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ABSTRACT: 
 
In recent years, deep neural networks (DNN) are commonly adopted for hyperspectral image (HSI) classification. As the most 
representative supervised DNN model, convolutional neural networks (CNNs) have outperformed most algorithms. But the main 
problem of CNN-based methods lies in the over-smoothing phenomenon. Meanwhile, mainstream methods usually require a large 
number of samples and a large amount of computation. A multi-task learning spectral-spatial multiscale residual network (SSMRN) is 
proposed to learn features of objects effectively. In the implementation of the SSMRN, a multiscale residual convolutional neural 
network (MRCNN) is proposed as spatial feature extractors and a band grouping-based bi-directional gated recurrent unit (Bi-GRU) 
is utilized as spectral feature extractors. To evaluate the effectiveness of the SSMRN, extensive experiments are conducted on public 
benchmark data sets. The proposed method can retain the detailed boundary of different objects better and yield a competitive 
performance compared with two state-of-the-art methods especially when the training samples are inadequate. 
 
 

1. INTRODUCTION 

With the rapid development of remote sensing imaging 
spectroscopy technology, hyperspectral images (HSIs) have 
become increasingly important in Earth observation due to their 
rich spectral and spatial information. HSI classification is the task 
of identifying the category for each pixel with a proper land-
cover label(Sun et al., 2019), which is more challenging because 
of the large dimensionality, spectral heterogeneity, and complex 
spatial distribution of the objects(Xu, Zhang, et al., 2018).  
To alleviate these problems, traditional HSI classification 
methods follow a two-step approach: 1) Feature selection and 
extraction(Lefei Zhang et al., 2016), such as subspace 
projection(Harsanyi & Chang, 1994), random feature 
selection(Waske et al., 2010) and principal component analysis 
(PCA)(Rodarmel & Shan, 2002). 2) Classifier training, such as 
the k-nearest-neighbour (KNN)(Ma et al., 2010), Gaussian 
mixture model classifier (GMMC)(Li et al., 2013), support vector 
machine (SVM)(Melgani & Bruzzone, 2004), and random forest 
(RF)(Ham et al., 2005). But the traditional HSI classification 
methods are a separated process and mainly utilize hand-crafted 
features, which are not robust for different input data.  
Deep neural networks (DNNs) can learn very complicated 
relationships between their inputs and outputs with multiple non-
linear hidden layers(Liu et al., 2017). A large number of DNN-
based methods are proposed for end-to-end modelling, which can 
integrate a spectral module and a spatial module(Liangpei Zhang 
et al., 2016). For example, Yang et al. designed a two-
convolutional neural network (CNN) model to learn the spectral 
features and spatial features jointly(Yang et al., 2017). Spatial-
spectral unified network (SSUN) combined a spectral 
dimensional band grouping-based long short-term memory 
(LSTM) model with 2D CNN for spatial features and integrated 
the spectral feature extraction (FE), spatial FE, and classifier 
training into a unified neural network(Xu, Zhang, et al., 2018). 
Zhong et al. raised an end-to-end 3D residual CNN architecture 
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for spectral-spatial feature learning and classification(Zhong et 
al., 2017). Motivated by the attention mechanism of the human 
visual system, a spectral-spatial attention network (SSAN)(Mei 
et al., 2019) and a residual spectral-spatial attention network 
(RSSAN)(Zhu et al., 2020) were proposed for hyperspectral 
image classification. To reduce computations, fully 
convolutional networks were proposed for HSI classification(Xu 
et al., 2019). For correctly discovering the contextual relations 
among pixels, the graph convolutional network(GCN) was 
adopted for dealing with the HSI classification, which was 
originally designed for arbitrarily structured non-Euclidean 
data(Wan et al., 2020). DNNs have demonstrated excellent 
performance in image classification(Druzhkov & Kustikova, 
2016).  
However, most existing deep learning methods are time-
consuming in the training period. A lot of parameters need to be 
determined, and a large number of training samples are usually 
required for deep learning methods(Cheng et al., 2021; Xu, Du, 
et al., 2018). DNNs usually yield overfitting methods(Zhang et 
al., 2018), and are sensitive to perturbations(Xu et al., 2020), 
especially when the training samples are inadequate. Exploring 
the proper depth of a DNN model for a given data set is still an 
open topic to be researched(Liangpei Zhang et al., 2016).  
 

