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ABSTRACT: 

Cloud and cloud shadow segmentation is a crucial pre-processing step for any application that uses multi-spectral satellite images. In 

particular, time-critical disaster applications, require accurate and immediate cloud and cloud shadow masks while being able to 

adapt to possibly large variations caused by different sensor characteristics, scene properties or atmospheric conditions. This study 

introduces the newly developed open-source Python package ukis-csmask for cloud and cloud shadow segmentation in multi-spectral 

satellite images. Segmentation with ukis-csmask is performed with a pre-trained Convolutional Neural Network based on a U-Net 

architecture. It works directly on Level-1C data, eliminating the need for prior atmospheric correction. Images need to be in top of 

atmosphere reflectance and include at least the Blue, Green, Red, NIR, SWIR1 and SWIR2 spectral bands. We provide a 

performance evaluation on a recent benchmark dataset for cloud and cloud shadow segmentation and proof the generalization ability 

of our method across multiple satellites (Landsat-5, Landsat-7, Landsat-8, Landsat-9 and Sentinel-2). We also show the influence of 

augmentation and image bands on the segmentation performance and compare it to the widely used Fmask algorithm and a Random 

Forest classifier. Compared to previous work in this direction, our study focuses on multi-sensor generalization ability, simplicity 

and efficiency and provides a ready-to-use software package that has been thoroughly tested. 

1. INTRODUCTION

Cloud and cloud shadow segmentation is a crucial pre-

processing step for any application that uses multi-spectral 

satellite images. In particular, time-critical disaster applications, 

require accurate and immediate cloud and cloud shadow masks 

while being able to adapt to possibly large variations caused by 

different sensor characteristics, scene properties or atmospheric 

conditions.  

Significant work has been undertaken to detect and segment 

clouds and cloud shadows in multi-spectral satellite images 

(Skakun et al., 2022). Zhu et al. (2015) introduce the Function 

of mask (Fmask) algorithm that uses rules based on physical 

cloud properties to identify potential cloud pixels from 

temperature, spectral variability, and brightness in Landsat and 

Sentinel-2 data. As part of the Sen2Cor Level-2A processor for 

Sentinel-2 a scene classification map that includes cloud and 

cloud shadow classes is computed (Main-Knorn et al., 2017). 

The algorithm is based on a series of threshold tests on the top-

of-atmosphere reflectance from spectral bands and spectral band 

indices. The MAJA processor for atmospheric correction is 

based on complex rule-sets which exploit time-series of 

Sentinel-2 data to detect clouds and cloud shadows. It is largely 

based on the assumption that surface reflectance in the absence 

of clouds are stable with time while the presence of a cloud or a 

cloud shadow introduces a quick variation of the reflectance 

(Hagolle et al., 2010). Hollstein et al. (2016) test Classical 

Bayes, Decision Trees, Support Vector Machine and Stochastic 

Gradient Descent classifiers to detect clouds and cloud shadows 

amongst other classes in Sentinel-2 images.  

Convolutional Neural Networks (CNNs) gradually appear in 

recent studies on cloud segmentation (Chen et al., 2018; Francis 

et al., 2019; Domnich et al., 2021) and show superior accuracy, 

generalization ability and inference speed compared to rule-

based and classical machine learning approaches. Zhaoxiang et 

al. (2018) use wavelet compressed images with a CNN based on 

the U-Net architecture for cloud detection on-board small 

satellites. Ozkan et al. (2018) adapt a deep pyramid network to 

produce cloud masks from satellite images with noisy 

annotations. Jeppesen et al. (2019) introduce the Remote 

Sensing Network (RS-Net), a deep learning model for detection 

of clouds in Landsat-8 images that is based on the U-Net 

architecture. López-Puigdollers et al. (2021) carry out an 

extensive benchmarking study of deep learning methods for 

cloud detection in Landsat-8 and Sentinel-2 images. Mohajerani 

and Saeedi (2021) introduce Cloud-Net+ that is trained with a 

filtered Jaccard Loss and under consideration of a novel 

sunlight direction-aware data augmentation. They test their 

method on four Landsat-8 datasets, including their own 35-/95-

cloud datasets, which consist of image subsets with four 

spectral bands ("Blue", "Green", "Red", "NIR") and 

corresponding cloud annotations. Similar to the L8-Biome 

(Scaramuzza et al., 2016) dataset, cloud shadows are not 

consistently annotated. Despite the promising results for cloud 

detection, only few studies and datasets specifically consider 

cloud shadows. Jiao et al. (2020) present a refined U-Net which 

extracts coarse cloud and cloud shadow regions in image 

patches and then refines their boundaries using a dense 

conditional random field. Hughes and Kennedy (2019) use a 

pretrained CNN with VGG16 encoder to separate clouds, cloud 

shadows, water and snow in Landsat 8 images. They train and 

test on the freely available Spatial Procedures for Automated 

Removal of Cloud and Shadow (SPARCS) dataset (USGS, 

2016). A recently published dataset that considers clouds and 

cloud shadows with a focus on Sentinel-2 is introduced by 

Francis et al. (2020). Their Sentinel-2 Cloud Mask Catalogue 
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consists of 513 subscenes with semi-automatically derived 

annotations that were randomly sampled from the 2018 Level-

1C Sentinel-2 archive. 

