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ABSTRACT: 

 

Automatic detection of objects from Earth Observation images is still a challenge for researchers. This paper aims at extracting 

automatically windmills on mid-resolution images (10-meter resolution), based on Sentinel satellite products. Sentinel-2 optical 

images are obvious candidates for our study. At 10-meter resolution, a windmill is represented with only a few pixels. We also start 

to consider Synthetic Aperture Radar (SAR) Sentinel-1 images but no particular windmill radar response on GRD (Ground Range 

Multi-look Detected) products seemed to be relevant.  

Considering the maturity of deep learning techniques for object detection in computer vision, we explore the use of deep neural 

networks for windmill detection on remote sensing images. For that purpose, we had to create the training data sets but we took 

advantage of the availability of many Sentinel images and of the use of automated labelling as the objects are georeferenced. The 

proposed approach relies on the U-Net framework, reformulating our problem of object detection in terms of semantic segmentation. 

We trained several neural networks on different data sets emanating from different countries. That enabled us to measure the 

performance of detection within a country but also across two countries (training on a country and predicting on another country). 

The results show the ability of detection of such small objects with respect to the resolution and we obtain various levels of 

performances depending on the trained and test data sets. 

 

 

1. INTRODUCTION 

Remote sensing enables the monitoring of the evolution of 

objects on Earth. In the last years, there has been various 

improvement in the satellite domain: increase of the spatial 

resolution, increase of the temporal revisit and wider range of 

spectral bands. The resulting large amount of data has led to the 

challenge of extracting automatically specific objects, in order 

to help monitor our environment for example. This paper 

focuses on the detection and localization of windmills. The 

interest in such objects is driven by aeronautical needs for 

navigation and by energy transition purpose for estimating 

renewable wind energy production. 

 

Based on the characteristics that windmills are in small area in 

small quantity with respect to a remote sensing image, (Li et al., 

2018) proposed a method using SVM (Support Vector 

Machines) and morphological attribute filters for the detection 

of windmills. More recently, (Mridula, Sharma, 2021) 

experimented Deep Learning techniques and used 

Convolutional Neural Network (CNN) to detect such objects on 

high-resolution optical images. Concerning offshore maritime 

targets detection (including windmills), (Bentes et al., 2018) 

tested different models of CNN on high resolution SAR images. 

Most of their Neural Networks outperformed their CFAR 

(Constant False Alarm Rate) target detector considered as a 

baseline. (Wang et al., 2019) described a new method to detect 

and mark azimuth ambiguities automatically in high-resolution 

SAR images, using Single Shot multibox Detector (SSD) and 

took into account windmills.  
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Adapted to that kind of problem of object detection, our 

approach relies on Deep Learning techniques but our main goal 

is to work with mid-resolution images as the ones provided by 

the Sentinel satellites. The choice of such images is that they 

cover globally a large part of Earth, allowing us to use the 

method we developed possibly everywhere on Earth. The 

Sentinel images are also freely available and provide a large 

amount of data, a feature that is of utmost importance when 

using Deep Learning techniques. (Kruitwagen et al., 2021) 

illustrated the use of Sentinel images for the detection of 

photovoltaic solar energy generating units worldwide. 

 

Within the Sentinel family, the two constellations with a 

resolution that matches the scale for objects detection like 

windmills are the Sentinel-1 and Sentinel-2 constellations.  

The Sentinel-1 comprises SAR imaging satellites. Among the 

various products available, the Full Resolution GRD product 

acquired in Stripmap Mode seems a good candidate with a 

resolution of about 9 meters and a pixel spacing of about 3.5 

meters (Bourgibot et al., 2016). Unfortunately, there are no such 

type of image products on Europe. We next turned to Full 

Resolution GRD products acquired in Interferometric Wide 

Swath Mode, with a resolution of about 20 meters and a pixel 

spacing of 10 meters. However, it was very challenging to try to 

recognize SAR particular pattern response of windmills. We 

thus decided not to use such images (see Appendix for more 

details). 

