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ABSTRACT:

Change detection in hyperspectral images is challenging due to the presence of a large number of spectral bands. Due to the
differences in band composition, a deep model trained on one hyperspectral sensor cannot be reused on another hyperspectral
sensor. This challenge can be tackled by using untrained models as feature extractor for change detection in hyperspectral images.
However, results produced by such a strategy may show variance if the untrained model is slightly perturbed. Different change
detection maps are produced from different versions of the untrained model. We propose a decision fusion based strategy that can
combine such different results and produce a final change detection map that retains the change information from all change maps.
This approach improves the change detection performance and also improves reliability of the result. Experimental results on two
publicly available hyperspectral datasets show the effectiveness of the proposed approach.

1. INTRODUCTION

Hyperspectral sensors have become popular in remote sensing
due to their capability to characterize fine-grained spectral in-
formation. They analyze a wide electromagnetic spectrum un-
like other optical technologies that only capture the primary
colors. Hyperspectral remote sensing is well accepted in many
applications, including mineral characterization (Kruse et al.,
2003), water quality monitoring (Cao et al., 2021), ship monit-
oring (Li et al., 2021), and vegetation mapping (Hirano et al.,
2003). In the hyperspectral images, the spectral information is
added as additional value to the two-dimensional spatial data,
thus forming a data hypercube. While the fine-grained spectral
information is the main motivation behind using hyperspectral
images, handling the large number of bands is a key challenge
in processing them (Mou et al., 2021).

In addition to mere classification, change detection (CD) plays
a key role in many hyperspectral remote sensing applications
(Chevrel et al., 2012). Deep transfer learning has recently
emerged as a popular method for change detection in multi-
spectral (Prexl et al., 2021) and Synthetic Aperture Radar (Saha
et al., 2020) images. However, transfer learning based meth-
ods require pre-trained feature extractor (Saha and Zhu, 2021),
which is not always available for hyperspectral sensors, given
their large variation in spectral coverage and band composi-
tion. This challenge is tackled in (Saha et al., 2021) by using
untrained deep models, merely initialized with a weight ini-
tialization strategy (He et al., 2015), as feature extractor for
hyperspectral images. This approach is motivated from deep
image prior in computer vision (Ulyanov et al., 2018). Be-
ing untrained, such models can be initialized to ingest as many
number of bands as desired for processing the specific hyper-
spectral input. While such strategy has produced good result
outperforming other unsupervised hyperspectral change detec-
tion methods, their change detection accuracy may vary if the
weights of the untrained model are perturbed. Standard devi-
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ation of up to 1% (over 5 different runs) is observed in some
datasets in (Saha et al., 2021). Such variance/uncertainty may
limit its trustworthiness in practical applications. Instead of
considering such variance as a pitfall, we propose a strategy that
can exploit the differences in the different CD maps to generate
a more accurate CD map. Our proposed unsupervised strategy
produces different change detection maps by slightly perturb-
ing weights of the feature extractor and subsequently fuses the
different change detection maps in a way that retains the rel-
evant change information from all change maps. Fusion is ac-
complished by splitting the analyzed scene into small patches
and then finding out the optimum CD map for each patch. The
proposed approach not only reduces the uncertainty of the CD
maps produced in (Saha et al., 2021), it also improves the CD
performance by combining meaningful information from dif-
ferent maps.

The main contributions of this work are as follows:

1. We propose a fusion-based strategy that can combine dif-
ferent hyperspectral CD maps at decision level. The fusion
strategy is unsupervised that does not make any assump-
tion about the original models that have produced the CD
maps.

2. We propose a strategy that circumnavigates the variance
in change detection map produced by untrained models in
(Saha et al., 2021).