 

Besides the growing number of studies and datasets that target 

the use of CNNs, we can observe a general lack of easy to use, 

simple and fast tools for reliable cloud and cloud shadow 

segmentation across different sensors. Besides the complex 

rule-based solutions provided by Fmask, Sen2Cor and MAJA, 

none of the aforementioned studies that use CNNs provide their 

solutions as software packages and only few studies release 

their experimental code (e.g., Jeppesen et al., 2019). The 

s2cloudless algorithm is to the best of our knowledge the only 

machine learning approach that has been published as a ready-

to-use and open-source software package in this context 

(https://github.com/sentinel-hub/sentinel2-cloud-detector). It 

uses gradient boosting trees for cloud classification on a single 

Sentinel-2 scene. Cloud shadows are not considered and 

transferability to other sensors is not specifically addressed. 

 

Based on the above mentioned observations, we present the 

open-source Python package “UKIS Cloud Shadow MASK” 

(ukis-csmask) that masks clouds and cloud shadows in Landsat-

5, Landsat-7, Landsat-8, Landsat-9 and Sentinel-2 images 

(https://github.com/dlr-eoc/ukis-csmask). Its objective is to 

provide a fast and simple to use tool that is able to mask cloud 

and cloud shadow pixels in single date images from a large 

variety of multi-spectral satellite sensors without the need for 

calibration or manual interference. This study builds up on the 

work presented in (Wieland et al., 2019) and focusses on the 

newly developed Python package ukis-csmask, a performance 

evaluation on a recent benchmark dataset and a transferability 

experiment to images of the Landsat-9 satellite. 

 

2. DATA 

In this study, we use three datasets for training, validation and 

testing of our method, namely the SPARCS dataset for Landsat-

8 (USGS, 2016), a custom reference dataset for Landsat and 

Sentinel-2 (Wieland et al., 2019) and the Sentinel-2 Cloud 

Mask Catalogue (Francis et al., 2020) (Figure 1). 

 

2.1 SPARCS Landsat-8 dataset 

The freely available Spatial Procedures for Automated Removal 

of Cloud and Shadow (SPARCS) dataset (USGS, 2016) 

contains 80 samples of globally sampled Landsat-8 Level-1 data 

and corresponding manually annotated and quality checked 

thematic masks. The masks contain the classes cloud, cloud 

shadow, snow / ice, water, flooded and land. Each sample 

covers a subset of a Landsat-8 scene with 1,000 x 1,000 pixels 

(resampled to 30 m). Masks and are provided in PNG format 

and images are delivered with 11 spectral bands in GeoTIFF 

format with associated quality assessment band and metadata. In 

this study, we use only spectral bands that are available across 

different satellite sensors to ensure a high degree of 

transferability of the trained models. Specifically, we use 

Landsat-8 bands 2 (Red), 3 (Green), 4 (Blue), 5 (NIR), 6 

(SWIR1) and 7 (SWIR2). We transform Digital Numbers (DN) 

to Top of Atmosphere (TOA) reflectance using the conversion 

factors provided in the scene’s metadata and convert the masks 

into GeoTIFF format. We carry out two sets of reclassifications 

of the thematic masks: 1.) we derive a dataset with five classes 

(clouds, cloud shadows, water, snow / ice, land) by combining 

classes water and flooded; 2.) we derive a dataset with three 

classes (clouds, cloud shadows, clear sky) by merging the land, 

water and snow / ice classes into the clear sky pixel class. 

 

 
 

Figure 1. Spatial distribution of datasets used in this study. 

Samples consist of a satellite image and thematic masks. 

