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ABSTRACT: 

 

This study aimed to exploit the use of deep learning networks in the retrieval of the biophysical and biochemical parameters of 

vegetation canopies. Convolutional Neural Network (CNN), network with only fully connected layers, referred as dense network 

(DNN), and Autoencoder (AE) were investigated to retrieve leaf area index (LAI) and leaf chlorophyll content. Hyperspectral data 

simulated by the coupled PROSPECT and SAIL model were used for training and validation. The real CASI hyperspectral data in 50 

spectral channels ranging from 522.4 nm to 894.2 nm collected over three agricultural crop fields during the growing season of 2001 

were used, together with the in-situ measured LAI and leaf chlorophyll content, as independent test set. Occlusion analysis was also 

employed to determine the important spectral bands at which reflectance made more contributions to the retrieval with a CNN and 

interpret the latent variables of the AE. Satisfactory results from these deep learning networks were obtained, compared with ground 

truth. The DNN with the input of the vegetation indices sensitive to LAI and leaf chlorophyll content (𝑀𝑇𝑉𝐼2 and 𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼) 

generated the best results with 𝑅2of 0.86 for LAI and 0.55 for leaf chlorophyll content. 

 

 

1. INTRODUCTION 

Biophysical and biochemical parameters of vegetation canopies, 

such as leaf area index (LAI) and leaf chlorophyll content, play 

crucial roles in precision agricultural management, forest 

ecology monitoring, and global climate change studies. Accurate 

and robust retrieval of these parameters from remotely sensed 

data remains a challenge. The commonly used methods are based 

on either statistical regression or physical model inversion (Ali et 

al., 2020). Feature selection is critical and challenging in the 

existing methods. Statistical regression methods are based on the 

empirical relationship between the variable of interest, such as 

LAI, and the selected features. In physical model inversion, the 

selected features are used in the cost function. Deep learning, in 

contrast, involves automatic learning from examples, allowing 

features to be extracted directly from data. The potential of deep 

learning is therefore attracting a lot of attention in the field of 

remote sensing (Zhang et al., 2016). Considerable efforts in the 

application of deep learning are put into qualitative interpretation 

of remotely sensed data. Yet, deep learning in quantitative remote 

sensing is largely unexplored (Tan et al., 2019 and Apolo-Apolo 

et al., 2020). This objective of this study was to exploit the use of 

deep learning networks in the retrieval of LAI and leaf 

chlorophyll content of vegetation canopies. Convolutional 

Neural Network (CNN), network with only fully connected 

layers, referred as dense network (DNN), and Autoencoder (AE) 

(LeCun et al 2015) were investigated. We aimed to (1) establish 

strategies, workflows, and configurations of CNN, DNN and AE 

for the retrieval of LAI and leaf chlorophyll content of 

agricultural crops, (2) provide interpretation to the extracted 

features and retrieval results obtained from CNN, DNN and AE 

models, and (3) evaluate CNN, DNN and AE, in the comparison 

with the commonly used statistical regression. 

 

 
*  Corresponding author 

 

2. DATA USED 

For this study, both real and simulated hyperspectral remotely 

sensed data were used. The real data were acquired by a Compact 

Airborne Spectrographic Imager (CASI) over the former 

Greenbelt Farm of Agriculture and Agri-Food Canada, Ottawa 

(45˚18̍ N, 75˚45̍ W) in 2001 during three intensive field 

campaign (IFC) on June 13 (IFC1), June 26 (IFC2), and July 19 

(IFC 3). The study area included three crops, corn, wheat, and 

soybean. The data covered spectral regions from 500 nm to 

1044.3 nm in 72 bands and had a spatial resolution of 2 m by 2m. 

Due to presence of noise in the first and last several bands, only 

50 spectral bands covering from 522.4 nm to 894.2 nm were used. 