2. PRELIMINARY 

2.1 CNN 

A CNN(Shin et al., 2016) is a class of deep neural networks, most 
commonly applied to analysing visual imagery. Compared with 
other neural networks, CNNs are easier to train with their fewer 
parameters and connections because of parameter sharing and 
local connectivity. But CNN extracts the spatial structure of the 
current pixel neighbouring region, instead of directly for the 
current pixel. So, the main problem of CNN-based methods lies 
in the over-smoothing phenomenon. One approach to solve this 
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problem is to utilize superpixels segmentation, but the 
segmentation algorithm affects the classification results. Another 
approach is to use an attention mechanism. Attentional 
mechanisms can counteract the effects of parameter sharing, but 
increase the amount of computation. 
 
2.2 RNN 

To utilize the features of the current hyperspectral pixel itself, the 
RNN network structure can be used. An RNN extends 
conventional feedforward neural networks with loops in 
connections that can use their internal memory to exhibit 
temporal dynamic behaviour. RNN makes them applicable to 
challenging tasks involving sequential data such as speech 
recognition and language modelling(Cho et al., 2014). A natural 
idea is to consider each band as a time step, but hyperspectral 
data usually have hundreds of bands, which consumes high 
computing and storage resources. Meanwhile, a large number of 
spectral channels and limited training samples restrict the 
performance of hyperspectral image classification(Cheng et al., 
2021). 

 
3. PROPOSED FRAMEWORK 

Three subsections are playing crucial roles in our methodology: 
a multiscale residual CNN-based spatial feature learner, a bi-
directional GRU-based spectral feature learner, and a multi-task 
learning model. 
 
3.1 Multiscale Residual CNN for Spatial Classification 

Considering the complex environment of the HSI, we propose to 
extract robust and multiscale spatial features. The proposed 
multiscale residual CNN(MRCNN) architecture is shown in 
Figure 1. 
Let 𝑿𝑿 ∈ ℝ𝑟𝑟×𝑐𝑐×𝑏𝑏 be the original HSI data, where 𝑟𝑟 , 𝑐𝑐 and 𝑏𝑏 are 
the row number, column number, and band number, respectively. 

First of all, to suppress noise and reduce the computational costs, 
the PCA is applied to the original HSI data and only the first 𝑝𝑝 
principle components are reserved. Denote the dimension-
reduced data by 𝑿𝑿𝑝𝑝 ∈ ℝ𝑟𝑟×𝑐𝑐×𝑝𝑝. Around each pixel, a neighbour 
region is extracted with the size of 𝑘𝑘 × 𝑘𝑘 × 𝑝𝑝 as the input of the 
spatial branch.  
Considering the complex environment of the HSI, where 
different objects tend to have different scales, we propose to 
extract both shallow and deep features by applying a convolution 
layer with ReLU activation and two residual blocks in the 
classification. The max pooling layer is adopted in residual 
blocks. We add a flatten layer with dropout technology and a 
fully-connected(FC) layer after the convolution layer with ReLU 
activation and two residual blocks. Then, these fully-connected 
layers are merged into a new fully-connected layer. Let ℎ𝑗𝑗 =
𝑓𝑓�𝑊𝑊𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑗𝑗�, 𝑗𝑗 = 1,2,3 denotes the 𝑗𝑗th fully-connected layer, 
where 𝑥𝑥𝑗𝑗is the flattened features in the 𝑗𝑗th flatten layer, 𝑊𝑊𝑗𝑗 and 
𝑏𝑏𝑗𝑗  are the corresponding weight matrix and bias term, 
respectively. The fourth fully-connected layer ℎ4  can be 
calculated as ℎ4 = concat[ℎ1, ℎ2, ℎ3] . In this way, features in 
different layers are taken into consideration during the 
classification stage, and the network will possess the property of 
multiscale. 
The loss function for cross-entropy of MRCNN can be expressed 
by 
 

