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ABSTRACT: 

With the repetition of mucilage event, which is triggered by many different anthropogenic, climatic and microbiological factors, in 

the Marmara Sea in 2021, the importance of water quality in the seas has come to the fore again. To present the spatial distribution of 

the mucilage, a feasibility study has been carried out with point-based water quality measurements and remote sensing data. In-situ 

measurements are collected routinely within the scope of the Integrated Marine Pollution Monitoring Program (DEN-IZ) which was 

conducted in cooperation with the Ministry of Environment, Urbanisation and Climate Change and the Scientific and Technological 

Research Council of Turkey - Marmara Research Center (TUBITAK-MAM). In this preliminary study, 16 in-situ measurements, 5 

of which were taken from water containing mucilage, on 29 April 2021 in the Gulf of Gemlik were used. Then, univariate regression 

analyzes were performed in two different scenarios (i.e. 5 mucilage points and all in-situ points) with Sentinel-2 satellite imagery and 

in-situ water quality measurements for 2 different parameters (i.e. chlorophyll-a  ― Chl-a) and turbidity). According to R2 and 

accuracy assessment measures (f- and t- statistics etc.), the most suitable models were determined for two scenarios and two 

parameters. Finally, the performances of the selected models were tested with 2 different in-situ measurements and satellite images 

(dated 22 and 27 April) taken from dates close to the data set used; and it was concluded that the models created with 16 points were 

successful for both Chl-a and turbidity estimation for this preliminary study. 

1. INTRODUCTION

The Marmara Sea is an inland sea and forms a connection 

between the Black Sea and Aegean Sea (part of the eastern 

Mediterranean), which are two large semi-enclosed basins, 

through the Bosporus and Dardanelles Straits. In the Sea of 

Marmara, the brackish Black Sea water (~18.0 psu) forms the 

upper layer and flows to the Mediterranean Sea, while the high 

saline water (~38.5 psu) from the Mediterranean fills the basin 

and flows in the opposite direction (Besiktepe et al., 1994). 

These different salinity levels form a distinctive salinity system, 

which causes the stratification and anoxic bottom water (Yilmaz 

et al., 2019). With the having higher salinity, the Mediterranean 

Sea is the bottom layer and the Black Sea, which has eutrophic 

nature, is the upper layer of the Marmara Sea (Unlulata et al., 

1990; Balcioglu, 2019).  

The Marmara Sea has a sensitive and eutrophic ecosystem; 

however, it is polluted by various sources such as rapid 

population growth and industrial activities (Pekey et al., 2004; 

Yilmaz et al., 2019). For monitoring the pollution and its effects 

on seas and coastal waters, the Ministry of Environment, 

Urbanisation and Climate Change has conducted an Integrated 

Marine Pollution Monitoring Program (DEN-IZ) in cooperation 

with the Scientific and Technological Research Council of 

Turkey - Marmara Research Center (TUBITAK-MAM) since 

2014. The scope of this program is to carry out in-situ 

measurements and analyses of water quality parameters at the 

designated stations in all seas (i.e. Black Sea, Marmara Sea and 

the Straits, Mediterranean and Aegean Sea), and then to report 

the results and evaluations periodically (Url-1).  

Mucilage, which results from planktonic and benthic algal 

blooms, is a well-known phenomenon and has been observed in 

different seas, particularly in the Adriatic Sea, since the 18th and 

19th centuries (Pompei et al., 2003). The Marmara Sea was 

introduced to the mucilage phenomenon for the first time in the 

1990s. Although it is occasionally observed at non-periodic 

intervals, the most intense dates are in 2007 and 2021. The main 

potential causes of the mucilage are listed as anthropogenic 

effects (domestic, agricultural, industrial wastes) (Benedetti-

Cecchi et al., 2015), climatic effects (De Lazzari et al., 2008) 

and microbiological activities resulted from these effects 

(Flander-Putrle and Malej, 2008).  

