analysis of floating materials and
sea features discrimination based on S2 multispectral satellite
data is presented. Exploiting the recently introduced MARIDA
dataset, we investigated the potential to separate materials and
features on the sea surface using spectral indices and spatial
features at multiple scales. To do so, we used machine learning
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Scattergrams for the qualitative evaluation of challenging cases: (a) NDVI and FDI for Marine Debris and Sparse
Sargassum, (b) NDVI and EVI for Marine Debris and Sparse Sargassum, (c) NDMI and CON for Marine Debris and Ship, (d) NDVI

and MNDWI for Marine Debris and Natural Organic Material, (e) NDWI and Hessian Eigenvalue 2 of Gaussian of σ = 16 for
Marine Debris and Foam (f) EVI and BSI for Natural Organic Material and Sparse Sargassum.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-151-2022 | © Author(s) 2022. CC BY 4.0 License.

 
155



methods and selected the most promising and distinctive fea-
tures based on the feature selection method. By evaluating our
results, we indicate that our new model (RF+), which exploits
the spatial information at multiple scales, improves the classi-
fication performance compared with MARIDA baseline results.

In our analysis, we mainly focused on the ability to distin-
guish Marine Debris from competing classes such as (Sparse
Sargassum, Ship, Natural Organic Material and Foam), which
present similar patterns. Our experimental results indicate that
specific spectral and spatial features contribute to the classific-
ation process, as well as certain combinations can enhance the
discrimination of challenging classes. Preliminary results show
that NDVI is capable of separating floating Marine Debris from
other features that co-exist on the sea surface, such as Sargas-
sum macroalgae. It can also contribute to the discrimination
of Marine Debris from Natural Organic Material and Foam.
However, annotated data with artificial materials, such as Mar-
ine Debris and Ship, cannot be separated by well-established
indices (e.g., FDI NDVI). In this case, the utilization of spatial
information along with different spectral indexes can be effi-
cient in their discrimination.

Interestingly, although FDI contributes to the classification pro-
cess, it cannot alone sufficiently separate Marine debris from
other materials. Overall, we observe that, in some cases, indi-
vidual features are not capable of differentiating floating mater-
ials. However, the covariance between at least two of them can
enable separation of floating objects/ water classes, as indicated
by the scattergrams analysis.

Future analysis on MARIDA can provide the community with
further insights about floating materials detection and water
quality monitoring. Except for spectral and spatial features ex-
amined in this study, temporal features can be also investigated
to assess their contribution to specific marine classes detection
(e.g., Turbid Water, Shallow Water).

References

Acuña-Ruz, T., Uribe, D., Taylor, R., Amézquita, L.,
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