CASI data were processed to surface reflectance through 

calibration, atmospheric correction, and geo-referencing 

(Haboudane et al., 2004). Simultaneously with CASI data 

acquisition, ground truth was collected at fourteen ground 

locations that are marked on the false color composite of CASI 

images shown in Figure 1. A LI-COR LAI-2000 Plant Canopy 

Analyzer set was used to quantify non-destructive total LAI and 

a LI_COR LI-3000 area meter for determining separately 

destructive LAI of green and dead leaves. The destructive leaf 

area measurements were used to calculate the proportion of green 

LAI. At these locations, leaf tissues were also collected for 

laboratory determination of leaf chlorophyll concentration. 

Details of the field measurements were presented in Pattey et al. 

(2001) and Strachan et al (2002).  

 

Since limited ground truth data were available, labelled data for 

the training of deep learning networks were generated by the 

widely used PROSPECT and SAIL models and hereafter they are 

referred as the simulated data. The PROSPECT model 

(Jacquemoud and Baret, 1990) assumes a uniform distribution of 

water and pigments throughout the leaves and a constant leaf 

surface roughness. Its model outputs, leaf reflectance and 
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transmittance are used as the inputs for the SAIL model. The 

SAIL model (Verhoef, 1984) assumes vegetation canopies as 

uniform infinitely extended turbid media with small Lambertian 

scatters randomly distributed within the canopies. In addition to 

leaf reflectance and transmittance, its input parameters also 

include the LAI, leaf angle distribution function, soil reflectance, 

and imaging geometry (solar zenith angle view zenith angle and 

relative azimuth angle). The coupled PROSPECT and SAIL 

model was employed to generate a series of canopy reflectance 

values at the wavelengths corresponding to those in CASI data. 

Several simulation scenarios were exploited in this study and the 

one used is list in Table 1. The imaging geometry simulated was 

consistent with CASI data acquisition. Soil reflectance was 

measured on the ground using a field spectrometer. In the current 

study, only LAI and leaf chlorophyll content were kept as 

variables and retrieved to be consistent with the CASI data 

covering only the visible and near-infrared spectral ranges where 

canopy reflectance is mainly sensitive to LAI and leaf 

chlorophyll content. 

 

 

Figure 1. The false color composite images of IFC1 (June 13), 

IFC2 (June 26), and IFC 3 (July 19) in 2001 (clockwise) 

together with the locations where ground truth data were 

collected. The reflectance spectra are the mean values from the 

uppermost ground location in the corn field.  

 

3. METHODOLOGY 

3.1 CNN for the retrieval of LAI and leaf chlorophyll 

content 

For the CNN, the input was the reflectance at 50 spectral 

channels. We attempted many configurations and all of them 

tended to have the problem of overfitting. For this paper, the 

network with the fewest parameters was used. There were three 

convolution layers with 16, 32, and 64 filters, respectively and 

each filter is 3 by 1. Each convolution layer was followed by a 

max-pooling layer. There were four dense layers with the 

dimensions of 128, 64, 32, 16, respectively. The output had two 

nodes representing LAI and leaf chlorophyll content. The 

summary of the model is provided in Table 2. 

 

The training of the CNN model was done with the previously 

described simulated data. There were in total 9768 samples and 

90% was used for training and the rest for validation.  

 

 

Parameters Values 

Leaf chlorophyll content 5 to 70 at step of 5 µg/cm2 

Internal structural parameter 1.55 

Dry matter content 0.0035 µg/cm2 

Leaf water content 0.01 cm 

LAI  0.05 to 0.1 at step of 0.01 

and 0.1 to 0.7 at step of 0.1 

Leaf angle distribution 

function 

Spherical 

Soil reflectance Field measured 

Solar angle 23˚ 

View angle Nadir (0˚) 

Relative azimuth angle  0˚ 

Table 1. Simulation input  

 