In this study, the mucilage event that came to the agenda the 

most in Turkey in 2021 was investigated together with remote 

sensing data and in-situ water quality measurements made 

within the framework of joint study initiated with the DEN-IZ 

program. A feasibility study has also been initiated for the 

integration of remote sensing data in the last period of the DEN-

IZ program, which is carried out at periodic intervals and is 

based only on point-based measurements and analyses. With 

this feasibility study, it was aimed to map not only the point but 

also the spatial distribution of water quality parameters in the 

Sea of Marmara using remote sensing data; this is because 

remote sensing is capable of showing spatial extent by 

estimating with a limited number of local measurements to 

better characterize the water body. Therefore, the main purpose 

of the study is to show the preliminary findings regarding the 

spatial distribution of mucilage and water quality parameters 

measured within the scope of the DEN-IZ program in the Gulf 

of Gemlik, which was selected as the case study area, using 

remote sensing data, and then to examine its applicability to 

other areas with an acceptable regression model. 
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2. STUDY AREA 

As it is known, water quality levels deteriorate (from 

mesotrophic to eutrophic) in areas where domestic, industrial 

and agricultural wastes are discharged (Tufekci et al., 2010). In 

the Marmara Basin, which covers 2.96% of Turkey's surface 

area, high levels of domestic and industrial wastewater pollution 

are observed especially in the Gulf of Izmit and the Gulf of 

Gemlik, as well as in Istanbul and Kocaeli, where the 

population, urbanization and industrialization are intense. In the 

case study area, the Gulf of Gemlik, not only the urbanization 

and/or industrialization, but also the increasing agricultural 

activities and the pollution caused by the Karsak Stream 

flowing into the gulf create a significant problem (Teksoy et al., 

2019).  

 

Located in the southwest of the Sea of Marmara (Figure 1), the 

Gulf of Gemlik is 2-6 km wide in front of the Gemlik district in 

the east of Tuzla Point and 12-24 km wide between Trilye and 

Bozburun in the west. The average and maximum depths in the 

Gulf are 59 and 107 m, respectively. The regional winds, which 

play a dominant role in the dynamics of this semi-enclosed sea, 

are mostly controlled by the surrounding mountains and blow 

from the northwest in winter and predominantly from the 

northeast during the rest of the year. With a drainage area of 27 

600 km2 and an average water flow of 158 m3/s, the Karasu 

River is the most important geographical element of the region 

and carries 0.5-5.5 tons of suspended solids to the sea daily, 

depending on climatic conditions (Unlu and Alpar, 2006). 

 

 
 

Figure 1. The map of the Gulf of Gemlik and distribution of 16 

in-situ sampling points (red dots are mucilage samples) in 

Sentinel-2 satellite image (© Copernicus). 

 

3. MATERIALS AND METHODS 

3.1 Materials 

In the study, Sentinel-2A/MSI (S2A) Level 2 satellite image 

dated 29 April 2021 was used for the estimation of water quality 

parameters such as chlorophyll-a (Chl-a) and turbidity in the 

Gulf of Gemlik. The characteristics of Sentinel-2 data, which is 

an open data access policy, are given in Table 1. 

 
Band 

# 
Spectral Bands 

Spectral Res. 

(µm) 

Spatial Res. 

(m) 

B1 Coastal Aerosol 0.443 60 

B2 Blue 0.490 10 
B3 Green 0.560 10 

B4 Red 0.665 10 

B5 Vegetation Red Edge 0.705 20 

B6 Vegetation Red Edge 0.740 20 

B7 Vegetation Red Edge 0.783 20 

B8 Near infrared 0.842 10 

B8A Vegetation Red Edge 0.865 20 

B9 Water vapour 0.945 60 

B10 
Shortwave infrared-

Cirrius 
1.375 60 

B11 Shortwave infrared 1.610 20 
B12 Shortwave infrared 2.190 20 

Table 1. The characteristics of Sentinel-2 data. 

 

As the atmospheric correction is a key limiting factor of 

satellite-based water quality monitoring, the reliability of results 

from water-leaving reflectance will be subject to the quality of 

atmospheric correction (Warren et al., 2019). In this study, 

Sentinel-2 Level 2 products (bottom of atmosphere, BOA) 

distributed by ESA/Copernicus and atmospherically corrected 

with the SEN2COR package were used, since this method, as 

used in many similar studies, was found to be more suitable for 

the correction of inland water bodies compared to coastal areas 

(Toming et al., 2016; Warren et al., 2019). 