 

2.2 Custom reference dataset for Landsat and Sentinel-2 

We compile a custom reference dataset from Landsat-8, 

Landsat-7, Landsat-5 and Sentinel-2 images. A stratified 

random sample of the Landsat Worldwide Reference System 

(WRS2) path/row locations with a minimum distance constraint 

of 370 km (twice the swath width of a Landsat scene) is used to 

identify 14 globally distributed sample locations. For each 

location we acquire images of all four satellites, while keeping 

acquisition times across satellites as close as possible to each 

other to strengthen the significance of a cross-sensor 

comparison. Acquisition times across sample locations cover 

different seasons and the minimum cloud-cover percentage is 

set to 5 % in order to guarantee a certain degree of cloud-cover 

per sample. We create 56 1,024 x 1,024 pixels subscenes 

(resampled to 30 m), stack the Red, Green, Blue, NIR, SWIR1 

and SWIR2 image bands together and convert DN to TOA 

reflectance. Thematic masks are generated by manual visual 

image interpretation and annotation. Several iterations of 

quality checks and adjustments by multiple operators are carried 

out to refine the masks. Like for the SPARCS Landsat-8 

dataset, we compile two sets of reclassifications of the thematic 

masks: 1.) five classes (clouds, cloud shadows, water, snow / 

ice, land) and 2.) three classes (clouds, cloud shadows, clear 

sky). 

 

2.3 Sentinel-2 Cloud Mask Catalogue 

The freely available Sentinel-2 Cloud Mask Catalogue dataset 

consists of 513 1,022 x 1,022 pixels subscenes (resampled to 20 

m) of Sentinel-2 Level-1C images that were sampled randomly 

from the 2018 archive. Thematic masks cover three classes 

(clouds, cloud shadows, clear sky), were annotated with a semi-

automatic procedure and quality checked by several operators 

(Francis et al., 2020). In addition to the thematic annotation 

masks, metadata is provided with information about properties 

of each subscene, such as surface type, cloud type, cloud height, 

cloud thickness and cloud extent. 89 subscenes are reported to 

have no cloud shadow annotations due to ambiguous 
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boundaries and overlaps with terrain shadows. We therefore 

discarded these samples from our experiments. 

 

3. METHOD 

Cloud and cloud shadow segmentation with ukis-csmask is 

performed with a pre-trained CNN based on the U-Net 

architecture. U-Net is capable to learn from small datasets while 

achieving state-of-the-art results on semantic segmentation 

tasks. Weights are initialized randomly as described in (He et 

al., 2015). During training, we optimize the weights using an 

adaptive moment estimation (Adam) algorithm (Kingma and 

Lei, 2015) with default hyper-parameters l = 0.001, β1 = 0.9 

and β2 = 0.999. Even though Adam already computes adaptive 

learning rates to reduce the impact of tuning the hyper-

parameters on convergence, it has been shown that additional 

learning rate adaptation can improve convergence speed and 

accuracy (Smith, 2017). Therefore, we use a step decay 

scheduler to further adapt the learning rate during training. As 

loss function we use weighted cross-entropy loss. To account 

for class imbalance, we use the inverse occurrence of a class as 

a weight to penalize the class specific loss and therefore prevent 

the model from focusing too much on the majority class. We 

train the network in batches of 10 until convergence and track 

overall accuracy, Cohen’s Kappa coefficient, micro-averaged 

F1 score and Intersection over Union (IoU) metrics.  

 

ukis-csmask works directly on Level-1C data, eliminating the 

need for prior atmospheric correction. Images need to be in top 

of atmosphere reflectance and include at least the Blue, Green, 

Red, NIR, SWIR1 and SWIR2 spectral bands. The final model 

that is being deployed by ukis-csmask has been trained on the 

SPARCS dataset (USGS, 2016) and has been refined by further 

training on a custom reference dataset of images from Landsat-

8, Landsat-7, Landsat-5 and Sentinel-2, that have been sampled 

globally under consideration of land-cover, seasonality and type 

of cloud-cover (Wieland et al., 2019). The training dataset is 

augmented with random contrast and brightness. Factors are 

randomly applied within predefined ranges and all 

augmentations are applied with equal probability. Due to the 

spatial resolution of the input images and the natural variety of 

shapes of the classes of interest, we did not consider 

geometrical augmentations. We standardize the input image 

feature space to zero mean and unit variance with mean and 

standard deviation being computed on the training dataset and 

applied to the validation and testing datasets. The training set is 

shuffled once between every training epoch.  

 

Since higher prediction errors towards the image borders may 

be observed when using CNNs, ukis-csmask expands the input 

image with mirror-padding before inference. The expanded 

image is split it into overlapping tiles for prediction and the 

prediction tiles are blended with a tapered cosine window 

function and un-padded to reconstruct the input image’s x-y-

shape (Wieland and Martinis, 2019). We use Tensorflow as 

deep learning framework and converted the final model to the 

Open Neural Network Exchange (ONNX) format for 

deployment in ukis-csmask. To run inference with GPU support, 

CUDA runtime libraries are required to be installed on the 

system.  

