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ABSTRACT: 

 

The intelligent interpretation of remote sensing images based on deep learning has become a hot spot with the increasing satellite 

images acquired due to the rapid development of aerospace technology. Sufficient and reasonable distributed samples are essential for 

the accuracy of deep learning. The spatial distribution of natural features is inhomogeneous in the real world. When people create 

sample dataset, they often collect within a certain local range, which may bring problems of unbalanced distribution of samples, 

including the unbalance between training dataset and validation dataset, and the unbalance among different sample categories. This 

long-tail distribution of samples  (i.e., a few classes account for most of the data, while most classes are under-represented) can lead 

to bias in the training model and make it difficult to ensure accuracy. 

 

In this paper we tried to solved the above-mentioned problem in landcover classification with high spatial and spectral resolution 

(HSSR) remote sensing images. We first adopted an iterative stratification method for multi-label data classification to ensure that both 

training dataset and validation dataset contain reasonable proportion of landcover classes.  Then we proposed a weighted loss 

algorithm to further strengthen the learning ability of the model for rare categories. Experiments on a large volume HSSR dataset shows 

that with our methods the accuracy of landcover classification increased by 2%. 

 

 

1. INTRODUCTION 

Land cover and its change are important for resource planning 

and monitoring, ecological environment assessment, and 

sustainable development. With the accelerating process of 

economic globalization, the demand for land cover information 

high spatial and temporal resolution in the region scope and even 

global scope is increasing (Nilsson et al., 2016) (UN, 2019). In 

2015, the United Nations formulated the 2030 agenda for 

sustainable development for global sustainable development and 

proposed to achieve 17 sustainable development goals (SDGs) 

by 2030 (Grekousis et al., 2015), (CHEN and CHEN, 

2018)many of the SDGs are close-related to land cover. Thus, 

land cover information can effectively support the formulation 

and implementation of national, regional and global public 

policies, economic and political programs. The realization of 

SDGs further puts forward an urgent demand for global scope 

high-resolution land cover data. 

 

At present, the most precise land cover data in the world are 

GlobeLand30 land cover product with 30 meters resolution 

developed by Chen Jun etc.(CHEN and CHEN, 2018), FROM-

GLC10 land cover with 10 meters resolution developed by Gong 

                                                                 
* Corresponding author 

Peng etc. (Gong et al., 2013), and fine classification products 

GLC_FCS30-2015 with 30 meters resolution developed by Liu 

Liang-yun etc.(Zhang et al., 2019). With the development of 

earth observation ability, satellite remote sensing images with 

high spatial and temporal resolution are increasingly rapidly, 

which support the extraction of finer ground object in large area 

to product landcover data with higher resolution. However, at 

present, the methods and technologies of satellite remote sensing 

interpretation are not enough to support the large-scale 

production of high resolution land cover data.  

 

The intelligent interpretation of remote sensing images based on 

deep learning has become a hot spot. Sufficient and reasonable 

distributed samples (annotated datasets) are essential for the 

accuracy of deep learning. This has been proved by many 

successful cases of deep Convolutional Neural Networks (CNNs) 

for visual recognition (Hinton, 2006) (Huang and Learned-

Miller, 2014) with large-scale, real-world annotated datasets 

(Rawat and Wang, 2017) (Zhang et al., 2016).  

 

For remote sensing image interpretation, the inhomogeneous 

spatial distribution of natural features in the real world must be 

considered when creating the sample datasets. When people 
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create sample dataset, they often collect within a certain local 

range, which may bring problems of unbalanced distribution of 

samples, including the unbalance between training dataset and 

validation dataset, and the unbalance among different sample 

categories. This long-tail distribution of samples (i.e., a few 

classes account for most of the data, while most classes are 

under-represented) can lead to bias in the training model and 

make it difficult to ensure accuracy(Chen et al., 2016) (Xu et al., 

2019) (Khoshgoftaar et al., 2010). 

 

People have tried to handling the problems caused by the long-

tailed training data by re-sampling and re-weighting (Bengio, 

2015) (Zhang et al., 2017). Cui et al. proposed an re-weighting 

approach to design a class-balanced loss(Cui et al., 2019). 