Layer Output shape Parameter number 

Input (50,1) 0 

Convolution 1 (50, 16) 64 

Max Pooling (25, 16) 0 

Convolution 2 (25, 32) 1568 

Max Pooling (13, 32) 0 

Convolution 3 (13, 64) 6208 

Max Pooling (7, 64) 0 

Flatten 448 0 

Dense 1 128 57472 

Dense 2 64 8256 

Dense 3 32 2080 

Dense 4 16 528 

Dense 5 (to output) 2 34 

 

Table 2. Summary of the CNN model used 

 

3.2 DNN for the retrieval of LAI and leaf chlorophyll 

content 

In this study, we also attempted to use the fully connected layers 

only. For this type of networks, we did three experiments: one 

with the same input as that for CNN (i.e the reflectance at 50 

spectral channels) and the other two with vegetation indices as 

input. For the first one, the network often did not converge for all 

of the configurations attempted. As a result, we omit it in this 

paper. In the second experiment, two commonly used vegetation 

indices developed to estimate leaf chlorophyll content and LAI 

were employed as input. They are the 𝑀𝑇𝑉𝐼2 (Equation (1) that 

was proposed by Haboudane et al. (2004) to retrieve LAI and 
𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
  (Equation 2) by Haboudane et al. (2002) for leaf 

chlorophyll content. 

 

𝑀𝑇𝑉𝐼2 =
1.5[1.2 (𝑅800−𝑅550)−2.5(𝑅670−𝑅550)]

√(2𝑅800+1)2−(6𝑅800−5√𝑅670)−0.5

 ,  (1) 

 

where   𝑅=reflectance with the subscript as wavelength in nm 

 

𝑇𝐶𝐴𝑅𝐼 = 3 [(𝑅700 − 𝑅670) − 0.2(𝑅700 − 𝑅550) (
𝑅700

𝑅670
)]; 
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𝑂𝑆𝐴𝑉𝐼 =
(1+0.16)(𝑅800−𝑅670)

(𝑅800+𝑅670+0.16)
,              (2) 

 
where   𝑅=reflectance with the subscript as wavelength in nm 

 

For the network, there were four fully connected layers with the 

numbers of nodes of 64, 32,16, and 8, respectively. The input 

layer had two nodes taking the values of these two indices. In the 

third experiment, in additional to 𝑀𝑇𝑉𝐼2 and 
𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
, there indices 

in the form of normalized difference vegetation index were used. 

They were 
𝑅750−𝑅705

𝑅750+𝑅705
, 

𝑅850−𝑅730

𝑅850+𝑅730
, 

𝑅850−𝑅570

𝑅850+𝑅570
. The network 

configuration was same as that in the second experiment except 

for the input.  

 

 

3.3 AE for the retrieval of LAI and leaf chlorophyll content 

For the AE, both the input and output were the reflectance at 50 

spectral channels. The extracted features to reconstruct the 

reflectance spectra were represented by the values in the latent 

nodes. This process was unsupervised. Table 3 is the summary of 

the encoder and decoder.  

 

The training of the AE was attempted using two sets of data. The 

first one was the previously described simulated data (9768 

samples) and the second derived from real CASI imagery 

(115728 samples). Similar to the training of the CNN, 90% of the 

samples was used for training and the rest for validation. Once 

trained, the latent variables were used to predict leaf chlorophyll 

content and LAI. This was a supervised process. Two linear 

models were established to predict LAI and leaf chlorophyll 

content, respectively. The predictors were non-zero latent 

variables.  For the investigation of using real CASI data for AE 

training, 12 of the samples with ground truth were used to 

determine the coefficients of the linear models and the rest for 

testing. The selection of these 12 samples had an impact on the 

results depending on its dynamic ranges in LAI and leaf 

chlorophyll content. For this study, they were randomly selected. 