The Sentinel-2 comprises 13-band multispectral optical imaging 

satellites, with a best spatial resolution of 10 meter. Among all 

the spectral bands available, we selected the ones having a 10-

meter resolution, thus ending with four bands in the visible 

(Blue, Green and Red) and Near-Infrared spectrum (see Table 

1).  
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Band Wavelength Resolution 

B2 490 nm 10 m 

B3 560 nm 10 m 

B4 665 nm 10 m 

B8 842 nm 10 m 

Table 1. Sentinel-2 Bands chosen. 

The Sentinel-2 products used in this study are the L2-A ortho-

images displaying bottom-of-atmosphere reflectances. Figure 1 

shows how windmills appear on Sentinel-2 images compared to 

how it appears on a very high-resolution image. 

 

   
 

Figure 1. One windmill on a VHR image (Geoportail © IGN) at 

full resolution and six aligned windmills on a Sentinel-2 image 

at full resolution. 

 

The study presented in this paper explores the possibility to 

detect and localize windmills on Sentinel-2 images using CNN. 

By creating data sets on different countries, we aim at analysing 

the behaviour of a neural network trained on a country data set 

and tested on another country data set. The next chapter 

describes the neural networks method we used for windmills 

detection. The third chapter deals with the creation of various 

data sets in order to train (and evaluate) CNN. The fourth 

chapter presents the results and a discussion on the results. The 

final chapter summarizes the outcome of our analysis and 

describes some perspectives for future research. 

 

2. METHOD 

Among image deep learning techniques, we may distinguish the 

following four different classes of problems:  

- Image Classification: the aim is to classify the main object 

category within an image. 

- Object Detection: the aim is to identify the object category and 

locate the position using a bounding box for every known 

object within an image. 

- Semantic Segmentation: the aim is to identify the object 

category of each pixel for every known object within an image. 

Labels are class-aware. 

- Instance Segmentation: the aim is to identify each object 

instance of each pixel for every known object within an image. 

Labels are instance-aware. 

The detection of windmills lies more within the Object 

Detection class. However, in previous work, we experimented 

the use of semantic segmentation for buildings detection. The 

results for extracting specific types of spatially isolated 

buildings (storage tanks for example) were quite promising. We 

thus perform this study with neural networks specifically 

designed for semantic segmentation.  

 

2.1 Neural Network for semantic segmentation 

Semantic segmentation consists in determining, for each pixel, 

the type of objects it belongs to, with the aim to group them 

together in regions in order to create a partition of the image. In 

semantic segmentation, the most effective neural networks are 

the convolutional neural networks (CNN), completely built 

upon convolution layers. The output objective of such an 

algorithm is to obtain a mask of segmentation of the same size 

of the input image: a naïve approach is to apply a succession of 

layers of convolutions with an increasing number of filters 

while keeping the same dimensions of the input image. In 

practice, it is not possible because of its computational cost and 

an architecture of type auto-encoder is preferred. This one 

consists of two parts: 

- the encoder : it is a classical CNN, used in most problem of 

understanding scenes. It is constituted by a succession of layers 

of convolution with an increasing number of filters and possibly 

layers of pooling for down-sampling, allowing to reduce the 

dimensions of the image while increasing the number of 

channels. 

- the decoder : it is an inverse network to the encoder. Its 

purpose is to increase the dimensions of the image while 

decreasing the number of channels. Nevertheless, it is also a 

network of convolution constituted by a succession of layers of 

convolutions with a decreasing number of filters and possibly 

by layers of up-sampling.  

 

A problem appears with such a simple architecture: by 

decreasing the dimension of the image in the encoder to 

increase the number of channels, we lose spatial information to 

gain semantic information. Now, when the resolution is re-

increased in the decoder, the spatial information is only partially 

recovered and there is thus a lack of precision in the 

reconstruction of the mask of segmentation. The cue is to 

combine these different pieces of information by establishing 

connections between the layers at the bottom and the top levels. 