 

In this paper we tried to solved the above-mentioned problem in 

landcover classification with high spatial and spectral resolution 

(HSSR) remote sensing images. We first adopted an iterative 

stratification method for multi-label data classification to ensure 

that both training dataset and validation dataset contain 

reasonable proportion of landcover classes. Then we proposed a 

weighted loss algorithm to further strengthen the learning ability 

of the model for rare categories. Experiments on a large volume 

HSSR dataset shows that with our methods the accuracy of 

landcover classification increased by 3%. 

2. METHODS 

2.1 Class balanced Loss  

To address the problem of long-tailed sample distribution, 

typical solutions adopt class re-balancing strategies such as re-

sampling and re-weighting based on the number of observations 

for each class. Cui et.al proposed a class balanced loss method 

to handle this problem (Cui et al., 2019). They argued that as the 

number of samples increased, the additional benefit of a newly 

added data point would diminish. So they introduced a 

framework to measure data overlap by associating with each 

sample a small neighbouring region rather than a single point. 

The effective number of samples is defined as the volume of 

samples and can be calculated by a simple formula (1-βn)/(1-β), 

where n is the number of samples and β ∈  [0, 1) is a 

hyperparameter. A re-weighting scheme was designed using the 

effective number of samples for each class to re-balance the loss, 

thereby yielding a class-balanced loss. We adopted this method 

to balance the number of samples in different landcover 

categories.  

 

In this paper, we calculated the adjustment amount by using the 

class balance loss proposed by Cui et al. We firstly define the 

calculation method of the effective quantity of each category (the 

expected value of the sample size). Suppose that the data of a 

new sampling point can only be associated with the previous 

sampling data in two ways: either it is completely in the previous 

sampling data set, and the probability is recorded as p; Or 

completely outside the previous sampling data, and the 

probability is recorded as (1-p). With the increase of the number 

of sampled data, the probability p also increases. Using more 

samples in a certain category will bring diminishing marginal 

benefits. This is because there are inherent similarities between 

real-world data. With the increase of the number of samples, the 

newly added samples are likely to be almost duplicate of the 

existing samples. 

 

The effective number of samples is called 𝐸𝑛， Where n ∈ ℤ >

0  is the number of samples. Super parameter γ  control 

𝐸𝑛 increases with the increase of n, then: 

𝐸𝑛 = 𝑝𝐸𝑛−1 + (1 − 𝑝)(𝐸𝑛−1 + 1) 

          =
1−𝛾𝑛

1−𝛾
 𝑤ℎ𝑒𝑟𝑒 γ ∈ [0,1]        (1) 

In order to obtain the balanced loss function, we introduced a 

weighting factor 1/𝐸𝑛. It is in inverse proportion to the effective 

sample number of each class  𝐸𝑛 , that is, for class i  , 𝑛𝑖  is 

included in total. Adding a weighting factor to the loss function, 

and the sample size balance loss function can be written as: 

𝐿𝑐𝑏 =
1

𝐸𝑛
𝐿(𝑜, 𝑦) =

1−𝛾

1−𝛾𝑛𝑦
𝐿(𝑜, 𝑦)          (2) 

2.2 Iterative sample division  

Generally, samples should be divided into training, validation, 

and test sets. The number of classes in each dataset were often 

unbalanced. Szymański et.al. proposed an iterative stratification 

method for multi-label data classification (Szymański and 

Kajdanowicz, 2017) (Szymanski and Kajdanowicz, 2019). This 

method considered the second-order relationship between labels 

so that a more balanced sample distribution can be obtained. We 

adopted this method to ensure both training and validation 

datasets contain an reasonable proportion of landcover classes. 

 

2.3 Deep learning Model 

Zheng et al. proposed a fast patch-free global learning (FPGA) 

framework for hyperspectral image (HIS) classification (Zheng 

et al., 2020). It uses an encoder-decoder based FCN to consider 

the global spatial information by processing the whole image. 

And experiments show that FPGA framework is superior to the 

patch-based framework in both speed and accuracy for HSI 

classification.  
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Figure 1. The architecture of FPGA (Zheng et al., 2020) 

 

Figure 2 The spectral attention module (Zheng et al., 2020) 

 

As shown in Figure 1 and Figure 2, FGPA used an encoder 

network and a decoder network. The encoder is responsible for 

computing the hierarchical convolutional feature maps over an 

entire input HSI. The decoder recovers the spatial dimension of 

the coarsest convolutional feature map progressively via lateral 

connection based SSF, outputting a classification probability 

map of the same spatial size as the input image.  