 

As a benchmark method, we train a Random Forest classifier on 

the same training datasets as our method. We use the Scikit-

learn (“Scikit-learn.,” 2022) implementation, which fits a 

number of C4.5 decision tree classifiers (Breiman, 2001) on 

sub-samples of the training data and uses averaging to control 

over-fitting and improve the accuracy of the predictions. 

Additionally, we apply the rule-based Fmask algorithm (Zhu et 

al., 2015) to the test images using the Python Fmask package 

(“Python Fmask,” 2022). In contrast to the machine learning 

methods, the rule-sets that underlie Fmask are sensor specific 

and make use of all available spectral bands including thermal 

and cirrus bands if available. 

 

All experiments are carried out on a standard desktop PC with 

Intel Xeon W-2235 CPU @ 3.80 GHz, 6 cores, 60 GB RAM 

and an NVIDIA Quadro RTX 4000 GPU. 

 

4. RESULTS 

In the following we present three sets of experiments. At first, 

we evaluate the influence of augmentation and input bands on 

the segmentation performance and compare the results with 

Fmask and a Random Forest classifier. For these experiments 

we use the SPARCS dataset for training and the custom multi-

sensor reference dataset for testing (Section 4.1). Based on the 

outcomes of these experiments we select the best-performing 

setup and train a final model for use in ukis-csmask using both 

SPARCS and our custom reference dataset for training. This 

final model is then evaluated against an independent test dataset 

provided by Francis et al. (2020) (Section 4.2). Finally, we 

apply ukis-csmask on Landsat-9 images. Since no benchmark 

datasets are yet available for Landsat-9 cloud and cloud shadow 

segmentation, this is simply an application experiment with 

qualitative interpretation of the results (Section 4.3). 

 

4.1 Model selection and comparison with Random Forest 

and Fmask 

Table 1 provides a description of the different training setups 

used for U-Net (UNET) and Random Forest (RF). 

UNETL8B4A for example refers to a U-Net model that has 

been trained on four Landsat-8 spectral bands with contrast / 

brightness augmentation.  

 

Model Train data Bands Augm. Class 

L8B6 SPARCS 

Landsat-8 

Red, Green, Blue, 

NIR, SWIR1, SWIR2 

False 5 

L8B4 SPARCS 

Landsat-8 

Red, Green, Blue, 

NIR 

False 5 

L8B4A SPARCS 

Landsat-8 

Red, Green, Blue, 

NIR 

True 5 

L8B6A SPARCS 

Landsat-8 

Red, Green, Blue, 

NIR, SWIR1, SWIR2 

True 5 

 

Table 1. Training setups for U-Net and Random Forest models. 

 

Figure 2 shows a summary of the results for each tested training 

setup grouped by satellite. It can be seen that UNETL8B6A (U-

Net trained on six Landsat-8 spectral bands with augmentation) 

outperforms the other U-Net models. On all satellites the model 

trained with augmentation shows superior results. The only 

exception is Landsat-7, for which augmentation seems to not 

significantly affect the performance of the prediction. Highest 

accuracies are achieved on Landsat-8. This is not surprising 

because the machine learning models have been trained on data 

of the same satellite. Overall, the UNETL8B6A shows good 

generalization ability across satellites with only minor accuracy 

differences being observed. 
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Figure 2. Results for each model grouped by satellite. 

UNETL8B6A consistently outperforms Fmask and Random 

Forest which is confirmed by a qualitative comparison of the 

results across different satellites and locations (Figure 3). 

Moreover, the results indicate that models trained with only 

four spectral bands (Red, Green Blue and NIR) can already 

produce good results. Adding SWIR1 and SWIR2 spectral 

bands can, however, further improve the accuracy. Also 

applying contrast and brightness augmentations seems to be 

beneficial for the segmentation performance. 

 

 
 

Figure 3. Selected results for the best performing U-Net and 

Random Forest models as well as Fmask. 

 

4.2 Evaluation on the Sentinel-2 Cloud Mask Catalogue  

We applied ukis-csmask on the 513 subscenes of the Sentinel-2 

Cloud Mask Catalogue dataset. Figure 4 shows a selection of 

predictions for different environmental conditions (surface type, 

cloud height, cloud thickness, cloud extent). 

 
 

Figure 4. Selected ukis-csmask predictions on the Sentinel-2 

cloud mask catalogue dataset. 
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Over all subscenes we achieve a mean overall accuracy of 0.80 

(with 0.32 standard deviation), mean IoU of 0.77 (with 0.32 

standard deviation) and mean F1 score of 0.81 (with 0.31 

standard deviation). It can be seen that despite highly varying 

surface types with spectral signals that partially overlapping 

those of clouds and cloud shadows (e.g., snow / ice, open water 

bodies) relatively stable prediction results can be achieved. 

