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ABSTRACT: 

 

With the rapid development of UAV technology, defect detection based on UAV images has expanded from power components such 

as insulators and dampers to bolts and pins. Different from the defect detection of insulators or dampers, there are two main 

difficulties in pin defect detection: (1) It is very small for bolts and pins compared to the entire image, usually less than 1%, and 

there are not enough features for detection; (2) Only bolts on link fittings need to be fixed with pins, while bolts in other parts do not 

need, so it is difficult to judge whether there are pin defects on bolts only based on the absence of pins on the bolts. Aiming at the 

above problems, cascade object detection method is adopted for pin defect detection in this paper, and improves the detection 

accuracy by gradually narrowing ROI (region of interest). The main contribution of this paper is to formulate a novel sample 

labelling criterion for cascade pin defect detection method. Building a sample set according to this criterion can not only greatly 

reduce the workload, but also improve the object detection accuracy. In this paper, YOLOv4 is used to validate the proposed method. 

The result shows that compared with the existing sample set building methods, the proposed sample labelling criterion improves the 

accuracy from 85.2% to 92% and recall from 85.7% to 94.2%. 

 

 

                                                                 
 Corresponding author 

1. INTRODUCTION 

UAV inspection of power equipment has become the main way 

of power industry inspection in China. With the rapid 

development of UAV technology, the objects of UAV 

inspection have expanded from defect detection of power 

components such as insulators and dampers to pin defect 

detection. As fasteners, pins and bolts are widely used in the 

connection among power components to stabilize the entire 

structure. If the pins fall off, the components will be loose and 

cause potential security issues. At present, the main research 

idea of pin defect detection is to transfer the general object 

detection model to the task of pin defect detection. For example, 

(Ning, 2019) used Faster R-CNN (Ren et al., 2017) to detect 

pin defects, and discussed the impact of different classifiers on 

the detection results; (Li et al., 2021b) replaced the feature 

extraction layer in Faster R-CNN with SCNet (Liu et al., 2020), 

which effectively improved the detection accuracy of pin 

defects; (Wang et al., 2020) implemented pin defect detection 

based on RetinaNet (Lin et al., 2017), and use GAN to improve 

the quality of training images. (Li et al., 2021a) improved the 

SSD (Liu et al., 2016) network structure to improve the 

detection accuracy of small objects. The above one-stage pin 

defect detection methods perform well in the images with a 

short shooting distance, but it is not effective for UAV images 

with a long distance and complex backgrounds. 

 

Different from the defect detection of power components such 

as insulators and dampers, there are two main difficulties in pin 

defect detection on UAV images: (1) It is very small for bolts 

and pins compared to the entire image, usually less than 1%, 

and there are not enough features for direct object detection to 

determine whether pins are missing; (2) Only the bolts on the 

link fittings need to be fixed with pins, while the bolts in other 

parts do not need, so it is difficult to judge whether there are pin 

defects on bolts only based on the absence of pins on the bolts. 

Aiming at the above problems, a cascade pin defect detection 

method has been proposed as shown in Figure 1. This method 

first uses the connection part detection model to extract the 

connection parts in the original images and generate a series of 

connection part images, and then inputs these images into the 

pin defect detection model to identify bolts with pins missing.  

 

Obviously, cascade object detection is a serial process, and the 

detection accuracy of pin defect is highly dependent on the 

definition of the connection parts at the first stage. (Wang et al., 

2021) defined the connection parts as insulator connection lines, 

insulator connection towers and line connection towers, and 

images of connection parts extracted from such annotations can 

only partially filter out bolts that do not need pins. (Xu et al., 

2020) defined the connection parts as electric power fittings 

such as shackles, triangular plates, adjustment plates, and 

suspension clamps. The narrowed ROI (region of interest) can 

filter out most of the bolts that do not need pins and irrelevant 

backgrounds. It also solves the problem that pins and bolts are 

too small in the images.  

 

However, there are still two problems with the two methods 

mentioned above. One is that the diversity and complexity of 

connection parts lead to high cost of building sample sets and 

low detection accuracy. And the other is about overlap of the 

bounding boxes labelling adjacent connection parts samples, as 

shown in Figure 3. Based on such training samples, not only the 

CNN model converges slowly, but also the trained model has a 

large number of missed detections during actual detection, so 

that the ROI of pin defects cannot be input into the second-

stage object detection. 
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Aiming at the above problems, a new labelling criterion for 

training samples of pin defects is proposed in this paper. Link 

fittings are defined as connection parts for the first-stage object 

detection. And by improving the definition of the ROI of bolts 

and pins, the accuracy of the cascade pin defect detection 

method is effectively improved. 