ℒ = − 1
𝑀𝑀
∑ ∑ 𝑦𝑦𝑚𝑚𝑛𝑛 log(𝑦𝑦�𝑚𝑚𝑛𝑛 )𝑁𝑁

𝑛𝑛=1
𝑀𝑀
𝑚𝑚=1 ,  (1) 

 
where 𝑦𝑦𝑚𝑚𝑛𝑛  and 𝑦𝑦�𝑚𝑚𝑛𝑛  denote the truth and predicted labels, 
respectively. 𝑀𝑀 is the number of training samples and 𝑁𝑁 is the 
number of classes.  
All convolutional layers have 32 filters. The kernel size of the 
first left convolutional layer is 1 × 1, and the other kernel sizes 
are 3 × 3. The size of the max pooling layers is 2 × 2. The first 
three fully-connected layers each own 128 units, and the fourth 
fully-connected owns 384 units. 
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Figure 1. Architecture of the proposed MRCNN. 

 
 
3.2 Bi-GRU for Spectral Classification 

The GRU has fewer parameters than LSTM for modelling 
various sequential problems, and bi-directional RNN can make 
full use of both latter and previous information. Therefore, we 

utilize Bi-GRU for spectral classification. The complete spectral 
classification framework is illustrated in Figure 2.  
A natural idea is to consider each band as a time step in Bi-GRU, 
but hyperspectral data usually have hundreds of bands, which 
consumes high computing and storage resources. Thus, a suitable 
grouping strategy(Xu, Zhang, et al., 2018) is used in this paper. 
For each pixel in the HSI, let 𝑥𝑥 = �𝜆𝜆1, 𝜆𝜆2, … 𝜆𝜆𝑗𝑗 , … 𝜆𝜆𝑏𝑏�  be the 
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spectral vector, where 𝜆𝜆𝑗𝑗  is the reflectance of the 𝑗𝑗 th band and 𝑏𝑏 
is the number of bands. Let 𝑟𝑟(≪ 𝑏𝑏) be the number of time steps 
(e.g., number of groups). The transformed sequences can be 
denoted by 𝑐𝑐 = [𝑐𝑐1, 𝑐𝑐2, … 𝑐𝑐𝑡𝑡 , … 𝑐𝑐𝑟𝑟], where 𝑐𝑐𝑡𝑡  is the sequence at 
the 𝑡𝑡th time step. Specifically, grouping strategy is 
 

 𝑐𝑐1 = �𝜆𝜆1, 𝜆𝜆1+𝑟𝑟 , … 𝜆𝜆1+(𝑚𝑚−1)𝑟𝑟�   
 𝑐𝑐2 = �𝜆𝜆2, 𝜆𝜆2+𝑟𝑟 , … 𝜆𝜆2+(𝑚𝑚−1)𝑟𝑟�   

… 
 𝑐𝑐𝑡𝑡 = �𝜆𝜆𝑡𝑡, 𝜆𝜆𝑡𝑡+𝑟𝑟 , … 𝜆𝜆𝑡𝑡+(𝑚𝑚−1)𝑟𝑟�   

… 
 𝑐𝑐𝑟𝑟 = �𝜆𝜆𝑟𝑟 ,𝜆𝜆𝑟𝑟+𝑟𝑟 , … 𝜆𝜆𝑟𝑟+(𝑚𝑚−1)𝑟𝑟�,             (2) 

 
where 𝑚𝑚 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟(𝑏𝑏 𝑟𝑟⁄ ) is the sequence length of each time step 
and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟(·)  function rounds numbers down. After grouping, 
spectral vector 𝑥𝑥  is transformed into sequences 
[𝑐𝑐1 , 𝑐𝑐2, … 𝑐𝑐𝑡𝑡 , … 𝑐𝑐𝑟𝑟].  
The input to our model is the sequential vector 𝑐𝑐 =
[𝑐𝑐1 , 𝑐𝑐2, … 𝑐𝑐𝑡𝑡 , … 𝑐𝑐𝑟𝑟] , and the bi-directional hidden vector is 
calculated as: 
Forward hidden state: 
 
