The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

EVALUATION OF PIXEL SELECTION METHODS FOR TRAFFIC INFRASTRUCTURE
MONITORING USING SENTINEL-1 INSAR

A. Piter* M. H. Haghighi', M. Motagh'*?

Unstitute of Photogrammetry and Geolnformation, Leibniz Universitit Hannover, Germany - (piter, mahmud) @ipi.uni-hannover.de
2GFZ German Research Centre for Geosciences, Section of Remote Sensing and Geoinformatics, 14473 Potsdam, Germany
motagh @ gfz-potsdam.de

KEY WORDS: InSAR, traffic infrastructure, monitoring, Persistent Scatterer Interferometry, Phase-Linking.

ABSTRACT:

The Synthetic Aperture Radar (SAR) satellite Sentinel-1 provides excellent traffic infrastructure monitoring capabilities due to
its short revisit time, wide-scale coverage and free of charge data policy. However, pixels from Sentinel-1 have a medium spatial
resolution so that traffic infrastructure is only covered by a few pixels. Moreover, Interferometric Synthetic Aperture Radar (InSAR)
yields deformation time series for coherent pixels only, thus limiting the number of pixels reporting the ground motion at traffic
infrastructure. Although various InSAR time series methods have been successfully applied for traffic infrastructure monitoring,
the selection of appropriate methods achieving a high pixel density has not yet been evaluated. In this study, we test whether we
can improve the monitoring capabilities by combining different InSAR time series methods. On the one hand, we applied widely
used Stanford Method for Persistent Scatterers (StaMPS) as a baseline method to retrieve the deformation time series. On the other
hand, we enhanced the phase quality in a pre-processing step using the Phase-Linking (PL) approach and afterwards estimated the
deformation time series also with StaMPS based on pixels selected by PL. We compared and evaluated the achieved pixel densities
from both methods at main roads, highways and railways in a study area in Germany. We found that the InSAR time series methods
selected complementary sets of pixels at all traffic infrastructure types. Moreover, the results indicate a great potential for railway
monitoring using Sentinel-1 InSAR due to both high pixel density and homogeneous spatial distribution of pixels. Interestingly,
coherent scatterers selected by StaMPS were observed to coincide with large traffic signs at highways which show a double-bounce
scattering in the amplitude images. This study shows the benefits of combining PL. and StaMPS for increased pixel density at traffic
infrastructure and confirms Sentinel-1 data as a suitable data source for traffic infrastructure monitoring.

1. INTRODUCTION

Today’s society depends on highly connected and intact traf-
fic infrastructure. Every day, freight and passengers are trans-
ported on the road and rail networks. However, traffic infras-
tructure might get damaged, e.g., due to the ageing process or
ground motion induced by natural and anthropogenic processes.
Monitoring the ground motion at traffic infrastructure is an im-
portant geodetic task which helps in preventing damage or even
the collapse of the infrastructure (Shamshiri et al., 2014). While
conventional geodetic techniques like levelling and GNSS mea-
surements merely achieve a limited spatial coverage, space-
borne Interferometric Synthetic Aperture Radar (InSAR) is a
well-established method to assess ground motion over wide ar-
eas with a millimeter to centimeter accuracy (Biirgmann et al.,
2000).

The suitability of InSAR for monitoring task was shown by
region-wide (Del Soldato et al., 2019), nation-wide (Kalia et
al., 2017; Dehls et al., 2019; Papoutsis et al., 2020; Bakon et al.,
2020; Bischoff et al., 2020) and european-wide (Crosetto et al.,
2020) ground motion services. Country and continental-scale
ground motion services deliver valuable information, but the In-
SAR processing chain in such services is not optimized for spe-
cific tasks such as traffic infrastructure monitoring (Haghighi
and Motagh, 2017, 2021). Moreover, ground motion services
have long update intervals, thus specific INSAR time series pro-
cessing is needed to evaluate current conditions regarding sta-
bility of infrastructure.
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In the Netherlands, ground motion was monitored with InSAR
nation-wide at railway tracks (Chang et al., 2016). Images from
the C-band Synthetic Aperture Radar (SAR) satellite Radarsat-
2 were processed with Delft Persistent Scatterer Interferometry
(DePSI) to derive ground displacements. In that context, sensi-
tivity and quality metrics were derived for multi-satellite con-
stellations (Chang et al., 2018). They illustrate the potential and
the limitations of InSAR for railway monitoring depending on
the viewing direction of the satellites with respect to the direc-
tion of the railway tracks.