3. We experimentally validate the proposed method for two
different hyperspectral datasets.

We organize the rest of the paper as following. Related works
are presented in Section 2. Proposed decision fusion based
method is presented in Section 3. Results are presented in Sec-
tion 4. The paper is concluded in Section 5.
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2. RELATED WORKS

There are only few deep learning based methods for change de-
tection in the hyperspectral images (Wang et al., 2018, Chen
and Zhou, 2019, Ou et al., 2022, Shi et al., 2022). A pre-
classification based method is proposed in (Wang et al., 2018).
Such pre-classification strategy is also employed in (Ou et al.,
2022) where a feature fusion grouping is used to generate a
more discriminative feature group. A supervised CD method
based on a joint affinity tensor is proposed in (Chen and Zhou,
2019). However, supervised CD methods cannot be adapted
conveniently from one hyperspectral sensor to another because
of differences in the band composition. Popular unsupervised
CD methods like Deep Change Vector Analysis (DCVA) (Saha
et al., 2019) can apply a model trained using multi-spectral im-
ages on the subset of bands of hyperspectral images. In com-
puter vision, Ulyanov et. al. (Ulyanov et al., 2018) showed that
significant portion of the image statistics are captured by the
structure of the network itself. Based on this, untrained models
are used in conjunction with DCVA in (Saha et al., 2021), which
is called Deep Prior. While this method makes it possible to ef-
fectively use unsupervised CD on hyperspectral images, it may
produce different results for slightly different initialization of
the weights of the untrained model. Such variation in result po-
tentially reduces its reliability. Furthermore, the question arises
whether results from different combinations can be combined
to produce a more accurate change detection map.

Decision fusion has long been used in remote sensing (Zhang,
2010). This topic is often presented in the context of multi-
sensor data fusion. As an example, a deep learning decision
fusion approach is proposed in (Abdi et al., 2018) for multi-
sensor urban remote sensing data classification. Another con-
text for applying decision fusion is when combining result from
multiple models (Ma et al., 2019).

Our work takes forward the hyperspectral change detection
method in (Saha et al., 2021) by reducing the uncertainty in
its result and further improving its change detection map. Our
method can be considered as a fusion of multiple models, where
networks produced by different weight initialization can be con-
sidered to be different models.

3. METHOD

Given X1 and X2, a pair of co-registered hyperspectral images,
our task is to segregate the changed pixels (Ωc) in the image-
pair from the unchanged ones (ωnc). This task is popularly
called binary CD in the literature. In this work, we do not focus
on multiple/multi-class CD.

We choose a set of deep models with such an architecture that
it can ingest the number of bands of the hyperspectral image
pair. The weights of these deep models are initialized with a
suitable technique (He et al., 2015). Each of these networks are
separately used to obtain a CD map. Following this, a decision
fusion scheme is used to integrate the results obtained using
different models.

3.1 Deep models

Our hyperspectral inputs have B0 channels, much larger than
usual (3 or 4) bands in the multi-spectral images. This makes
the models trained on multi-spectral input not suitable to be ap-
plied on the hyperspectral input. Towards this, we choose deep

model architectures in such a way that it is capable to ingest
input with B0 channels. The first convolution layer takes this
input and projects it to a kernel size of β0 ∗ B0. We simply
use value of 4 for β0, however any other value can be used.
The following convolution layers preserve the number of ker-
nels. Non-linearity is introduced by employing Rectified Lin-
ear Unit (ReLU) between the convolution layers. We do not
introduce any such layer that may lead to downsampling (e.g.,
pooling). To summarize, our models follow the model architec-
ture in (Saha et al., 2021). However, where only one model is
used in (Saha et al., 2021), we use a number of models with the
same architecture. The number of models (M ) is chosen as 5,
however any other value can be used. Weights of each model
are initialized with a He initialization strategy (He et al., 2015),
however with different random seeds in PyTorch (Paszke et al.,
2019). Any other mechanism to introduce little differences in
the weights of each model could be used. In this way, M dif-
ferent versions of an uninitialized deep network is obtained.