 ℎ𝑡𝑡���⃗ = 𝑓𝑓�𝑊𝑊���⃗ 𝑐𝑐𝑡𝑡 + 𝑉𝑉�⃗ ℎ𝑡𝑡−1 + 𝑏𝑏�⃗ �,  (3) 
 
Backward hidden state: 

 
 ℎ𝑡𝑡�⃖�� = 𝑓𝑓��⃖�𝑊���𝑐𝑐𝑡𝑡 + �⃖�𝑉�ℎ𝑡𝑡+1 + �⃖�𝑏��,  (4) 
 
where the coefficient matrices 𝑊𝑊���⃗  and �⃖�𝑊��� are from the input at the 
present step, 𝑉𝑉�⃗  is from the hidden state ℎ𝑡𝑡−1 at the previous step, 
�⃖�𝑉�  is from ℎ𝑡𝑡+1  at the succeeding step, 𝑓𝑓  is the nonlinear 
activation of the hidden layer, and the memory of the input as the 
output of this encoder is 𝑔𝑔𝑡𝑡: 
 

 𝑔𝑔𝑡𝑡 = concat�ℎ𝑡𝑡���⃗ ,ℎ𝑡𝑡�⃖���,  (5) 
 

where concat(·)  is a function of concatenation between the 
forward hidden state and backward hidden state. 
Bi-GRU allows the sequential vector to be fed into the 
architecture one by one to learn continuous features with forward 
and backward directions. So, we can compute the predicted label 
𝑦𝑦𝑖𝑖 of pixel 𝑥𝑥𝑖𝑖 as follows: 
 

 𝑦𝑦𝑖𝑖 = 𝑈𝑈([𝑔𝑔1, … ,𝑔𝑔𝑡𝑡 , … ,𝑔𝑔𝑟𝑟]),  (6) 
 

where 𝑈𝑈(·) is a flatten function with dropout technology. A fully-
connected layer and a softmax activation function are added to 
accomplish the image classification. 
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Figure 2. Architecture of the proposed band grouping-based Bi-GRU. 

 
 
3.3 SSMRN 

The proposed SSMRN framework is shown in Figure 3, which 
integrates the spectral FE, spatial FE, and classifier training into 
a unified neural network. The network adopts the proposed 
MRCNN to extract spatial features and the band grouping-based 
Bi-GRU algorithm to extract spectral features. The last fully-
connected layer in Bi-GRU and the last one in MRCNN are 
concatenated to form a new fully-connected layer for the 
spectral-spatial classification. All parameters in the framework 
are trained at the same time.  
To better train the whole network, two auxiliary tasks are added 
in the framework(Xu, Zhang, et al., 2018). So the proposed 
SSMRN is a triple-task framework, including one main 
task(classification based on spectral-spatial information) and two 
auxiliary tasks(classification based on spectral information and 
classification based on spatial information ). The complete loss 
function for cross-entropy of the SSMRN is defined as  

 
ℒ = ℒ𝑗𝑗𝑗𝑗𝑖𝑖𝑛𝑛𝑡𝑡 + ℒ𝑠𝑠𝑝𝑝𝑠𝑠𝑐𝑐𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠 + ℒ𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 =
− 1