The SAR satellite Sentinel-1 launched in 2014, became a game-
changer for InSAR monitoring applications. Sentinel-1 carries
a C-band sensor, has a short repetition interval of 6 days and the
data is free of charge, which makes it an excellent choice for In-
SAR time series analysis and monitoring tasks. However, linear
traffic features like highways, railways and bridges are difficult
to monitor with Sentinel-1, because their spatial extend is small
compared to the spatial resolution of a Sentinel-1 pixel (North
et al., 2017; Chang et al., 2020). Sentinel-1 provides medium
resolution images of roughly Smx20m in range and azimuth,
respectively. Hence, a 6-lane highway, for instance, is covered
by 5-6 Sentinel-1 pixels in range and by 1-2 pixels in azimuth
depending on the direction of the highway with respect to the
satellite’s viewing direction. Main roads are even smaller and
often only covered by 1-2 Sentinel-1 pixels in range. In ad-
dition to the low number of Sentinel-1 pixels covering traffic
infrastructure, the number of pixels for which the deformation
can be estimated reliably with InSAR is further reduced due
to decorrelation of the signal. InSAR time series analysis re-
lies on pixels with a coherent backscattering signal over time
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and preferably with a low phase noise. On the one hand, effort
is needed to select as many coherent scatterers on the traffic
infrastructure as possible to accurately assess the deformation
behaviour. On the other hand, incoherent pixels have to be dis-
carded to avoid the propagation of errors during unwrapping of
the interferometric phase.

Data from Sentinel-1 has been successfully used for traffic in-
frastructure monitoring with Persistent Scatterer Interferometry
(PSI), for instance at the highway network of Rome (Orellana et
al., 2020), at the highspeed railway bridge in Nanjing (Huang et
al., 2017, 2018) and for studying the relation to soil movement
in the United Kingdom (North et al., 2017). However, these
studies discussed neither the sufficiency of the achieved density
of coherent pixels nor the optimal choice of InSAR time series
method for traffic infrastructure monitoring.

The challenge of reaching a sufficient pixel density in the area
of interest was addressed by Chang and Hanssen (2015) for de-
formation monitoring at the Qinghai-Tibet railway. In order to
increase the pixel density, they created a buffer around the rail-
way tracks and estimated the coherence per pixel. A spatially
adaptive filter based on statistically homogeneous pixels (SHP)
(Ferretti et al., 2011) was applied to provide a better estimate
of the coherence per pixel compared to the boxcar filter. Qin et
al. (2019) also addressed the achievable pixel density and com-
bined coherent pixels from PSI with less coherent pixels using a
Small BAseline Subset (SBAS) network of interferogams with
relaxed thresholds on the pixel’s coherence.

Two types of physical scattering mechanisms are commonly
distinguished in SAR images: distributed scatterers (DS) and
persistent scatterers (PS) (Hanssen, 2001).

For pixels with a distributed scattering mechanism the signal is
the sum of the reflected signals from several objects within the
SAR resolution cell, where no single scatterer is dominating.
Distributed scatterers (DS) follow a complex-valued gaussian
distribution and the phase noise can be described by coherence.
DS are prone to various sources of decorrelation and often ex-
hibit a low signal-to-noise ratio (SNR) compared to persistent
scatterers (PS). DS are often related to natural objects and rural
areas. An improvement of the SNR of DS is necessary for
InSAR time series analysis. In the SBAS method, multilooking
increases the SNR, but reduces the spatial resolution. This
approach is not suitable for deformation monitoring at traffic
infrastructure using Sentinel-1 images, because the highest
possible spatial resolution is required.

Point-like scattering is the second scattering type, more often
referred to as persistent scatterers. The total signal of PS
is dominated by the signal from a single object in the SAR
resolution cell and consists of a constant signal plus noise.
The coherence of PS remains high independent from the
interferometric baseline configuration, which makes it possible
to use even interferogams with large temporal baselines for
displacement analysis. PS are often related to man-made
structures.