 

The remainder of the paper is organized as follows. Section 2 

details the construction of training sample sets for cascade pin 

defect detection. Section 3 briefly introduces the object 

detection algorithm of YOLO (Redmon et al., 2016) for 

experiments. Section 4 is experimental results and analysis. The 

last section gives some conclusions and future work. 

 

 
Figure 1. Pipeline of the cascade pin defect detection. 

 

2. TRAINING SAMPLE SETS FOR CASCADE PIN 

DEFECT DETECTION 

2.1 The Proposed Link Fitting Dataset  

Link fittings refer to fittings that combine insulators, clamps, 

and protective fittings into suspension or tension strings 

through bolted connections, so there must be bolt-pin 

assemblies on them.  Since the first-stage detection significantly 

affects the accuracy of the cascade detection, the quality of link 

fitting dataset is quite important. However, not all link fittings 

can be chosen as detection object. On the one hand, the 

reduction of object types reduces the cost of building sample 

sets. On the other, link fittings are hooked to each other, 

resulting in lots of overlap or even nesting of the bounding 

boxes when labelling adjacent link fittings, which directly 

influence the quality of link fitting dataset. 

 

Therefore, eight specific types of link fittings are selected as 

detection object. Their basic shapes are shown in Figure 2, and 

from (a) to (h) are respectively ball eye, socket-clevis eye, U-

bolt, shackle, eye chain links, clevis, yoke plate (type P), and 

yoke plate (type PS). 

 

 
Figure 2. Link fittings: (a) ball eye, (b) socket-clevis eye, (c) U-

bolt, (d) shackle, (e) eye chain links, (f) clevis, (g) yoke plate 

(type P), and (h) yoke plate (type PS). 

 

Figure 3 shows the comparison of our method with the existing 

methods for labelling detection objects in images. For each pair 

of images, the magenta boxes label all kinds of fittings on the 

left, and the orange boxes label eight specific link fittings 

mentioned before on the right. Through comparison, it can be 

seen that the method proposed in this paper not only reduces the 

object ROIs significantly, which further increase the area ratio 

of bolts and pins during subsequent pin defect detection, but 

also decreases the overlap between the labelling bounding 

boxes. Meanwhile, with the reduction of the types of link 

fittings, both the labelling cost and the ambiguity of different 

manual labelling samples are relatively reduced. 

 

 
Figure 3. Comparison of four pairs of the images labelled with 

different detection objects. Column (a) is the existing methods 

using the magenta boxes to label all kinds of link fittings, and 

column (b) is our method using the orange boxes to label eight 

specific link fittings. 
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2.2 Bolt-Pin Assembly Dataset 

At second stage for pin defect detection, it is necessary to 

construct a bolt-pin assembly dataset. First, obtain the image 

data. Because the second stage is to detect the bolt-pin 

assemblies on the link fittings, all the images containing link 

fittings at the first stage need to be cropped out as the image file 

of this dataset. 

 

Second, label the samples in the dataset. The purpose of pin 

defect detection is to judge whether the pins are missing, so the 

dataset is divided into two classes, bolts with pins and bolts 

with pins missing. However, since the shape of bolt head is 

similar to the above two classes, it is also divided into another 

class to prevent misdetection. Figure 4 shows some examples of 

three classes, the orange boxes in column (a) show normal bolts 

with pins, the magenta boxes in column (b) contain bolts with 

pins missing, and the blue boxes in column (c) are bolt heads on 

the front side of the bolt. 

 

 
Figure 4. Three classes of bolt-pin assemblies, the orange boxes 

in column (a) are normal bolts with pins, the magenta boxes in 

column (b) show bolts with pins missing, and the blue boxes in 

column (c) contain bolt heads. 

 

3. CASCADE PIN DEFECT DETECTION ALGORITHM: 

YOLO 

There are a lot of detection algorithms that can be used for pin 

defect detection, and YOLO is used as an example method for 

experiments in this paper, which does not have an impact on the 

following conclusions. 