 

There are 16 in-situ measurements taken on the same date with 

the satellite image acquired on April 29, 2021. The distribution 

of in-situ measurements is given in Figure 1. Statistical 

measures (i.e. minimum, maximum, mean and standard 

deviation) related to in-situ measurements dated April 29, 2021 

at the coastal waters of Gulf of Gemlik are given in Table 2. 

Five of these samples, shown in red in Figure 1, were taken 

from water areas that contain mucilage specifically. Therefore, 

regression analyzes were performed in two different scenarios 

to examine the effect of sampling point number on prediction 

model results: using only five mucilage samples and all 

samples.  

 

3.1 Methodology 

To establish an empirical relationship (e.g. linear or non-linear 

regression) between the water-leaving radiance measured by the 

sensor (i.e. spectral reflectance values - individual band or 

combinations of bands) and in-situ water quality measurements, 

an empirical approach, which can be fully or semi-data driven 

and requires adequate in-situ water quality measurements, were 

used in this study. 

 
In-situ 

measurements 
Statistical measures 

Chl-a 

min 1.379 

max 6.387 

mean 3.470 

standard deviation 1.852 

Turbidity 

min 0.232 

max 0.637 

mean 0.443 

standard deviation 0.128 

Table 2. Statistical measures related to in-situ measurements 

dated April 29, 2021 at the coastal waters of the Gulf of Gemlik. 
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3.2 Methodology 

To establish an empirical relationship (e.g. linear or non-linear 

regression) between the water-leaving radiance measured by the 

sensor (i.e. spectral reflectance values - individual band or 

combinations of bands) and in-situ water quality measurements, 

an empirical approach, which can be fully or semi-data driven 

and requires adequate in-situ water quality measurements, were 

used in this study. 

 

First, the spectral reflectance properties of two different water 

bodies (mucilage and clear water) were evaluated. As shown in 

Figure 2,  reflectance spectra collected from clear water areas as 

well as mucilage-containing areas in particular show very 

different spectral profiles in the VNIR region.  

 

As seen, the mucilage reflectance increases from blue to green 

and then shows a local minima around the red band, which can 

be explained by the presence of a chlorophyll pigment. Then the 

spectrum flattens towards the Red-edge (RE) and Near-infrared 

(NIR) wavelengths (Hu et al., 2022). 

 

3.2.1 Correlation Analysis: Although satellite images 

cannot measure all aspects of the physical-chemical and 

biological properties of a water body, in the literature many 

studies have shown a correlation between optical active 

components and the spectral response of measured water 

(Kavurmaci et al., 2013; Gholizadeh et al., 2016b; Batur and 

Maktav, 2018; Sagan et.al., 2020). However, as noted in the 

literature, correlations between in-situ measurements and 

spectral reflectance values can be complex and nonlinear, 

especially for Case 2 water bodies, as these parameters respond 

differently to various spectral wavelengths (Gholizadeh et al., 

2016a; Hafeez et al., 2019; Topp et al., 2020). Therefore, 

regression models were created using linear and 2nd-order 

polynomial and the most suitable appropriate prediction model 

was chosen by statistical evaluation.   

 

3.2.2 Accuracy Assessment: As known, the accuracy of 

mapping the bio-optically active parameters such as 

chlorophyll-a, turbidity, etc., is largely dependent on the bio-

optical equation developed. In general, the accuracy of the 

regression models to be developed is evaluated with accuracy 

metrics (Standard error, f- and t- statistics, etc.). In this study, 

some statistical accuracy metrics were taken into account and 

then the accepted models were tested using two other images 

close to the study area along with in-situ measurements. 

 

To evaluate the performance of the models used in regression 

analysis, Root Mean Square Error (RMSE) and Mean Absolute 

Error (MAE) given in Eq. 1 and Eq. 2, were used.  

 

     (1) 

  

                   (2) 

where  yi is the measured value, 

 ŷi is the estimated value and 

 n is the number of measurements. 