There is lack of knowledge about the prevalent scattering mech-
anisms and their characteristics at traffic infrastructure. This
knowledge is needed to select an appropriate InSAR time se-
ries method to achieve a high density of coherent scatterers.
A high density and homogeneous distribution of coherent pix-
els is required to reliably assess and monitor ground deforma-
tion at traffic infrastructure. In this work, we analyse the chal-
lenges and opportunities of traffic infrastructure monitoring us-
ing InSAR time series analysis with medium spatial resolution

Sentinel-1 images. We therefore investigate the prevalent scat-
tering mechanisms based on intermediate results from Phase-
Linking (PL). Our aim is to increase the pixel density by com-
bining different InSAR time series methods for the selection of
coherent pixels on traffic infrastructure. To that end, we focus
on the combination of PL with Stanford Method for Persistent
Scatterers (StaMPS) to achieve a high pixel density. We com-
pare the set of selected pixels from both methods to examine
whether selected pixels are redundant. In this work, we dis-
tinguish between incoherent and coherent DS, and between in-
coherent point-like scatterers and coherent point-like scatterers
which we call PS. The combined set of coherent DS and PS are
summarized by the term coherent scatterers.

The remainder of this paper is structured as follows. In section 2
we present the InNSAR time series methods with their pixel se-
lection strategy which were used to investigate the achievable
pixel density at traffic infrastructure from Sentinel-1 data. In
section 3 we evaluate the pixel selection methods based on ex-
periments in a study area in Germany. In section 4 we conclude
our findings and give an outlook to ensuing work.

2. METHODOLOGY
2.1 Interferometric Synthetic Aperture Radar

InSAR measures the wrapped phase difference between two
SAR acquisitions imaging the same spatial extent on the Earth’s
surface. The phase difference can be due to different compo-
nents: ground deformation, different atmospheric effects at the
time of the acquisitions, flat Earth, topography, and noise. To
retrieve the ground deformation, all other components have to
be either removed or neglected and the interferometric phase
needs to be unwrapped. InSAR time series methods improve
the removal of the unwanted components by using a network of
interferogams. Unwrapping the interferometric phase is chal-
lenging, especially when the phase noise is high. Therefore,
pixels with low phase noise need to be selected by InSAR time
series methods prior to unwrapping.

InSAR time series methods differ, amongst others, by the type
of scatterers they address. The methods have in common that
they identify pixels with reliable phase, regardless of scattering
type. They perform unwrapping and time series analysis on the
selected pixels. Further, all INSAR time series methods infer the
displacement time series by resolving the atmospheric signal
and the remaining topographic signal from a stack of interfer-
ogams. In the following, two well-known time series methods
that are applied on full resolution are reviewed.

2.2 Persistent Scatterer Interferometry

PSI addresses the characteristics of PS by a single-reference
network of interferogams (Ferretti et al., 2001). Importantly,
PSI is applied on full resolution interferogams due to the high
SNR of PS pixels. PSI can reveal deformation signals present in
single pixels only. While PSI methods mainly select PS at man-
made objects by thresholding on amplitude dispersion (Ferretti
et al., 2001; Kampes, 2006), Stanford Method for Persistent
Scatterers (StaMPS) is designed to also select PS from natu-
ral objects that exhibit a low amplitude (Hooper et al., 2007).
StaMPS selects PS pixels which have a low phase noise in a
single-reference network of interferogams. The pixels selected
by StaMPS are therefore not restricted to point-like scatter-
ers. Pixels with a distributed scattering mechanism which do
not decorrelate due to long temporal or perpendicular baselines
might also have a low phase noise and be identified by StaMPS.
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The pixel selection is done with iterative spatiotemporal filter-
ing. Hereby, all phase contributions are removed based on as-
sumptions about correlation in time and/or space, such that only
the phase noise remains. As an advantage, StaMPS does not re-
quire any assumptions about deformation behaviour. Once all
pixels with a low phase noise are selected, the phase time series
is unwrapped in time and space. At the end, the temporal co-
herence is used to described the phase noise and to select high
quality pixels after InSAR time series analysis (Ferretti et al.,
2001).