 

Encoder 

Layer Output shape Parameter number 

Input (50,1) 0 

Convolution 1 (50, 16) 64 

Max Pooling (25, 16) 0 

Convolution 2 (25, 32) 1568 

Flatten 800 0 

Dense  8 6408 

Decoder 

Input 8 0 

Dense 800 7200 

Re-shape (25,32) 0 

Convolution 1 (25, 32) 3104      

Up sampling (50, 32) 0 

Convolution 2 (50, 16) 1552 

Convolution 3 (50,1) 49 

 

Table 3. Summary of the AE used 

 

 

3.4 Evaluation of the deep learning networks 

As mentioned earlier, samples derived from CASI imagery were 

used for independent testing and there were 14 plots where 

ground truth was collected. For three field campaigns, there were 

42 samples for LAI and 32 for leaf chlorophyll content due to 

missing measurements.  Scatter plots of the estimated values vs. 

field measurements were made and 𝑅2 values were calculated.  

 

In addition, the performance of the deep learning networks was 

also compared with the method using empirical relationship 

between LAI and leaf chlorophyll content and vegetation indices. 

In this study, LAI and leaf chlorophyll content were calculated 

using indices in Equations 3 and 4, respectively (Haboudane et 

al., 2002 and 2004).  

 

𝐿𝐴𝐼 = 0.2227𝑒3.6566∗𝑀𝑇𝑉𝐼2                                           (3) 

𝐶ℎ𝑙𝑎𝑏 = −30.194𝑙𝑛 (
𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
) − 18.363                        (4) 

 
where   𝑅=reflectance with the subscript as wavelength in nm 

 

 

3.5 Occlusion sensitivity analysis of the trained CNN  

To gain understanding of the learned CNN network, the 

occlusion sensitivity technique (Zeiler and Fergus, 2014) was 

used.  This technique is commonly used for image classification 

and implemented by masking out a spatial region one by one to 

reveal whether the masked region affect the classification result. 

In this study, occlusion was applied to individual spectral bands 

to show the influence of the reflectance in each band on the 

retrieval of LAI and leaf chlorophyll content.  97 simulated 

samples were used for this investigation. It is worth mentioning 

that these samples were not used for the training. With the trained 

CNN, the LAI and leaf chlorophyll content were predicted for 

these 97 simulated samples and used as baseline for comparison. 

In the occlusion sensitivity analysis, for a given band to be 

occulated, a random number between 0 and 1 was generated for 

each of the 97 samples. The values for LAI and leaf chlorophyll 

content for these samples were then predicted by the trained 

CNN. The difference in the form of root mean square error 

(RMSE) between the baseline LAI and leaf chlorophyll content 

and the predicted ones was calculated. A large RMSE meant the 

reflectance in this particular band had a large impact on the 

retrieval of LAI and leaf chlorophyll content. In this 

investigation, the RMSE values were calculated for the LAI and 

leaf chlorophyll content separately. In addition to comparing with 

the baseline data, the retrieved values in the occlusion analysis 

were also compared with the true LAI and leaf chlorophyll 

content that were used for the simulation. Similar analysis was 

also applied to the samples derived from CASI hyperspectral 

imagery (the independent test set).  

 

3.6 Interpretation of AE latent variables  

To understand the meaning of the AE latent variables, we plot the 

reconstructed reflectance spectrum for one pixel (as an example) 

by setting individual non-zero latent variables zero and by 

keeping individual non-zero latent variables (set other variables 

zero). We also calculated the RMSE between the reflectance of 

individual spectral bands reconstructed by removing or keep 

individual latent variables and the reference obtained using all 

latent variables.  

 

4. RESULTS AND ANALYSIS 

4.1 The retrieved LAI and leaf chlorophyll content 

This analysis was done for the AE trained using the samples 

extracted from real CASI imagery. The scatter plots between the 

estimated LAI and leaf chlorophyll content and those measured 
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on the ground and laboratory are shown in Figures 2-6 for CNN, 

DNN with two indices, DNN with five indices, and AE-linear 

models, respectively. The comparisons between the estimated 

LAI and leaf chlorophyll content obtained based on the empirical 

relationships with vegetation indices of 𝑀𝑇𝑉𝐼2 and 
𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
 are 

shown in Figure 7.  From these figures, the following 

observations could be made.  