 

3. EXPERIMENT AND RESULTS 

3.1 Original sample dataset 

We used the high spatial and spectral resolution sample dataset 

Luojia HSSR developed by Wuhan University(2022). It is 

constructed based on aerial hyperspectral imagery of southern 

Shenyang City of Liaoning Province in China, covering area of 

161 square kilometers with spatial resolution 0.75 meter 249 

spectral bands as VNIR, geometric accuracy of 1.5-3 meter and 

corresponding to 47 categories of field-validated ground 

coverage. To the knowledge of this paper, it is the largest 

hyperspace spectral sample data set so far. 

 

3.2 Adjustment of the sample dataset 

The sample size of each category in Luojia-HSSR varies greatly 

due to the uneven spatial distribution of landscape types in real 

world. For example, paddy fields account for 45.7% of the total, 

while roads account for only about 2%.  

 

We adjust the original Luojia-HSSR dataset with the method 

proposed in previous section of this paper, including the 

following 3 steps:  

(1) Category distribution adjustment: the categories with too 

small sample size are deleted or merged. After adjustment, the 

sample categories are changed from 47 to 23, as shown in Table 

1. 

(2) Data set division: divide the above samples into training, 

verification and test sets. Finally, 6438 pairs of samples are 

formed, including 749 pairs of verification sets, 3480 pairs of 

training sets and 2209 pairs of test sets. Each with size of 

256×256 pixels,, and each pair of samples includes hyperspectral 

images and corresponding surface coverage classification 

(3) Adjustment of the number of samples in the training set: in 

order to ensure the rationality of the comparison between models, 

this paper randomly removes some excessive data of categories 

in the training set, including paddy field (91%), dry land (94%), 

arbor forest (53%), natural grassland (41%) and housing 

construction (76%). Then add some too few categories through 

flip to ensure the balance of sample size of each category, such 

as arbor, shrub, other structures, open-air dump, etc. The number 

of various samples in the test set remains unchanged.  

 

Table 1. Category and size of samples in adjusted dataset 

No Category 
Size of the total dataset (pixel) 

training test validation 

1 Background  

2 Paddy field 7231379 37346621 2345314 

3 Dry farmland 12635929 67046593 2211887 

4 Tree-shrub orchard 1218853 93346 25260 

5 Nursery 1712244 164685 35800 

6 Arboreal forest 7071538 7373012 1936021 

7 Shrubwood 227602 12566 1394 

8 Planted forest 6865887 1146854 572918 

9 Natural grassland 7630018 4320481 1582805 

10 Planted grassland 3518628 1468681 653703 

11 Building 8448979 10484865 1543215 

12 Highway 3695549 1742615 775781 

13 Country road 2192085 690222 630130 

14 Other structure 370631 42611 6240 

15 Open dump 375420 79977 214808 

16 Trampled surface 3222037 488707 370406 

17 
Other hardened 

surface 
1139517 273894 168340 

18 Greenhouse 7383986 3011781 2789396 

19 Dug land 122292 24016 53532 

20 Soil surface 203058 68764 137528 

21 Sandy surface 498730 116973 225562 

22 River 3259902 1516104 1649836 

23 Canal 3149885 976954 551062 

24 Pond 7493295 1578257 784796 

 Total: 249,001,757 

 

Figure 3 shows the sample before adjustment. The category is a 

long tail distribution, and the number of samples in each 

category is very uneven. Figure 4 Figure shows the samples 

adjusted according to the method in the previous section, and the 

sample sizes of various types are closer. Figure 5 shows the 

divided training, testing and verification dataset. The sample size 

among the subsets is relatively equal. 

 

3.3 Result and discussion 

We verified the effect of sample adjustment through experiments 

with the dataset described in 4.2. Frequency Weighted 

Intersection over Union (FWIoU) is used as the evaluation index. 

FWIou is an improvement of the Mean Intersection over Union 

(MIoU). It sets the weight for each category according to the 

frequency of occurrence. Therefore, when used in the case of 

uneven distribution of sample size among classes, the result will 

be more reasonable.  