2.3 Phase-Linking

Phase-Linking (PL) addresses the characteristics of DS. PL
overcomes the problem of decorrelation of DS by enhancing
the SNR (Guarnieri and Tebaldini, 2008; Ferretti et al., 2011).
In contrast to conventional SBAS which uses multilooking to
enhance the SNR, PL retains the full spatial resolution of the
interferogams. After PL, DS and PS can be jointly processed
using any InSAR method to retrieve the deformation signal. PL.
consists of a non-linear phase inversion of all possible interfero-
grams in three steps. First, an adaptive spatial filter is applied on
the Single Look Complex (SLC) images to find pixels that share
the same backscattering mechanism, so-called statistically ho-
mogeneous pixels (SHP). The number of SHP is used to distin-
guish pixels with distributed from pixels with point scattering
mechanism. Based on findings from Ferretti et al. (2011), pix-
els with equal or more than 20 SHP are classified as DS. In
the second step, only the identified DS are considered further.
For each of theDS, the complex coherence matrix is computed
from the complex-valued backscattering time series of its SHP.
In the third step, the non-linear phase inversion is performed
based on the coherence matrix. Hereby, the quality of the phase
time series is improved. The success of PL and, hence, the re-
sulting quality of the DS phase time series is evaluated for each
pixel by the PL coherence (Ferretti et al., 2011). Pixels with
a high PL coherence are thereafter exploited in the same way
as PS. It was shown for various applications that PL increases
the pixel density compared to PSI only, e.g. for landslide mon-
itoring (Mirzaee et al., 2017), for monitoring of cavern-related
ground subsidence (Even et al., 2020) and city subsidence in
Mexico City (Osmanoglu et al., 2016). The higher pixel den-
sity reveals more detailed information about the displacement
and its distribution.

3. EXPERIMENTS

3.1 Study area and dataset

We exemplarily investigate the pixel selection on traffic infras-
tructure in a study area close to Cologne in mid-west Germany.
In the Rhenish coal fields, brown coal is produced in three open
pit mines: Gazweiler, Inden and Hambach. Ground subsidence
due to the mining activities have been studied in detail using
InSAR for the period June 2017 to October 2018 (Tang et al.,
2020). Time series analysis of Sentinel-1 and TerraSAR-X us-
ing the SBAS approach showed maximum displacement rates
at e.g. the Hambach open pit mine of up to 50 cm/year in di-
rection of the satellite line-of-sight (LOS). Also neighbouring
cities and traffic infrastructure are affected by ground deforma-
tions.

The study area is shown in Figure 1 with the traffic infrastruc-
ture types which are analysed in our study: railway tracks, high-
way A4 and A61, and main roads. Furthermore, the subset

Figure 1. Study area next to Hambach open-pit mine in
Germany with the investigated traffic infrastructure highlighted:
main roads, highways, railways (OpenStreetMap contributors,
2022). Start and end points of the profiles shown in Figure 4 and
7 are denoted by P1-P3. For highway, the profile is from P1 to
P2 and for railway from P1 to P3. Background image: WMS
Nordrhein-Westfalen DOP (2021).

of the Sentinel-1 descending track 37 is highlighted. We se-
lected 122 SLC images covering the time span of two years
from 2017-03-26 to 2019-03-28. Only a small area was consid-
ered for the case study to limit the computation time of the PL
processing.

3.2 Experimental setup

The Sentinel-1 SLC images were co-registered to a common
reference image (2018-03-27) and interferogams were gener-
ated using the open-source software InNSAR Computing Envi-
ronment (ISCE) (Rosen et al., 2012; Fattahi et al., 2017). We
used a 30 m resolution digital elevation model (DEM) from
Shuttle Radar Topography Mission (SRTM) for DEM-assisted
coregistration and to remove the topography component from
the interferograms. We then applied two InSAR time series
methods. On the one hand, we used StaMPS based on the in-
terferogam stack. On the other hand, we applied PL on the
SLC stack, created interferogams from the modified SLCs and
transfered them to StaMPS for unwrapping. We used the open-
source software Mlami NOn linear phase linking in PYthon
(MiNoPy) for PL and therefore, in this paper the latter InNSAR
time series method is termed MiNoPy2StaMPS. To ensure the
comparability of the results, we computed for both methods the
temporal coherence from the phase residuals after removal of
all phase components in StaMPS. Pixels with a temporal coher-
ence lower than 0.8 were discarded.

3.2.1 StaMPS

We estimated the deformation time series for coherent scatter-
ers using the open-source software StaMPS. A single-reference
network of interferogams was created using ISCE from the
stack of coregistered SLCs. Using StaMPS, pixels with low
phase noise were selected, their phase time series were un-
wrapped in time and space, and the deformation parameters
were estimated. The phase quality of the selected pixels was
described by the temporal coherence.