 

(1) The 𝑅2 values were higher for LAI than for leaf chlorophyll 

content for all methods, compared with the ground truth.  

 

(2) Compared with the traditional method (based on the empirical 

relationship with vegetation indices), all supervised methods 

(CNN, DNN) performed much better in the estimation of leaf 

chlorophyll content with the 𝑅2values of around 0.5 vs 0.27. 

However, the 𝑅2values remained low. For LAI, CNN obtained a 

comparable 𝑅2 value (0.72 vs 0.73), but the DNNs had better 

results, especially for DNN with 2 indices with the 𝑅2 value as 

high as 0.82. 

 

(3) The DNN with two vegetations indices (𝑀𝑇𝑉𝐼2 and 

𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼) generated the best result with 𝑅2 of 0.86 for LAI 

and 0.55 for leaf chlorophyll content. Increasing the number of 

vegetation indices did not produce improved results in the DNN.  

 

(4) With the same vegetation indices, 𝑀𝑇𝑉𝐼2 and 𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼, 
a dense layer network had a much higher 𝑅2 in the prediction of 

LAI (0.86) and leaf chlorophyll content (0.55), compared with 

that (0.73 and 0.28 for LAI and leaf chlorophyll content, 

respectively) obtained based on the empirical relationships 

reported in the literature (Haboudane et al., 2002 and 2004).  It is 

worth mentioning that the vegetation indices and their empirical 

relationships with LAI and leaf chlorophyll content reported in 

Haboudane et al. (2002 and 2004) were developed for CASI 

imagery over the same area.   

 

(5) Among the deep learning networks, AE-linear models 

performed poorly for the retrieval of LAI but had a comparable 

result for the retrieval of leaf chlorophyll content. In term of the 

comparison between the two training strategies investigated, the 

performance was better for leaf chlorophyll content, and similar 

for LAI by using the real CASI data, compared with that by using 

the simulated data. By using real CASI data, the AE was trained 

by a large number of samples to better represent the real data. 

However, the linear estimation of LAI and leaf chlorophyll 

content and was done with a limited number of training samples 

(10).  It is worth mentioning that the samples used for generating 

Figure 6 is different from those for other figures (1-5 and 7).  

 

It is also worth mentioning that for all three deep learning 

networks investigated in this study, a very strong 1:1 correlation 

in the LAI and leaf chlorophyll content was observed based on 

training and validation data (both from simulation). This 

indicated a poor generalization for these models.  

 

 

4.2 The important spectral bands in the trained CNN 

The results of the occlusion sensitivity analysis are shown in 

Figure 8 for the simulated data and in Figure 9 for CASI 

hyperspectral data. The top two panels were the results obtained 

by comparing the estimated LAI and leaf chlorophyll content 

with truth (Figure 8) and ground truth (Figure 9), while the 

bottom two were based on the comparison with the baseline 

obtained from undisturbed data.  

 

It is revealed by Figure 8 that based on the simulated data, the 

similar results were obtained no matter whether the truth or the 

baseline as the reference for comparison in the occlusion 

analysis. This is because the results from the undisturbed data 

were very close to the truth.  This observation was consistent with 

that could made from this figure, which was any disturbance to 

the reflectance of any spectral bands would lead to a higher 

RMSE in the retrieval of LAI and leaf chlorophyll content using 

the trained CNN. In contrast, by comparing the top and bottom 

two panels in Figure 9, one can notice different phenomena. 

When the estimated LAI and leaf chlorophyll content were 

compared with the ground measurements, it was observed that 

disturbance in some spectral bands increased the RMSE 

compared with un-disturbed data (horizontal lines), which for 

some spectral bands, the RMSE was reduced.  In addition, the 

important wavelengths revealed by the top two panels and those 

by the bottom two were different. The former used ground truth 

as the reference and the latter employed the LAI and leaf 

chlorophyll content obtained from undisturbed data. The above 

observations might further demonstrate that the simulated data 

could not fully represent the real CASI observations. 