3.2 Change detection from a single model

In this Section, we describe the change detection process as-
suming just one model (out of M ). The input X1 and X2 are
pre-processed to have values between 0 and 1. An untrained
model is applied on them (separately) to obtain deep features
for each pixel. As the same model is applied on both input,
similar deep features are obtained for a pixel unchanged in X1

and X2. On the other hand, a changed pixel tend to produce
dissimilar deep features. By taking differences of deep features
we obtain a hypervector (G) for each pixel. Following this, a
magnitude (or one-dimensional index) ρ is computed from G.
This is accomplished simply using Euclidean norm. Follow-
ing this, we use Otsu’s thresholding (Otsu, 1979) to group the
pixels into two groups, one with comparatively higher ρ value,
which corresponds to the changed pixels (Ωc). The other group
has comparatively smaller ρ value and corresponds to the un-
changed pixels (ωnc). The process of obtaining CD map using
a single model is shown in Figure 1.

3.3 Decision fusion

A CD map is obtained for each untrained model. In other
words, we have M different CD maps C1, ...,Cm,...,CM , each
of size R × C. Our task is to fuse them to obtain a single CD
map. One particular CD map may not be the most accurate for
the entire analyzed scene. Based on this assumption, we divide
the analyzed scene of spatial scene R× C into smaller patches
of size R′ × C′. We postulate that some of the M CD maps
may be more accurate in some patches, while others may be
more accurate for other patches.

For each patch, our task it to find the best CD map out of
the M options (C1, ...,Cm,...,CM ). The task is challenging as
we need to find the best/optimum CD map in an unsupervised
way. In contrary to the supervised tasks, we do not possess any
well-defined oracle that can tell us about the suitability of the
CD maps. Variance computation has previously been used to
find suitable features in change detection (Saha et al., 2019).
Features with the higher variances are shown to possess more
relevant information for change detection. Variance has also
been used for uncertainty computation in semantic segmenta-
tion (Rottmann and Schubert, 2019). Inspired by these, we pos-
tulate that the CD map with the highest variance score is the
optimum choice for a particular patch. The variance is com-
puted on the ρ values. An ideal model will produce ρ values
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Figure 1. Method for obtaining CD map using a single untrained
model. The ρ, ωnc, Ωc are used for decision fusion while

combining multiple-trained models.

M CD maps and ρ values

Divide scene into patches

For each CD map
Compute variance on ρ

Find best assignment for the patch

Repeat last two steps for all patches

Merge the patches

Final CD map

Figure 2. Method for combining results from multiple models.

which are either concentrated on the very small values (for un-
changed pixels) or very large values (for changed pixels), thus
producing higher variance score. Thus the optimum model for
a particular patch can be determined by maximizing variance
computed on ρ values.

The CD map with optimum variance score is assigned to the
final CD map for the particular patch. In this way, optimum
assignments are determined for all patches and the CD map for
the entire scene is obtained. This process of combining CD
maps from multiple models is shown in Figure 2.

4. EXPERIMENTS AND ANALYSIS

4.1 Datasets

Following publicly available bi-temporal hyperspectral datasets
are used for validation (López-Fandiño et al., 2018, López-

Fandiño et al., 2019) 1:

1. The pre-change and post-change images in the Santa Bar-
bara dataset are acquired on 2013 and 2014. The 984 ×
740 pixel images show 224 spectral bands.

2. The pre-change and post-change images in the Bay Area
dataset are acquired on 2013 and 2015. In this case, the
spatial dimension of the analyzed scene is 500 × 500
pixels.