Variations in cloud type, thickness and extent seem to have a 

slightly larger influence on the segmentation performance. 

Cloud misclassifications are visible for thin cirrus clouds and 

some confusion between water bodies and cloud shadows as 

well as terrain shadows and cloud shadows can be observed in 

few of the tested subscenes. 

 

4.3 Application to Landsat-9 images 

Figure 5 shows prediction results of ukis-csmask on three 

Landsat-9 Level-1C images acquired over Australia, Greece and 

Colombia. Despite diverse surface and cloud types, the 

prediction results delineate well the visible clouds and cloud 

shadows. Similar to the performance on Sentinel-2 and the 

previous Landsat satellites, critical surface types like snow / ice 

or dark water bodies are separated consistently well from clouds 

and cloud shadows in all tested images. This first application 

experiment with qualitative interpretation of the results 

indicates that ukis-csmask can successfully be applied to 

Landsat-9 images. 

 

 
 

Figure 5. ukis-csmask predictions on Landsat-9 images 

acquired over Australia (first row), Greece (second row) and 

Colombia (third row). 

 

5. DISCUSSION 

With this study we could show that a pre-trained U-Net model 

that uses as input only four spectral bands (Red, Green, Blue 

and NIR) can already produce competitive prediction results. 

This is particularly relevant when sensors with limited spectral 

resolution (e.g., Planet Scope) are targeted by an application or 

when rapid and resource effective processing is required 

(Zhaoxiang et al., 2018). However, adding SWIR bands to the 

input feature space could improve the results on all tested 

sensors. Aerosols have a stronger effect on shorter wavelengths 

and atmospheric transparency is higher in the SWIR 

wavelengths. Therefore, adding SWIR bands to the input 

feature space can improve the distinction between clouds, snow 

and ice. Rule-based methods, such as Fmask, also consider the 

Thermal Infrared (TIR) bands if available from a sensor. We 

specifically decided against using the TIR bands to increase the 

number of satellites that we can potentially support with ukis-

csmask. Applying contrast and brightness augmentation on the 

training data helped the network to learn a certain degree of 

invariance to changes in the target domain (e.g., atmospheric 

conditions, seasonality or sun elevation). 

 

A general issue with remote sensing reference datasets and 

specifically datasets related to cloud and cloud shadow 

segmentation concerns the fractal geometry and fuzzy 

reflectance characteristics of soft class boundaries. The border 

between cloud and clear sky as well as the fuzzy gradient of 

shadow outlines may lead to annotation inconsistencies when 

trying to define a hard class boundary for the reference masks. 

Therefore, annotation of reference masks is at least partially 

subjective and may introduce a bias in the reference dataset and 

hence affect the performance results. In consequence, the results 

should be interpreted as relative to a human operator rather than 

ground-truth. 

 

Compared to other studies, we do not apply post-processing 

steps and focus on multi-sensor generalization ability. 

Accordingly, we test our results against independently acquired 

datasets from multiple sensors with overlapping spectral bands. 

In addition to our initial work in this direction (Wieland et al., 

2019), we extended the experiments with a performance 

evaluation against the freely available Sentinel-2 Cloud Mask 

Catalogue (Francis et al., 2019) to provide results that are 

reproducible and comparable. Moreover, we tested ukis-csmask 

for the first time on Landsat-9 Level-1C images. Satellite-

specific reference datasets for Landsat-9 are not yet available, 

so that we could only do a first subjective evaluation of the 

results. First predictions look promising, but more effort would 

be required to establish relevant benchmark datasets for cloud 

and cloud shadow segmentation on Landsat-9 images and hence 

provide quantitative and comparable results for this satellite. 

 

6. CONCLUSIONS 

The findings of this study indicate that a single CNN model is 

capable to generalize across a variety of different satellite 

sensors, geographies and environmental conditions without the 

need for atmospheric correction or more sophisticated domain 

adaptation techniques other than augmentation. We developed 

the outcomes of our scientific studies into a ready-to-use open-

source Python package to enable transparency and 

reproducibility. Compared to other solutions, ukis-csmask 

allows us to quickly and accurately identify cloud and cloud 

shadow pixels in satellite images of various multi-spectral 

sensors, which is fundamental for unbiased down-stream 

analysis. This becomes particularly relevant in emergency 

applications where time is critical and all available data sources 

need to be utilized to provide timely information products about 

an evolving disaster. 
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