𝑀𝑀
∑ ∑ 𝑦𝑦𝑚𝑚𝑛𝑛 log�𝑦𝑦�𝑚𝑚𝑛𝑛

𝑗𝑗𝑗𝑗𝑖𝑖𝑛𝑛𝑡𝑡�𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑚𝑚=1 −

1
𝑀𝑀
∑ ∑ 𝑦𝑦𝑚𝑚𝑛𝑛 log�𝑦𝑦�𝑚𝑚𝑛𝑛

𝑠𝑠𝑝𝑝𝑠𝑠𝑐𝑐𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠�𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑚𝑚=1 −

1
𝑀𝑀
∑ ∑ 𝑦𝑦𝑚𝑚𝑛𝑛 log�𝑦𝑦�𝑚𝑚𝑛𝑛

𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠�𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑚𝑚=1 ,    (8) 

 
where ℒ𝑗𝑗𝑗𝑗𝑖𝑖𝑛𝑛𝑡𝑡  is the main loss function, ℒ𝑠𝑠𝑝𝑝𝑠𝑠𝑐𝑐𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠  and ℒ𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 
are two auxiliary loss functions,  𝑦𝑦�𝑚𝑚𝑛𝑛

𝑗𝑗𝑗𝑗𝑖𝑖𝑛𝑛𝑡𝑡 , 𝑦𝑦�𝑚𝑚𝑛𝑛
𝑠𝑠𝑝𝑝𝑠𝑠𝑐𝑐𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠 , and 

𝑦𝑦�𝑚𝑚𝑛𝑛
𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 are the corresponding predicted labels, 𝑦𝑦𝑚𝑚𝑛𝑛  is the true 

label. 𝑀𝑀 is the number of training samples and 𝑁𝑁 is the number 
of classes. The whole network is trained in an end-to-end manner, 
where all the parameters are optimized by the mini-batch or batch 
stochastic gradient descent algorithm at the same time. In this 
way, the complete loss function will balance the convergences of 
both the whole network and the subnetworks. 
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Figure 3. Architecture of the proposed SSMRN. 

 
 

4. EXPERIMENTAL RESULTS 

In this section, we introduce the public data sets used in our 
experiment and the configuration of the proposed SSMRN. In 
addition, classification performance based on the proposed 
method and other comparative methods is presented. All the 
experiments are implemented with an Intel(R) Xeon(R) Sliver 
4210 CPU @ 2.20-GHz with 64 GB of RAM and an NVIDIA 
RTX2080 graphic card, TensorFlow 2.3.1, and Keras 2.4.3 with 
python 3.7.6. 
 
4.1 Experimental Data 

Pavia University hyperspectral data set is utilized to evaluate the 
performance of the proposed method in the experiment. The data 
set is acquired by the Reflective Optics Systems Imaging 
Spectrometer (ROSIS) sensor during a flight campaign over 
Pavia, northern Italy. This image consists of 103 spectral bands 
with 610 × 340 pixels and it has a spectral coverage from 0.43 to 
0.86 10−6 meters. The spatial resolution is 1.3 m/pixel. Image 
ground truths differentiate 9 classes each.  
All the experiments in this paper are randomly repeated 30 times 
with random training and test data. In each repetition, we first 
randomly generate the training set from the whole data set with 
the same number of the labelled class. Then, the remaining 
samples make up the test set. Details are listed in Table 1.  
 

4.2 Parameter Setting 

Let 3 be the number of time steps in the spectral branch. The input 
of the spatial branch is a 24 × 24 × 4 patch, where 4 is the number 
of reserved principal components. The dropout rate is set as 60%. 
The number of neurons of the fully-connected layer in the 
spectral branch and the fully-connected layer corresponding to 
different scales in the spatial branch is set as 128, so the number 
of neurons in the joint fully-connected layer is 512. We use the 
Adam optimizer to train the networks with a learning rate of 
0.001. The training epochs are set as 1000 with batch size 1024.  
 