 

YOLO is called you only look once. As the name says, its 

detection speed is very fast. Just after taking a look, the result 

can be detected. The YOLO algorithm redefined object 

detection as a single regression problem. Its core idea is to use 

the entire image as the input layer of the network, and directly 

return the position of the bounding box and its category in the 

output layer of the network. 

 

The development of YOLO series so far mainly includes v1, v2, 

v3, v4 and v5 and the improved series for each version. 

YOLOv1, proposed by Redmon is a one-stage detection 

framework for real-time high-performance object detection. The 

position and category of the object in the image can be 

predicted by only inputting the image into the network once. It 

has the advantages of fast speed and easy deployment, but the 

object positioning accuracy is poor, especially for small objects. 

 

YOLOv2 (Redmon and Farhadi, 2017) improved YOLOv1 

from three aspects: predict faster, more accurate, and recognize 

more objects. It redesigned the backbone network Darknet-19 

for feature extraction, and added batch normalization. Also, it 

introduced anchor boxed from Faster R-CNN and used K-

means to cluster the prior anchor. It improved the positioning 

accuracy of objects but there were still problems in small object 

detection. 

 

YOLOv3 (Farhadi and Redmon, 2018) optimized the model on 

the basis of YOLOv2. By drawing on the idea of ResNet, it 

used Darknet-53 to solve the problem of gradient disappearance 

or gradient explosion. And, it introduced FPN (feature pyramid 

network) for multi-scale prediction, which effectively improved 

the result of small object detection. 

 

YOLOv4 (Bochkovskiy et al., 2020) combined lots of previous 

research techniques, added many practical tricks and make 

appropriate innovations. Based on YOLOv3, it combined and 

tested over twenty tricks in the field of object detection, and 

achieved a balance between detection speed and accuracy. 

 

YOLOv5 (Jocher et al., 2021) further optimized the YOLO 

series models, and improved the detection performance by 

adding Focus structure, adaptive image scaling and other 

methods. 

 

YOLOv4 model is chosen as an example for the following 

experiments in this paper, as shown in Figure 5, because it is a 

mature and effective version of YOLO and is widely used in 

many real-time detection tasks. It should be noted that with the 

rapid development of object detection, there will be more 

advanced algorithms available for the sample labelling criterion 

of pin defect detection proposed in this paper. 

 

 
Figure 5. YOLOv4 model structure. 

 

4. EXPERIMENTS RESULTS AND DISCUSSION 

4.1 Implementation Details 

The experimental platform in this paper is configured as follows: 

the CPU is Intel(R) Core(TM) i9-9900K, the GPU is NVIDA 

RTX 2080Ti with 11GB memory, and the RAM is 16GB; the 

operating system is Ubuntu 20.04, and the implementation 

framework is Pytorch. 

 

The experimental data was from China Southern Power Grid 

Co., Ltd. It is RGB images captured by multirotors from 

multiple angles near the transmission line. The image size is 

4000 × 3000 pixels. The image quality is high and the objects 

are clearly visible in most images. 

 

The fittings dataset A and the link fittings dataset B are built 

respectively by the existing method and the method proposed in 

this paper. The corresponding bolt-pin assembly datasets C and 

D are also built. Dataset A contains 2,600 pictures with 3,944 
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fitting objects while dataset B contains 2,172 pictures with 

4,786 link fitting objects. Dataset C contains 2026 pictures, 

including 3139 bolts with pins and 349 bolts with pins missing; 

dataset D contains 3724 pictures, including 4342 bolts with pins, 

509 bolts with pins missing and 196 bolt heads. 

 

Four YOLOv4 models are trained separately with the above 

datasets. The training adopts fine tune with freeze training 

method, using the pre-training model yolov4_weight.pth as the 

initial weight. Set the initial learning rate = 0.0001, batch size = 

4. Freeze the shallow network to train 50 epochs and then 

unfreeze the network to train another 50 epochs. 

 

4.2 Results and Discussion 

For the first stage detection, the most important thing is whether 

the objects are missed. It means whether the recall can be as 

close to 100% as possible. Therefore, at this stage the recall is 

the main criterion for experimental evaluation and AP (average 

precision) is the second. 

 

Table 1 shows that the recall and AP of dataset B are much 

higher than those of dataset A. The results prove that the 

method proposed in this paper is superior to the existing method. 