3.2.2 MiNoPy2StaMPS
We improved the SNR of DS pixels using the open-source
software MiNoPy (Mirzaee and Amelung, 2018; Mirzaee et
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al., 2019). SHP were detected based on the two sample t-
test (Shamshiri et al., 2018) in a 19x9 neighbourhood in
range x azimuth, respectively. We classified pixels with equal
or more than 20 SHP as DS. Pixels with less than 20 SHP are
refered to as non-DS. We did not apply PL for non-DS and
therefore did not investigate these pixels. The coherence ma-
trices per pixel were computed from its SHP and the optimal
phase time series were inferred with Eigendecomposition-based
Maximum-likelihood estimator of Interferometric phase (EMI)
(Ansari et al., 2018). To reduce the computational burden, the
sequential EMI estimator (Ansari et al., 2017) was applied with
a ministack size consisting of 30 images each. The PL coher-
ence was used to extract coherent DS from the set of DS. Pix-
els with a PL coherence equal or greater than 0.8 are consid-
ered to have a high phase quality and hence, to be coherent.
For coherent DS, the deformation time series was estimated us-
ing StaMPS from a single-reference network of interferogams
which was created using ISCE. To ensure that all coherent DS
are included, we skipped the pixel selection step in StaMPS and
processed all selected coherent DS.

3.2.3 Extracting the area of interest

After InSAR time series analysis, the selected pixels from both
methods were intersected with a spatial mask to extract only
pixels related to traffic infrastructure. The mask was created
from OpenStreetMap vector data (OpenStreetMap contributors,
2022) for three types of traffic infrastructure: main roads, high-
ways and railway tracks (cf. Figure 1). The spatial mask was
created from lines with a width of 3 pixels for main roads, 6
pixels for highways and 2 pixels per railway track.

3.3 Results and discussion

We compare the results from StaMPS and MiNoPy2StaMPS
only for the masked traffic infrastructure pixels. First, the
distribution of DS is analysed based on the results from
MiNoPy2StaMPS. Second, pixel densities from both methods
along the traffic infrastructures are analysed. Third, a pixel-
wise comparison of selected pixels from both methods is given.
Finally, the estimated deformation map and mean deformation
profiles from both methods are discussed.

3.3.1 Analysis of distributed scatterers

Figure 2 shows the number of pixels covering the traffic infras-
tructure types. In the study area, most of the pixels covering
traffic infrastructure are related to highways, followed by rail-
ways and the least pixels are on main roads. For each traffic
infrastructure type the number of identified DS is shown. All
traffic infrastructure types have in common that the majority of
pixels show a distributed scattering mechanism. For railways,
the percentage of DS compared to non-DS is the lowest with
roughly 60 %, while for highways the percentage is the highest
with about 70 %.

Furthermore, the amount of selected coherent DS are shown per
traffic infrastructure type. The highest percentage of coherent
DS is found at railways and the lowest at main roads.

The number of coherent DS depends on the chosen threshold
for the PL coherence. To maximize the number of selected
coherent DS, lower thresholds are desirable. However, a low
threshold comes at the cost of including more incoherent pix-
els. The cumulative distribution of the PL coherence is shown
in Figure 3. It can be seen that more DS on railways have a high
coherence compared to highways and main roads. The curves
from railways and highways are similar for coherence values
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Figure 2. Comparison of the absolute distribution of identified
DS and coherent DS based on thresholding the number of SHP
and thresholding the PL coherence, respectively, for three traffic
infrastructure types.
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Figure 3. Cumulative distributions of the PL coherence for DS
pixels per traffic infrastructure type.

between 0.6 and 1.0, but show higher differences for lower val-
ues. About 10% of the DS at railways have a coherence higher
than 0.8, while it is only roughly 5% at highways. By lowering
the threshold for the PL coherence from 0.8 to 0.7, 25% of the
DS at railways and 20% at highways would be included. For
main roads, the distribution is considerably worse. The curve
shows a different distribution compared to railways and high-
ways with only 20% of the DS having a PL coherence higher
than 0.5. Lowering the threshold from 0.8 to 0.7 would include
5% of the DS instead of roughly 3%. Hence, the number of ex-
ploitable DS at main roads is much lower than at railways and
highways.