 

It is with this in mind that has be designed the U-Net 

architecture (Ronneberger et al., 2015). It is a network initially 

developed to perform segmentation of cancer cells on images 

from microscopes. However, it quickly became a reference in 

any problem of segmentation thanks to its performances. The 

main idea is to copy the outcome of several layers of the 

encoder and to concatenate them to those of the same 

dimensions in the decoder. It enables the combination of the 

spatial and semantic information in the same tensor and leads to 

an architecture in the form of U illustrated on Figure 2.  

 

 
 

Figure 2. U-Net architecture (Ronneberger et al., 2015). 
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2.2 U-Net implementation 

Generally, the weights of a neural network are initialized 

randomly (according to very specific normal laws) before being 

updated during the training. In particular, the computational 

cost of adjusting correctly and appropriately all these weights 

can be very high. To remedy this problem, a common use in 

Deep Learning is the transfer learning, that is the re-use of the 

weights of a network pre-trained on one (or more) task (s) and 

on a particular data set, in a different problem. Typically, a 

network of classification is trained on ImageNet data: the subset 

called ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) contains more than one million of images annotated 

and is divided in about 1 000 object classes (Russakovsky et al., 

2015). Such a network is generally constituted by a succession 

of layers of convolution and subsequently followed by some 

fully connected layers at the end to establish the prediction. It is 

thus possible to re-use these layers of convolutions (typically, 

the fully connected layers are not kept) by inserting them into 

our network, and to make a new training on our data set only. 

There are here several possibilities: for instance, training the 

complete network. Alternatively, one can train the non-pre-

trained layers and use several learning rate (to decrease for 

example the value of the learning rate for the re-used layers in 

order to slightly modify them).  

The general idea is that the first layers have learned features of 

very low level, common to any image, as the detection of edges, 

lines or spots, while the last layers are more specific to the 

dedicated problem and would logically be modified in a more 

consequent way. This technique is very interesting because it 

improves generally the results of the current problem, as it 

roughly means increasing the size of the data set of training. 

Furthermore, it is very easy to insert a pre-trained encoder in a 

network of U-Net type, with the distinction made between 

encoder and decoder.  

 

In this study, we replace the basic encoder of U-Net by various 

neural networks pre-trained on ImageNet: VGG16, VGG19 

(Simonyan et al., 2015) and ResNet50 (He et al., 2016). Figure 

3 shows the architecture of a VGG-16 neural network. 

 

 
 

Figure 3. VGG-16 Architecture. 

 

In our U-Net framework, we use the binary cross entropy loss 

function in the training process to generate the output map. The 

output is thus a probability belonging to [0,1]. For the purpose 

of detection, a threshold is then applied to the output map. 

Usually, the standard value used is 0.5.  

 

   
 

Figure 4. U-Net probability map output (left), results with a 

threshold of 0.5 (middle), detection results overlaid on the 

original image (right). 

Figure 4 shows the output map generated by the U-Net neural 

network (left), the results after using a threshold of 0.5 (middle) 

and the bounding box of the windmills classified as True 

positive (green), False negative (red) and False positive 

(yellow) (right). 

In our U-Net framework, we introduce Batch Normalization and 

use the Adam optimizer. We also set up early stopping for the 

loss function on the validation dataset. We base our work on the 

Keras Tensorflow implementation. 

 

2.3 Evaluation 

In order to evaluate the results of our neural networks, we rely 

on the usual following deep learning metrics. 

The precision is calculated as the ratio between the number of 

Positive samples correctly classified to the total number of 

samples classified as Positive (either correctly or incorrectly). 

The precision measures the model's accuracy in classifying a 

sample as positive. 

 

  (1) 

 

The recall is calculated as the ratio between the number of 

Positive samples correctly classified to the total number of 

Positive samples. The recall measures the model's ability to 

detect Positive samples. The higher the recall, the more positive 

samples detected. 

 

  (2) 

 

Usually, precision and recall scores are provided together and 

are not quoted individually. Still, if a single number is required 

to describe the performance of a model, the most convenient is 

the Dice coefficient also known as F1 Score, which is the 

harmonic mean of the precision and the recall.  

 

   (3) 

 

We use these three metrics in our study. 