 

The lower value of RMSE and MAE implies higher accuracy of 

a regression model.  

 

 
 

Figure 2. Example (a) of mucilage samples collected from the 

Sentinel-2 image. (b) Reflectance spectra of mucilage and clear 

water bodies. 

 

4. RESULTS AND DISCUSSION 

Regression analyzes were performed as linear and/or 2nd order 

polynomials with many different spectral band/ratio 

combinations, taking into account some relevant spectral 

regions and/or using the most common equations in the 

literature. In the analysis, it was seen that the linear polynomials 

used to retrieve these two parameters gave relatively better 

results when the f-test and R2 measure used to compare the fit of 

different linear models, were taken into account. 

 

From the empirical regression modeling, Figure 3 and Figure 4, 

respectively, show the best regression models for the estimation 

of the concentration of Chl-a and turbidity from Sentinel-2A. 

The statistics of the regression models (for five mucilage 

samples and all samples) selected in the preliminary analysis for 

two parameters are given in Table 3.  

 

First, the green band (B3) was observed to be important in 

detecting Chl-a from both sampling datasets. For 16 samples, 

the best model fit was found suitable for the retrieval of Chl-a 

using the ratio between the green (B3) and the blue (B2) bands, 

with R2 = 0.58. For only five mucilage samples, the difference 

between the green (B3) and red (B4) bands correlated better due 

to the local minimum around the red band, indicating possibly 

live algae  (Figure 2). When this model was visually compared 

with Figure 1, it can be seen that the Chl-a concentration in 

Figure 3a is higher, especially in the mucilage regions. 

Although the t value of this model is low but acceptable (i.e. it 

must be greater than +2 or less than –2), the p- value, which 

helps to determine the significance of the results about the null 

hypothesis (typically ≤ 0.05 indicating statistically significant), 

was found to be higher for the selected regression model (i.e. 
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0.104). On the other hand, the R2 coefficient of this model was 

observed to be slightly higher than the other model. 

 

On the other hand, in the other model performed with all 

samples, the higher concentration was seen mostly in the lower 

coastal parts of the gulf and in areas where mucilage is intense 

(Figure 3b). 

 

 

 
 

Figure 3. The best regression models for the estimation of the 

concentration of Chl-a with a) 5 mucilage samples, b) 16 

samples. 

 

In the estimation of turbidity, the visible bands (blue (B2), green 

(B3) and red (B4)) and RE (B5) bands are observed to yield the 

best results. Visually, it was seen that the spatial distribution of 

turbidity is compatible with the Chl-a distribution (Figure 4b). 

Although p-values were obtained at an acceptable level, it was 

observed that rather different R2 accuracies were obtained (0.98 

and 0.33) in the empirical regression modeling used for the 

prediction of turbidity for the two data sets (Table 3). In other 

words, the 16-sample model was found to be less accurate than 

expected in turbidity retrieval. On the other hand, it was seen 

that the turbidity model created with five mucilage samples was 

particularly successful in showing the linear features (traces) of 

the mucilaginous phenomenon  (Figure 4a). 

 

Although the model used to predict the turbidity did not 

perform well, it was still taken into account in the validation 

phase; the other model was not considered realistic due to the 

small number of samples used. Therefore, in this preliminary 

study, to validate the accepted models for the two parameters, 

these models were applied to the other two Sentinel-2 test 

satellite images (April 22, 2021 and April 27, 2021 using 5 and 

10 in-situ measurements, respectively) acquired very closely 

with the dataset used in the analysis. 

 

The calculated RMSE and MAE values between accepted 

models applied to two Sentinel-2 test images with in-situ 

measurements are given in Table 4. 

 

 

 
 

Figure 4. The best regression models for the estimation of the 

turbidity with a) 5 mucilage samples, b) 16 samples. 

 

As seen in Table 4, despite having a low R2 value, the predicted 

turbidity gave a lower RMSE value compared to the RMSE 

obtained for the estimated Chl-a in each 2 date test image. 

However, considering the ranges of the measurement values, it 

was concluded that the results obtained were better than 

expected. 