The differences in the distribution may arise from different sur-
face roughness. Possibly, a rough surface of gravel and railway
ties in the resolution cell of a pixel leads to a better backscat-
tering signal. The road surfaces scatter most of the signal away
from the satellite and appear dark in SAR images. However,
the coherence distributions also differ among the highway and
main roads. Probably the spatial extend of the traffic infrastruc-
ture within the coverage of a pixel plays a role.

Interestingly, the visual inspection of the SHP location revealed
that the spatial distribution of the SHP often follows the shape
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Figure 4. Distribution of selected pixels from StaMPS and MiNoPy2StaMPS along the highway A4 from P1 to P2 (top) and railway
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Highway  Main road Railway
5.1% 4.8%
0.0%'/4.7% 0'1%'/1.8% 0.3% ’17.9%
~\6.0%
90.1% 75.8%

B selected by both methods
[ discarded by both methods
[ MiNoPy to StaMPS

I StaMPS

Figure 5. Comparison of selected pixels from StaMPS and
MiNoPy2StaMPS at the traffic infrastructures.

of the traffic infrastructure. This shows that DS on the traffic
infrastructure are scattering similarly to each other and differ-
ently compared to the surrounding. The surrounding is often
covered by vegetation and, hence, it is incoherent. When con-
sidering the spatial extend of main roads compared to the size
of the Sentinel-1 pixels, it becomes clear that not many pix-
els within the considered spatial neighbourhood cover the main
road as well. Therefore, if a pixel from a main road shows a
distributed scattering, the corresponding SHP might probably
be related to the surrounding, which often is vegetation in rural
areas or buildings in urban areas. This could be an explanation
for the worse PL coherence distribution at main roads.

3.3.2 Analysis of pixel densities

In the following, we compare the selected pixels from StaMPS
and MiNoPy2StaMPS.

To assess the pixel density, we determined the position of the se-
lected pixels along the traffic infrastructure relative to a starting
point. Figure 4 (top) exemplarily shows the location of selected
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Figure 6. Mean deformation velocities in the study area shown
for the traffic infrastructure only. Pixels from both StaMPS and
MiNoPy2StaMPS are shown together.

coherent scatterers at the highway A4. The scatterers are shown
along the highway from the points P1 to P2 which are depicted
in Figure 1. Along the y-axis, the points are scattered by a uni-
formly distributed random value to avoid overlapping of pixels
which have a similar distance along the highway.

The highway is covered irregularly by pixels from both meth-
ods. The location of the pixels along the highway is different
for the pixels selected from StaMPS and MiNoPy2StaMPS. For
instance at 1.5 km and 2.4 km only MiNoPy2StaMPS and sim-
ilarly, at 4.2km and 6.1 km only StaMPS selects pixels. This
shows that the two methods select complementary sets of pixels
at highways. Moreover, pixels from StaMPS appear to be spa-
tially clustered. For example, a higher pixel density was found
at the A4-A61 highway junction. Moreover, we observed the
coincidence of the selected pixels with the location of large traf-
fic signs along the highway. Therefore, we included the location
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Figure 7. Profiles of mean deformation velocity in LOS along the highway A4 from P1 to P2 (top) and railway from P1 to P3 (bottom)
(cf. Figure 1) derived with StaMPS and MiNoPy2StaMPS.

of large traffic signs, bridges and the highway junction into the
figure. The coincidence with large traffic signs appears mostly
for pixels selected by StaMPS. With MiNoPy2StaMPS, pixels
are selected without relation to large traffic signs. The analysis
of the SAR amplitude time series revealed high backscattering
signals at large traffic signs. Hence, a double-bounce at the
large traffic signs is likely the reason for the good phase quality.
Figure 4 (bottom) shows the spatial distribution of coherent
scatterers along the railway exemplarily for the section from
P1 to P3 (cf. Figure 1). A high and homogeneous pixel den-
sity was achieved by StaMPS, while the distribution is much
sparse from MiNoPy2StaMPS. At roughly 5.8 km and 8.3 km
the higher densities of pixels from StaMPS were found to co-
incide with the bridges of highways A4 and A61, respectively.
Further correlation of groups of coherent pixels with a particu-
lar surrounding were not found.

At main roads the pixel density was found to be low in the
whole study area. The selected pixels from both methods are
mostly located within urban areas, that suggests the backscat-
tered signal might not originate from the main road itself but
from double bounce at surrounding buildings. The density of
the selected pixels is insufficient to retrieve and monitor dis-
placements at main roads outside urban areas independent of
the method.