 

3. DATA SETS 

As for every deep learning approach, there is a need for a 

labelled dataset of remote sensing images containing windmills. 

Having found none existing one, we need to create our own data 

set: it is not a problem to get Sentinel-2 images but more 

challenging to get a valid list of georeferenced windmills. 

Moreover, we want to have data sets on different countries for 

out study. In the end, we build three data sets: one for France, 

one for Spain and the last one for Germany and the Netherlands. 

 

3.1 Windmill ground truth localisation 

Searching for the location of windmills for our first area of 

interest that is France, we find a first list of windmills on the 

open data site data.gouv.fr. Unfortunately, after beginning to 

work with it, it appears that it cannot be trusted and the quality 

of the data varies enormously. Searching for other sources, we 

finally decide to use the OpenStreetMap (OSM) data. The 

advantage of such data is that there are updated continuously by 

the community. Windmills in the OSM database are described 

as points or polygons. In order to have a homogeneous 

database, we transform the polygons into points by taking their 

centroids. As the reliability in the ground truth is very important 
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in training to avoid creating bias, we make an analysis on a 

sample of data to check their freshness and their geographic 

accuracy. It appears that some windmills are prematurely 

spotted in the OSM data, being ongoing projects and even not 

yet built. Concerning geographic accuracy, one concern is about 

localisation, and we contributed a little to refine the localisation 

of some windmills; the other concern is the choice of the spatial 

coordinates taken to model a volumetric windmill object made 

of a mast, a turbine and pales. As shown in Figure 5 on a high-

resolution image, the points extracted are roughly representing 

the middle of the mast of the windmill at its bottom. Figure 6 

shows the same points on a Sentinel-2 image. 

 

 
 

Figure 5. OSM windmills point overlaid on a  

Geoportail image. 

 

 
 

Figure 6. OSM windmills point overlaid  

on a Sentinel-2 image. 

 

Using the Overpass Turbo API enables us to extract these 

specific windmill objects from the whole OSM database. We 

had to make some processing to reduce polygon-described 

windmill to their centroid and concatenate them with the point-

described windmills. We end up with a list of about 8 000 

windmills for France. 

 

One of the advantages of using OSM data is that the tools 

implemented for creating the list of windmills for the data set 

over France can be used to obtain those of Spain and of 

Germany and the Netherlands. We retrieve about 20 000 

windmills in Spain, 29 000 windmills in Germany and 2 500 in 

the Netherlands. Figure 7 displays the location of the windmills 

extracted from the OSM database on a cartographic basemap. 

 
 

Figure 7. Windmills extracted from OSM database 

 

3.2 Creation of the windmill image data sets 

The image data sets for the deep learning neural networks are 

created from Sentinel-2 optical images with 10-meter 

resolution. Having the list of position of windmills, we are able 

to download from the Copernicus DataHub Sentinel-2 images 

whose footprints intersect the position of the windmills. We use 

the DHuSget API to download the images. The size of each 

image is 10 980 by 10 980 pixels. As previously mentioned, we 

are interested in the 10-meter products of the Sentinel-2 images 

and work either with each band to make a three channel product 

or rely directly on the True Colour Image file product. 

Using U-Net framework, we need to create a mask to classify 

the points between windmill and not windmill. As windmills are 

described as points, we consider arbitrary a region around that 

point with two different sizes: 4 by 4 pixels encompassing at 

least the mast, part of the pales and the turbine and 6 by 6 pixels 

encompassing the shadow if any.  

 

We tested several strategies to create our data sets. The first 

simple one is to generate patches of images centred on a 

windmill to be sure to have one. Unfortunately, it gives bias in 

the learning step. Another strategy is to extract patches from a 

regular grid leading to many patches of image without 

windmills. We finally use the strategy depicted on Figure 8 to 

create the different image data sets.  

 

 
 

Figure 8. Image data set creation process. 
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The process described above enables us to provide images 

containing at least one windmill but often containing more as 

several windmills are usually gathered together. As stated by the 

state-of-the-art in training for deep learning, we also add images 

with no windmill.  