 

 Chl-a Turbidity 

Band 

comb. 
B3-B4 B3/B2 (B5-B4) 

(B3-B2) 

/(B3+B2) 

# 

Samples 
5* 16 5* 16 

Model 

equation 

y = 424.5x - 

2.7618 

y = 10.203x 

- 9.0039 

y = 8.7769x 

+ 0.3468 

y = 1.3546x 

+ 0.312 

R2 0.64 0.58 0.98 0.33 

Standard 

error 
0.98 1.24 0.01 0.10 

F 5.34 19.35 139.70 6.78 

p value 0.104 0.001 0.001 0.021 

t 2.31 4.40 11.82 2.61 

* mucilage samples 

 

Table 3. Statistics of the regression models selected in the 

preliminary analysis for 2 parameters. 
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Chl-a Turbidity Chl-a Turbidity 

April 27, 2022 April 22, 2022 

Validation 

samples # 
10 10 5 5 

RMSE 0.98 0.09 1.27 0.09 

MAE 0.84 0.08 1.18 0.04 

 

Table 4. Validation results with in-situ measurements of 

accepted models applied to two Sentinel-2 test images. 

 

5. CONCLUSION 

This preliminary study attempts to model Chl-a concentrations 

and turbidity in complex inland waters such as the Gulf of 

Gemlik in the Marmara Sea using Sentinel-2 images and relate 

them to the mucilage phenomenon. Although these two 

parameters are considered to be important water quality 

parameters that can be accurately retrieved by satellite 

reflectance measurements, especially in Case 1 waters, 

however, the situation is different in Case 2 waters such as the 

Gulf of Gemlik.  

 

Different band correlations including various combinations of 

VNIR bands were tested for the retrieval of turbidity and Chl-a 

parameters. Specifically, the green band (B3) was observed to 

be important in detecting Chl-a from both sampling datasets and 

also turbidity. In general, it was determined that the statistics of 

the model selected for Chl-a fit better than turbidity. In other 

words, the accepted turbidity model achieved the lowest 

agreement (R2=0.33), but in validation of this model, the RMSE 

was obtained quite low on both Sentinel-2 test images. 

 

The spatial distribution maps of the two parameters were found 

to be visually significant, although the model with five mucilage 

samples was not statistically very realistic as the smaller 

number of samples gave a result that may not be strong enough 

to demonstrate the relationship. 

 

It is clear that measurements and analyses made on a single date 

will not be sufficient in cases where ecological variables differ 

significantly due to untreated wastewater discharges, such as in 

this study area. Also, there are some general problems/issues 

already mentioned in the literature, but some critical ones still 

need to be reiterated. These are (i) the dynamic nature of water 

bodies and optical complexity of inland waters, (ii) the need to 

have a precise atmospheric correction of the satellite images, 

(iii) the sensitivity of the models to local environmental 

conditions, which causes them not to be automatically 

replicated to other regions, (iv) the requirement of large water 

quality sample sizes in models, (v) the spectral resolution of the 

sensors, (vi) the need for high signal-to-noise ratio (SNR), (vii) 

similar spectral properties of mucilage and floating matters 

(such as macro debris, microplastics). 

 

In conclusion, the model findings, which were carried out in 

only one region of the Marmara Sea, show that the model is not 

yet robust and sufficient. Therefore, it is planned to continue 

these studies with more frequent and in-situ measurements in 

2022 within the scope of the DEN-IZ program to develop an 

optimal algorithm(s) for the accurate estimation of bio-optic 

water quality parameters in the region. In addition, the seasonal 

and annual trends and changes of not only these 2 parameters 

used in this study, but also other optically active parameters 

(such as Secchi disk, Salinity, Total suspended materials, etc.) 

will be evaluated with the new in-situ measurements made 

and/or to be made. Besides, the use of Landsat 8 as an 

additional satellite will provide enhanced overpass opportunities 

and therefore may constitute an operational approach in 

providing regular observations for the seasonal behavior of 

these parameters. The success of this program will help to 

establish an operational satellite-based water quality monitoring 

system not only in the Sea of Marmara, but also in all coastal 

areas of Turkey.  
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