3.3.3 Comparison of selected pixels

The pixel densities along the traffic infrastructures differ for
StaMPS and MiNoPy2StaMPS results. However, the spatial
distribution does not reveal differences in the pixel selection on
the basis of individual pixels. In the following, we directly com-
pare the pixels selected from both methods.

Figure 5 shows the percentage of pixels selected per traf-
fic infrastructure type in four categories: Pixels selected by
both methods, discarded by both methods, selected only by
StaMPS and selected only by MiNoPy2StaMPS. The percent-
ages per category are similar for each of the traffic infrastruc-
tures. Most of the pixels were discarded by both StaMPS and
MiNoPy2StaMPS, while only below one percent of the pixels

were selected by both methods. The percentage of pixels being
selected by only StaMPS is higher than the percentage of pix-
els selected only by MiNoPy2StaMPS. Interestingly, the per-
centage of discarded pixels is lower for railways than for high-
ways and main roads. For railways, almost 25% of all pixels
were selected as coherent scatterers, while it is below 10% for
both highways and main roads. The results imply that StaMPS
and MiNoPy2StaMPS select different sets of pixels and com-
plement each other. Hence, InSAR time series analysis for traf-
fic infrastructure monitoring benefits from the combination of
both methods. Noteworthy, the results indicate high monitoring
potential using Sentinel-1 InSAR for railways.

3.3.4 Comparison of estimated deformation parameters

The deformation map in Figure 6 shows the mean deformation
velocities in the study area at the traffic infrastructures. Here,
the pixels from both methods are shown together. The results
from the methods match well and show the same deformation
behaviour along both highway and railway. Figure 7 depicts the
mean deformation velocity along the highway (top) and railway
(bottom) (similar to Figure 4). The mean deformation velocities
estimated from StaMPS and from MiNoPy2StaMPS are shown
and range from -3 cm/year to 1.5 cm/year in the satellite LOS.
The displacement behaviour is revealed at the whole railway
while some gaps are visible along the highway. Nevertheless,
combining pixels from StaMPS and MiNoPy2StaMPS yields a
complementing impression of the displacement at the highway.

4. CONCLUSION

In this study, we evaluated pixel selection methods for InSAR-
based traffic infrastructure monitoring using Sentinel-1 images
which have a medium spatial resolution. We investigated the
prevalence of distributed and point-like scattering at traffic in-
frastructures and tested whether StaMPS and PL yield different
sets of selected pixels. For this purpose, three traffic infrastruc-
ture types were analysed: main roads, highways and railways.
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We found that distributed scattering is the more frequent scat-
tering mechanism prevalent at traffic infrastructure in our study
area. The pixel-wise comparison of the selected pixels from
StaMPS and MiNoPy2StaMPS revealed two complementary
sets of pixels with low redundancy. This means that although
StaMPS already selects coherent scatterers in a single-reference
network of interferogams, a combination with PL is beneficial
and increases the pixel density. The comparison among the traf-
fic infrastructure types indicated that the monitoring potential
using Sentinel-1 InSAR is highest for railways. Precisely, rail-
ways were covered by the highest density and a spatially homo-
geneous distribution of coherent scatterers. At highways, the
results revealed an irregular pixel density and, interestingly, we
observed a correlation between PS occurrence and the location
of large traffic signs which show a double-bounce scattering.
We found an insufficient pixel density at main roads possibly
resulting from its small spatial extend compared to the size of
a Sentinel-1 pixel. Moreover, our results showed that a slight
change in the threshold on PL coherence can significantly in-
crease the DS density at railways and highways, while the in-
crease is only small at main roads.

One limitation of our study is the small study area which was
chosen to limit the computational burden from PL. Future work
should therefore include larger study areas and different ascend-
ing and descending tracks to investigate the influence of inci-
dence angle and direction of the traffic infrastructure with re-
spect to the satellite’s viewing direction.

Although our results show almost no redundancy among the
results from both methods, further work is needed to investi-
gate the influence of the chosen network of interferogams on
the pixel selection in StaMPS. We recommend the comparison
of our results with the pixel selection of StaMPS with an SBAS
network of interferogams.

This study adds to the understanding of traffic infrastructure
monitoring using Sentinel-1 InSAR and provides an empirical
basis for the selection of appropriate InSAR time series meth-
ods.
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