FWIoU =
1

∑ ∑ 𝑝𝑖𝑗𝑘
𝑗=0

𝑘
𝑖=0

∑
∑ 𝑝𝑖𝑗𝑝𝑖𝑖

𝑘
𝑗=0

∑ 𝑝𝑖𝑗
𝑘
𝑗=0 +∑ 𝑝𝑗𝑖−𝑝𝑖𝑖

𝑘
𝑗=0

𝑘
𝑖=0       (3) 

Figure 6 is the landcover classification results with original 

dataset and adjusted dataset. The model is FPGA described in 

section 3.3. Overall, the classification accuracy (FWIoU) was 

improved from 0.7098 to 0.7325. In the first and second groups, 

the road with less pixels perform more completely in the 

adjusted dataset. The misclassification of natural forest, grass 

and dry land in the third group was also improved in the adjusted 

dataset.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

 
225



 
Figure 3 Original samples with long-tail distribution 

 

 
Figure 4 Samples after balancing processing 

 
Figure 5 Distribution of training, testing, verification dataset 

 

 

 (a) images      (b) original  (c)adjusted  (d)ground truth 

Figure 6 Comparison of extraction results before and after 

loss function optimization 
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Table 2 is the IoU before and after the Loss adjustment. It can be 

seen the accuracy of 16 categories among the 23 were improved, 

while the misclassification increased for river, canal and pond. 

River is misclassified as soil surface or sandy surface. This might 

because they have similar spatial texture features. 

 

Category Code 
IoU  

Original Adjusted 

Paddy field 2 0.9244  0.9283  

Dry farmland 3 0.7177  0.7496  

Tree-shrub orchard 5 0.0834  0.1000  

Nursery 11 0.0899  0.0244  

Arboreal forest 21 0.4267  0.4702  

Shrubwood 26 0.0000  0.0000  

Planted forest 34 0.2184  0.2339  

Natural grassland 36 0.1814  0.2017  

Planted grassland 40 0.5380  0.5890  

Building 50 0.6350  0.6691  

Highway 72 0.5716  0.5964  

Country road 74 0.3375  0.3737  

Other structure 80 0.0000  0.0000  

Open dump 88 0.0001  0.0007  

Trampled surface 89 0.0283  0.0323  

Other hardened surface 90 0.2191  0.2315  

Greenhouse 110  0.5616  0.6564  

Dug land 120 0.0024  0.0084  

Soil surface 142 0.0148  0.0012  

Sandy surface 143 0.0162  0.0211  

River 152 0.7552  0.6474  

Canal 153 0.4391  0.4363  

Pond 157 0.4139  0.3986  

 

 

Figure 7 is the confusion matrix of the classification results with 

original sample dataset. And Figure 8 is the confusion matrix of 

the classification results with adjusted sample dataset. We can 

also see that after adjustment, the accuracy of the model is 

improved, but misclassification still occur, such as dry farmland 

(code 3), arboreal forest (code 21), natural grassland (code 36), 

building (code 50), country road (code 74), trampled surface 

(code 89) be confused with nurse (11), Shrub-wood (26)), other 

structure (80), open dump (88), dug land (120), Soil surface (142) 

and Sandy surface (143). This is because the model has 

insufficient discrimination ability for categories with small intra 

class differences. For example, dry farmland spectrum is mixed 

with vegetation and land. It should be classified from the aspect 

of spatial features. FPGA is more focus on hyperspectral feature  

and is insufficient for spatial features.  

 
Figure 7 confusion matrix of original sample dataset 

 

 
Figure 8 confusion matrix of adjustedl sample dataset 

 

4. CONCLUSION 

Unbalanced distribution of samples for intelligent interpretation 

of remote sensing image can lead to bias in the training model 

and make it difficult to ensure accuracy of interpretation. This 

paper proposed a weighted loss algorithm to strengthen the 

learning ability of the model for rare categories, and adopted an 

iterative stratification method for multi-label data classification 

to ensure that both training dataset and validation dataset contain 

reasonable proportion of landcover classes. Experiments on a 

large volume high spatial and spectral resolution dataset shows 

that the proposed methods improved the accuracy of landcover 

classification. 
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