4.3 Classification Results 

To demonstrate the superiority and effectiveness of the proposed 
SSMRN model, it is compared with advanced machine-learning 
methods such as SSAN(Mei et al., 2019), and RSSAN(Zhu et al., 
2020). Limited by our computer configuration, we cannot run 
RSSAN properly with the original input, so the input of RSSAN 
is a 24 × 24 × 8 patch, where 8 is the number of reserved principal 
components instead of the number of spectral bands. All 
algorithms are executed 30 times. The average results which add 
the standard deviation obtained from the 30 runs are reported to 
reduce random selection effects. Class-specific accuracy, overall 
accuracy (OA), and kappa coefficient are used as the evaluation 
measurements for the compared methods. 
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4.3.1 Qualitative Evaluation: The classification maps of 
different methods are shown in Figure 4. These methods make 
full use of the continuity of the ground object and yield a cleaner 
classification map. The main problem of CNN-based methods 
lies in the over-smoothing phenomenon, which can be observed 
in the results of the SSRN, RSSAN. Meanwhile, SSMRN can 
better retain the detailed boundary of different objects and 
acquire more clear results.  
 
4.3.2 Quantitative Evaluation: The classification results of 
the different methods are shown in Table 2. All results in the table 
are obtained by the average value of running 30 times. The 
SSMRN surpasses other methods and owns the highest accuracy 
in all classes. SSMRN also owns the highest class-specific 
accuracy, OA, kappa, and lowest standard deviation.  
As the number of labelled training pixels can affect the OA of 
classification results, it is worth exploring how the performance 
behaves with settings on the different number of labelled pixels. 
To be specific, different training sample numbers of each class 
are varied 30,50,100,200 for Pavia University. As shown in 
Figure 5, it can be found that the proposed SSMRN generally 
outperforms other methods. Our method shows more robustness 
even when the training samples are inadequate. 
 
 

 Class Name Training Test 
 Asphalt 200 6431 
 Meadows 200 18449 
 Gravel 200 1899 
 Trees 200 2864 
 Painted metal sheets 200 1145 
 Bare Soil 200 4829 
 Bitumen 200 1130 
 Self-Blocking Bricks 200 3482 
 Shadows 200 747 

Table 1. Number of training and test samples used in the Pavia 
University data set 

 
Class Name SSAN RSSAN SSMRN 

Asphalt 96.86 98.68 99.48 
Meadows 96.53 99.52 99.61 

Gravel 98.64 99.31 99.69 
Trees 98.28 98.63 99.80 

Painted metal sheets 99.97 99.82 99.99 
Bare Soil 99.63 99.87 99.89 
Bitumen 99.77 99.74 99.96 

Self-Blocking Bricks 98.61 98.47 99.69 
Shadows 99.92 99.38 99.99 

OA(%) 97.59 99.28 99.67 
±1.20 ±0.37 ±0.24 

Kappa 
×100 

96.79 99.03 99.56 
±1.59 ±0.50 ±0.32 

Runtime(s) 321.25 335.54 207.05 
±2.00 ±3.94 ±2.59 

Table 2. Classification results of different methods for the 
Pavia University data set. Bold indicates the best result. 
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Figure 4. Classification maps using different methods. 
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Figure 5. Overall accuracies of different methods under 

different training sample numbers of each class on the Pavia 
University data set. 

 
5. CONCLUSIONS 

To effectively learn features of objects and significantly reduce 
networks complexity, a multi-task learning spectral-spatial 
multiscale residual network (SSMRN) has been proposed to 
extract spectral-spatial features. The end-to-end networks based 
on MRCNN and Bi-GRU can learn higher-level spectral-spatial 
joint features. The experimental results demonstrate that the 
method not only has a better performance compared with the 
other methods in terms of class-specific accuracy, OA, and kappa, 
but also mitigates the over-smoothing phenomenon. Our method 
shows more robustness even when the training samples are 
inadequate. 
Although we utilize the proposed band MRCNN and Bi-GRU as 
the spatial and spectral feature extractors in the implementation 
of the proposed SSMRN, other deep networks can also be 
introduced into our model, especially for spectral extractors. It 
deserves to be investigated in future work. 
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