4.2 Compared methods

We compare the following methods:

1. Deep Prior, as in (Saha et al., 2021). Comparison to this
method is essential as the proposed method extends this.

2. CVA, a popular unsupervised approach (Malila, 1980).

3. DCVA, a popular deep transfer learning based unsuper-
vised approach (Saha et al., 2019).

4. Autoencoding of bi-temporal Hyperspectral Images for
Change Vector Analysis (AICA) (Appice et al., 2019).

4.3 Results

In this work, we used M = 5, keeping consistency with (Saha
et al., 2021) where results are shown as average of 5 runs. One
important parameter is the patch length. For the Santa Bar-
bara scene, we show the variation of the result of the proposed
method versus patch length in Table 1. Best sensitivity (ac-
curacy of changed pixels) and accuracy values are obtained for
patch length 350 pixels. Specificity (accuracy of unchanged
pixels) shows little variation as the patch size is varied.

For the Santa Barbara scene, quantitative comparison with
state-of-the-art methods is shown in Table 2. The pro-
posed method outperforms existing unsupervised paradigms
like CVA, AICA (Appice et al., 2019), DCVA (Saha et al.,
2019). It is evident that the proposed method can benefit from
the multiple runs of randomly initialized networks and produces
superior sensitivity, similar specificity, and superior accuracy
than (Saha et al., 2021), without any uncertainty/variance.
While the improvement in accuracy achieved by the proposed
method over Deep Prior is only 0.68%, it is important to under-
stand that the Deep Prior shows a deviation of 0.6% over 5 dif-
ferent runs and no mechanism is proposed in (Saha et al., 2021)
to decide which run is more accurate than the others. On the
other hand, our method can choose which run is more accurate
for which patch and integrate them into a single result without
any uncertainty. Results obtained using different methods are
shown in Figure 3.

The variation of the result of the proposed method versus patch
length for the Bay Area scene is shown in Table 3. Due to the
smaller size of the Bay Area scene, we vary the patch length
only up to 250 pixels. Best result in terms of sensitivity and
accuracy is obtained using patch length 150 pixels. Quantitative
comparison for the Bay Area scene is shown in Table 4. In
this case also the proposed method yields superior sensitivity,
slightly lower specificity, and superior accuracy than (Saha et
al., 2021). The proposed method also outperforms CVA, AICA
and DCVA. Reference map and the result obtained using the
proposed method are visualized in Figure 4.
1 Datasets: https://citius.usc.es/investigacion/datasets/hyperspectral-

change-detection-dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Visualization of the Santa Barbara scene: (a) pre-change image, (b) post-change image, (c) reference image ( black pixels
are changed, white pixels are unchanged, and gray pixels are unknown), and CD maps: (d) CVA, (e) DCVA, (f) Proposed approach,

i.e., fusion of the untrained models.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-423-2022 | © Author(s) 2022. CC BY 4.0 License.

 
426



(a) (b)

Figure 4. Bay Area scene: (a) reference image (white - unchanged, black - changed, gray - unknown), and (b) CD map obtained by the
proposed method.

Patch length Sensitivity Specificity Acc.
100 88.46 98.62 94.63
150 89.00 98.52 94.77
200 88.27 98.48 94.46
250 89.00 98.53 94.78
300 89.34 98.48 94.88
350 89.64 98.59 95.08
400 88.32 98.59 94.55

Table 1. CD results for the Santa Barbara scene using proposed
method as the patch length is varied.

Method Sensitivity Specificity Acc.
AICA 87.25 94.52 91.66
CVA 76.92 96.69 88.91

DCVA 78.01 93.60 87.47
Deep Prior 87.98 98.57 94.40±0.6
Proposed 89.64 98.59 95.08

Table 2. Quantitative comparison for the Santa Barbara scene.

Patch length Sensitivity Specificity Acc.
100 79.23 97.49 88.08
150 79.92 97.41 88.40
200 79.60 97.47 88.26
250 79.53 97.40 88.20

Table 3. CD results for the Bay Area scene using proposed
method as the patch length is varied.

Method Sensitivity Specificity Acc.
AICA 69.18 97.26 82.80
CVA 74.44 97.54 85.64

DCVA 78.27 92.47 85.16
Deep Prior 78.51 97.86 87.89±1
Proposed 79.92 97.41 88.40

Table 4. Quantitative comparison for the Bay Area scene.