 

A closer examination of Figure 8 revealed that based on the 

simulated data, the reflectance at the following wavelengths had 

stronger influence on the estimation of leaf chlorophyll content 

(from strong to weak) 672.4 nm, 755.7 nm, 763.3 nm, 732.9 nm, 

and 770.9 nm. These wavelengths are in the red and red-edge 

region of the spectrum. For the estimation of LAI, the reflectance 

in the red region from 627.2 nm to 679.9 nm had the strongest 

impact, and the reflectance in the visible region had a stronger 

influence than that in the Near infrared. The same observations 

could be made from Figure 9 by using the results from the 

undisturbed data as reference. Reflectance in these wavelengths 

is known to be sensitive to leaf chlorophyll content and/or LAI. 

The disagreement with the accumulated knowledge in the 

literature is that reflectance in the near infrared had a less impact 

on the retrieval of LAI than others. It might be caused by some 

bias exiting in the simulated data.  

 

Using the ground truth as the reference (top two panels in Figure 

9), the important wavelengths for the retrieval of LAI were in the 

near infrared region, while they were around 552, and 710nm for 

leaf chlorophyll content.  

 

 

4.3 The meaning of latent variables of the trained AE 

For a random selected test pixel in the CASI imagery, the original 

reflectance and that reconstructed by setting individual non-latent 

variables zeros are shown in Figure 10. The reflectance 

reconstructed using all latent variables was very similar to the 

original reflectance. For the trained AE, nodes 1, 4, and 6 were 

non-zeros. For the same pixel, the reflectance spectra 

reconstructed by keeping individual latent variables (others set to 

0) are shown in Figure 11. The RMSE between the reflectance of 

each spectral band reconstructed using all latent variables 

(reference) and that using individual latent variables over the test 

samples is shown in Figure 12. The RMSE between the reference 

and the reflectance reconstructed by setting individual latent 

variables zeros over the test samples is shown in Figure 13. 

 

As shown in Figures 10 and 11, the higher reflectance of green 

leaves in the near infrared band was reflected by latent variable 

(node) 4; latent variable 1 captured the absorption of leaf 

chlorophyll content of the red radiation of green leaves; and the 

average reflectance over the spectral bands was reflected by node 

6. These observations made based on one test sample were 
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consistent with the RMSE calculated over all test samples 

(Figures 12 and 13).  For example, as shown in Figure 12, by 

setting latent variable 1 zero, the largest RMSE occurs around 

680 nm, the absorption bands of leaf chlorophyll.  

 

5. CONCLUSIONS 

In this study, three deep learning networks, CNN, DNN and AE, 

were exploited to retrieve LAI and leaf chlorophyll content. 

Learning from simulated data, deep learning networks 

investigated in this study, CNN, DNN, and AE showed promising 

results in the retrieval of LAI and leaf chlorophyll content using 

CASI imagery. The deep dense network (with fully connected 

layers only) with the input of the vegetation indices sensitive to 

LAI and leaf chlorophyll content (𝑀𝑇𝑉𝐼2 and 𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼) 

generated the best results. Compared with the ground truth, the 

𝑅2 was 0.86 for LAI and 0.55 for leaf chlorophyll content. This 

demonstrated the importance of domain knowledge in the 

applications of deep learning in the retrieval of parameter 

retrieval. 

 

Occlusion analysis showed that the wavelengths at which 

reflectance had the most contribution toward the estimation of 

LAI and leaf chlorophyll content using a CNN were consistent 

with those known in the literature (sensitive to either parameter). 