 

After having made a first small data set and verified that the 

process of creation was successful, we increase our data sets by 

exploiting Sentinel-2 images within one year long in order to 

get images in all seasons. For example, for France, we 

download about 500 images with no maritime areas and with 

less than 1% of cloud cover. Figure 9 shows some of the 

downloaded images. As easily seen, in the L2 products, the 

effective usable portion of the images has to be taken into 

account (and the black parts have to be eliminated). 

 

 
 

Figure 9. Mosaic of a subset of the Sentinel-2 images 

downloaded. 

 

We end with a data set of about 60 000 images for France, a 

data set of about 38 000 images for Spain and of about 43 000 

for Germany and the Netherlands 

 

4. RESULTS 

In order to evaluate the performance of our neural networks, we 

adopt the following process to identify a true or a false 

detection: given a region segmented coming from the 

thresholding of the Neural Network output map, we compute its 

centroid and measure the distance of that centroid to the ground 

truth. If the distance is less than three pixels, the detection is 

labelled as true and false otherwise. This value can be 

considered as high but it takes into account that a windmill 

location is modelled as a point in the ground truth database 

 

4.1 France Area of Interest 

This is our first area of interest. We adopt an incremental 

approach and increase the data set more and more with a variety 

of dates of acquisition (about one year at the end) to achieve a 

high F1 score. We end up with a data set of about 60 000 

images. As usual for such methods, we divide that data set into 

three distinct data sets to have 75% (thus about 50 000) images 

for training, 20% (thus about 8 000) images for validation and 

the last 5% (about 2 000) images for test. Using the VGG16 and 

trying two different sizes of boxes for delineating windmills (4 

by 4 pixels and 6 by 6 pixels), we achieve the following results 

using a threshold of the output map of 0.5: 

 

Size of box Precision Recall F1 score 

4 by 4 0.97 0.93 0.95 

6 by 6 0.96 0.93 0.95 

Table 2. France data set results. 

 

We obtain good results with a F1 score of 0.95 and we can 

handle windmills on various background and across seasonality. 

In the test data set, as described earlier, there is usually at least 

one windmill. We also find little difference in the use of the 

different sizes of boxes delineating the windmills. Figure 10 

shows results with true positives (green boxes), whereas Figure 

11 shows results with true positives (green), false positives 

(yellow) and false negatives (red). The right image shows that 

our dataset still contains some inconstancy between the image 

and the OSM database (on temporal aspect for example). 

 

  
 

Figure 10. Good results of detection. 

 

  
 

Figure 11. Limited results of detection. 

 

4.2 Spain Area of interest 

Using the same method as for France, we train dedicated neural 

networks on a Spain data set. Similarly to France, we use the 

same ratio (75%-20%-5%) to divide the Spain data set of about 

40 000 images, thus having 30 000 images for training, 8 000 

images for validation and 2 000 images for test. Using the same 

parameters, we obtain a F1 score of 0.93 for box size of 4 by 4 

and 0.90 for box size of 6 by 6, thus leading to similar 

conclusion as from France. 

We also compute the performance of the two neural networks 

learned on the France data set on the Spain test data set. We get 

a F1 score of 0.62 for box size of 4 by 4 and 0.60 for box size of 

6 by 6, thus leading to a significant decrease of the performance 

that can certainly be attributed to the difference in windmills 

environment in Spain compared to that in France. 

 

4.3 Germany/The Netherlands Area of interest 

The data set made on Germany and the Netherlands contains 

about the same number of images as the one on Spain. Again, 

we train dedicated neural networks on this data set. Using the 

same parameters, we get a F1 score of 0.85 for box size of 4 by 

4 and 0.84 for box size of 6 by 6. The overall results are not as 

good as for the previous data set but are still independent of the 

choice of the box size delineating the windmill. 

We also compute the performance of the two neural networks 

learned on the France data set on that test data set. We obtain a 

F1 score of 0.76 for box size of 4 by 4 and 0.76 for box size of 
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6 by 6, having still poorer results but a smaller difference 

compared to Spain as the environment where the windmills are 

established is more similar. 