By choosing smaller and more specific link fittings as the 

detection object, the quality of dataset is higher and the trained 

model can predict more accurately. 

Detector Dataset Epoch Batch_size Recall AP 

YOLOv4 
A 

100 4 
81.9% 0.830 

B 94.9% 0.937 

Table 1. Comparison of recall and AP of dataset A and B 

respectively detected by YOLOv4. 

As shown in Figures 6, use YOLOv4 models to test datasets A 

and B, and get the detection results. Columns (a) and (b) show 

the comparison between the results predicted and the ground 

truth by the existing method, and columns (c) and (d) show the 

comparison between the results predicted and the ground truth 

by the method in this paper. Obviously, there are a great number 

of missed detections with the existing method. For example, no 

fittings are detected in row 1. Secondly, the object position 

accuracy is low. In rows 2, 3 some detection boxes are quite 

different from the ground truth. In addition, it has limitations in 

labelling and is easy to miss bolts that are not on normal fittings, 

such as last row. But the detection results using the method in 

this paper are close to the ground truth, and there are almost no 

missed objects, and the bolts to be detected at the second stage 

are nearly included in the bounding boxes. 

 

 
Figures 6. Use YOLOv4 models to test datasets A and B, and get the detection results. Columns (a) and (b) show the comparison 

between the results predicted and the ground truth by the existing method, and columns (c) and (d) show the comparison between the 

results predicted and the ground truth by the method in this paper. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-237-2022 | © Author(s) 2022. CC BY 4.0 License.

 
240



 

On the one hand, the objects selected by the existing method 

have various types and different shapes from different shooting 

angles. When the dataset is small, the model does not learn 

enough features for small samples, resulting in misdetection. On 

the other hand, when the existing method labelled the objects, 

the bounding boxes of some adjacent fittings were not accurate 

enough. It affected the positioning accuracy during target 

detection, and lead to missed or false detection of the fittings. 

 

However, the specific link fittings are selected instead of all the 

fittings as detection objects. It is simpler and ensures the bolts 

to be detected must be in the region of interest, so that no 

objects will be missed. Moreover, the shapes of link fittings at 

different angles are similar and the objects overlaps less. It 

reduces the difficulty of the detection tasks and makes the 

missed detection less and position more accurate. 

Table 2 shows the detection results of bolts with pins and bolts 

with pins missing in datasets C and D. Both methods to detect 

bolts with pins perform well. But when detecting bolts with pins 

missing, our method is higher than the existing method in terms 

of precision, recall and AP with, especially the recall is 

increased to 94.2%. It greatly reduces the probability of missed 

detection. 

 

Figure 7 reveals the results of pin defects detection in the UAV 

images by using the method in this paper. Picture (a) is the 

output detection result of UAV images, and picture (b) zooms 

in the orange box in picture (a). The red boxes draw the bolt 

with pin missing, which needs attention. 

 

Detector Dataset Class Precision Recall AP 

YOLOv4 

C 
bolt with pin 96.6% 97.6% 0.985 

bolt with pin missing 78.1% 85.7% 0.853 

D 
bolt with pin 96.1% 97.8% 0.971 

bolt with pin missing 85.1% 94.2% 0.92 

Table 2. Comparison of the detection results of bolts with pins and bolts with pins missing in datasets C and D. 

 

 
Figure 7. Results of pin defects detection in the UAV images by using the method in this paper. (a) is the output detection result of 

UAV images, and (b) zooms in the orange box in (a). 

 

5. CONCLUSION 

Object detection method based on deep learning is the main 

method for UAV pin defect detection. The accuracy of deep 

learning-based object detection is strongly dependent on the 

quality of the training sample set. Based on the characteristics 

of bolts and pins in UAV images, a novel sample labelling 

criterion is proposed in this paper. Not only is it less work to 

build a sample set according to this criterion, but the detection 

accuracy of the model trained based on this sample set is higher.  

Therefore, the cascaded pin defect detection method and the 

sample labelling criterion proposed in this paper are of great 

practicality. 

 

Moreover, there is usually an imbalance of positive and 

negative samples in defect detection. It is the same for pin 

defect detection. Therefore, according to the features of bolts 

and pins on power transmission lines, designing better data 

augmentation methods will be our research content in the future. 
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