On-going investigations are focused on adding more simulated 

data in the training process, seeking additional real hyperspectral 

data with ground truth for training and independent testing, and 

developing methodology to incorporation of domain knowledge 

in the network architecture. The results obtained by the analysis 

of the AE implied that reflectance spectra could be reconstructed 

by the latent variables. Through linear modelling, these latent 

variables could be used to estimate LAI and leaf chlorophyll 

content with reasonable accuracies. However advanced methods 

are needed to improve the accuracies.  

 

In this study, limited ground truth was used to validate the 

estimated LAI and leaf chlorophyll content. Further validation is 

needed to reach more reliable conclusions.  
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Figure 2. The scatter plots of the estimated LAI (top) and leaf 

chlorophyll content (bottom) using the CNN versus the ground 

measured values. 

 

 

 
Figure 3. The scatter plots of the estimated LAI (top) and leaf 

chlorophyll content (bottom) using the DNN (2 indices) versus 

the ground measured values. 
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Figure 4. The scatter plots of the estimated LAI (top) and leaf 

chlorophyll content (bottom) using the DNN (five indices) versus 

the ground measured values. 

 

 

 
Figure 5. The scatter plots of the estimated LAI (top) and leaf 

chlorophyll content (bottom) using the AE and linear models 

versus the ground measured values. The training of AE was 

carried out using simulated data. 

 

 

            

            

 

 

 
Figure 6. The scatter plots of the estimated LAI (top) and leaf 

chlorophyll content (bottom) using the AE and linear models 

versus the ground measured values. The training of AE was 

carried out using real CASI data. 

 

Figure 7. The scatter plots of the estimated LAI (top) and leaf 

chlorophyll content (bottom) using the empirical relationships 

with 𝑀𝑇𝑉𝐼2 and 
𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
, respectively. 
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Figure 8. The effect of reflectance in individual spectral bands 

on the retrieval of LAI and leaf chlorophyll content based on the 

simulated data. Top two panels: the Root Mean Square Error 

(RMSE) between the retrieved leaf chlorophyll content and LAI 

and the truth. The horizontal lines represent the RMSE between 

the values estimated from the original simulated data (baseline, 

without any occlusion) and the truth. The bottom two panels: the 

RMSE in the retrieved values between the baseline and using data 

with random values for individual spectral bands. 

 

 

 
Figure 9.  The effect of reflectance in individual spectral bands 

on the retrieval of LAI and leaf chlorophyll content based on 

hyperspectral CASI data. Top two panels: the RMSE between the 

retrieved leaf chlorophyll content and LAI and the ground 

measurements. The horizontal lines represent the RMSE between 

the values estimated from the original CASI data (baseline, 

without any occlusion) and the truth. The bottom two panels: the 

RMSE in the retrieved values between the baseline and using data 

with random values for individual spectral bands. 

 

 
 

Figure 10. The original reflectance of a randomly selected test 

pixel, the reflectance reconstructed by using all latent nodes, and 

that by setting individual latent variables as zero. There were 

three non-zero latent notes (1, 4, and 6). The notation of w/o 1, 

as an example, means the reflectance was reconstructed by 

setting latent node 1 as zero. 

 

 
 

Figure 11. The original reflectance of a randomly selected test 

pixel, the reflectance reconstructed by using all latent nodes, and 

that by keeping individual latent variables (setting others as zero). 

There were three non-zero latent notes (1, 4, and 6). The notation 

of w 1, as an example, means the reflectance was reconstructed 

by only using latent node 1. 

 

 
 

Figure 12. The effects of the three non-zero latent variables 

exhibited by the RMSE calculated using all test samples in the 

reflectance of each spectral band between the reflectance 

reconstructed using all latent variables (reference) and that by 

setting individual variables zero.  
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Figure 13. The effects of the four non-zero latent variables 

exhibited by the RMSE calculated using all test samples in the 

reflectance of each spectral band between the reflectance 

reconstructed using all latent variables (reference) and that using 

individual variables (setting others zero). The notation of w 1, as 

an example, means the reflectance was reconstructed by only 

using latent node 1. 
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