 

4.4 Fine tuning 

According to the above discussion, the results depend on the 

countries and the training data sets used. We aim at 

experimenting fine tuning (using transfer learning): we re-train 

a neural network trained on the France data set with a subset of 

the training data set of Spain and compute again the 

performance on that re-trained neural network on the Spain test 

data set. The result improves significantly and reaches a good 

F1 score of 0.94. We repeat a similar test with the Germany/The 

Netherlands case and obtain similar results. Table 3 summarizes 

those results: 

 

Training data set Test data set F1 score 

Spain Spain 0.93 

France Spain 0.62 

France then Spain subset Spain 0.94 

Germany/The Netherlands Germany - The 

Netherlands 

0.85 

France Germany - The 

Netherlands 

0.76 

France then Germany - 

The Netherlands subset 

Germany - The 

Netherlands 

0.84 

Table 3. Transfer learning results. 

 

4.5 U-Net Architecture dependency 

As presented in chapter 2, we can use various pre-trained neural 

networks in the U-Net architecture. The results are not very 

different from one to the other. To illustrate it, Figure 12 shows 

the evolution of the loss function of the training data set and the 

validation data set during training when using VGG19 and 

ResNET50 on the German/The Netherlands data set. 

 

 
 

Figure 12. Loss function value (with logarithm scale) versus 

epoch 

 

4.6 Sentinel-2 bands used 

Among the available bands of Sentinel-2 images, one is the 

Near Infrared band (B08). We took advantage of this band and 

projected several ways to use it: 

- integrate it in a deep learning approach on its own. However, 

windmills are poorly distinguishable in that band.  

- make a three-channel combination with two of the three others 

visible bands. We started making such data sets but the first 

obtained results were disappointing. 

- modify the neural network in order to take four channels as 

input. Based on the results on the second point, we did not go 

into that direction. Moreover, that would have removed the 

possibility to take pre-trained networks in the U-Net 

architecture. 

We thus did not continue in trying to use that band in our deep 

learning approach. 

 

5. CONCLUSION 

We described in this paper our approach for detecting windmills 

on Sentinel-2 images based on the use of a U-Net architecture. 

Although a windmill on a Sentinel-2 image represents only few 

pixels, the results show that we can achieved good performance 

for the detection of such objects. Having creating different data 

sets on different countries, it seems that windmills are not so 

similar from one data set to the other. However, using fine 

tuning, we show that re-training a network learned on a data set 

of country with a subset of a data set of another country can 

increase significantly the performance of detection. However, 

further investigations should be conducted on the content of the 

data sets (number of images, proportion of images with 

windmills and without, size of the subset for fine tuning, …). 

This paper also describes a method to build a data set of 

Sentinel-2 images that could be used for other objects. We 

applied the same process for creating a data set for water towers 

in France. The performance of the neural network trained on 

that data set led to a F1 score of 0.63. Figure 13 shows an 

example of results. 

 

 
 

Figure 13. Example of water towers detected in France. 
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APPENDIX 

The following figures shows a part of a Full Resolution GRD 

Sentinel-1 product acquired in Interferometric Wide Swath 

Mode. It is the same area at the same date: the first image is in 

VV-polarisation mode and the second one is in VH-polarisation 

mode. The ground-truth places of windmills are represented 

with cyan circles. Knowing that there are some windmills, we 

can recognize some of them on the VH-polarised image (two 

white points localised near the circles) but none on the VV-

polarised image. However, this kind of behaviour cannot be 

considered to be reliable, as it is sometimes possible to 

recognize windmills on VV-polarised image but not on VH-

polarised image. Moreover, in some other cases, none of the 

polarised images shows a particular pattern of windmills. 

Without making a deeper study, that analysis led to give up 

trying to use such images for detecting windmills. 

 

 
 

Figure 14. Ground truth spots of windmills on a VV-polarised 

IW GRD Sentinel-1 image 

 

 
 

Figure 15. Ground truth spots of windmills on a VH-polarised 

IW GRD Sentinel-1 image 
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