5. CONCLUSION

A model trained on one hyperspectral sensor cannot be reused
on another sensor due to the differences in band composition.
To alleviate this, previous works (Saha et al., 2019) showed that
an untrained deep network, initialized with some weight ini-
tialization technique, can be used for hyperspectral CD. How-
ever, results may vary if untrained networks are slightly per-
turbed/modified. To circumnavigate this drawback and to ex-
ploit different CD maps that can be obtained using different
versions of an untrained network, this work uses a decision fu-
sion method by using patch-wise variance measure. The pro-
posed method clearly improves the result, especially sensitivity
to the changed pixels. In future, we will study the potential of
replacing variance-based method by information theoretic ap-
proaches. We will also extend the method for multi-sensor hy-
perspectral change detection where pre-change and post-change
images are acquired using different hyperspectral sensors.

ACKNOWLEDGEMENTS

The work is jointly supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. [ERC-2016-
StG-714087], Acronym: So2Sat), by the Helmholtz Associ-
ation through the Framework of Helmholtz AI [grant number:
ZT-I-PF-5-01] - Local Unit “Munich Unit @Aeronautics, Space
and Transport (MASTr)” and Helmholtz Excellent Professor-
ship “Data Science in Earth Observation - Big Data Fusion
for Urban Research”(W2-W3-100) and by the German Federal

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-423-2022 | © Author(s) 2022. CC BY 4.0 License.

 
427



Ministry of Education and Research (BMBF) in the framework
of the international future AI lab ”AI4EO – Artificial Intelli-
gence for Earth Observation: Reasoning, Uncertainties, Ethics
and Beyond” (Grant number: 01DD20001).

REFERENCES

Abdi, G., Samadzadegan, F., Reinartz, P., 2018. Deep learning
decision fusion for the classification of urban remote sensing
data. Journal of Applied Remote Sensing, 12(1), 016038.

Appice, A., Di Mauro, N., Lomuscio, F., Malerba, D., 2019.
Empowering change vector analysis with autoencoding in bi-
temporal hyperspectral images. CEUR Workshop Proceedings,
2466.

Cao, Q., Yu, G., Sun, S., Dou, Y., Li, H., Qiao, Z., 2021. Monit-
oring Water Quality of the Haihe River Based on Ground-Based
Hyperspectral Remote Sensing. Water, 14(1), 22.

Chen, Z., Zhou, F., 2019. Multitemporal hyperspectral image
change detection by joint affinity and convolutional neural net-
works. 2019 10th International Workshop on the Analysis of
Multitemporal Remote Sensing Images (MultiTemp), IEEE, 1–
4.

Chevrel, S., Kopackova, V., Fischer, C., Dor, E. B., Adar,
S., Shkolnisky, Y., Misurec, J., 2012. Mapping minerals, ve-
getation health and change detection over the sokolov lig-
nite mine using multidate hyperspectral airborne imagery. 1st
EAGE/GRSG Remote Sensing Workshop, European Association
of Geoscientists & Engineers, cp–305.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet clas-
sification. Proceedings of the IEEE international conference on
computer vision, 1026–1034.

Hirano, A., Madden, M., Welch, R., 2003. Hyperspectral im-
age data for mapping wetland vegetation. Wetlands, 23(2), 436–
448.

Kruse, F. A., Boardman, J. W., Huntington, J. F., 2003. Compar-
ison of airborne hyperspectral data and EO-1 Hyperion for min-
eral mapping. IEEE transactions on Geoscience and Remote
Sensing, 41(6), 1388–1400.

Li, F., Song, M., Chi, J., Cheng, Y., 2021. Ship velocity estim-
ation via images acquired by an unmanned aerial vehicle-based
hyperspectral imaging sensor. Journal of Applied Remote Sens-
ing, 15(3), 032206.
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