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ABSTRACT: 

The spectral mixture analysis (SMA) plays a vital role in spectral data analysis and extraction of subpixel information. However, this 

technique provides only quantitative information regarding the materials’ abundance fractions within the pixel. On the other hand, 

the Bidirectional Reflectance Distribution Function (BRDF) indicates that sub-pixel topography affects the surface’s directional 

reflection to a large extent. Unfortunately, despite the high importance of the BRDF effect and the SMA in remote sensing, only very 

few research works addressed their mutual influence. Thus, in this work, we propose a study that addresses this mutual influence and 

suggests an approach for extracting sub-pixel topographic information from mixed pixels. For this purpose, we conducted two 

multiview imaging experiments under controlled conditions using artificial mixed surfaces. Each surface type is made of two 

materials and has a varying structural pattern. Then we measured the BiConical Reflectance Factor (BCRF) of each surface from 

various viewing zenith angles. Next, we applied spectral unmixing to estimate the abundance fraction of three endmembers (EMs) in 

each surface’s pattern. Finally, we tested the relationship between the sup-pixel topography and the fraction variation vs. the multiple 

imaging directions. The first experiment results showed that multiview spectral measurements allow the separability between 

surfaces combining the same materials’ composition but with different sub-pixel structural arrangements. 

Moreover, such separability is more accurate in the fraction space than in reflectance space. Besides, and most importantly, the 

second experiment revealed exciting outcomes regarding the relationship between the sub-pixel topographic feature and the variation 

of the EM fraction vs. the imaging viewing direction. Specifically, we showed a high correlation between the EMs’ fractions and the 

height of a repetitive element within the sub-pixel topography with a determination coefficient that reaches 0.89.     

1. INTRODUCTION

Hyperspectral imaging provides essential information regarding 

material surfaces’ chemical and physical properties. Such 

valuable information is widely used in many interdisciplinary 

studies and civil and commercial applications (Carrasco et al., 

2003) at various small and global scales (Hussain et al., 2013). 

For example, rich knowledge about the earth’s surface is 

available for scientific research using remotely sensed spectral 

images. However, this data type is usually acquired under 

different conditions and from various sensors with different 

spectral, temporal, and spatial resolutions. Thus, extracting 

information from spectral data is a challenging task. Two main 

effects that increase the complexity of interpreting the data are 

the spectral mixture and the Bidirectional Reflectance 

Distribution Function (BRDF). Mixed pixels contain more than 

one landcover/material type within their area and always exist 

in spectral images due to the typical low spatial resolution. 

Therefore, a helpful way to analyze mixtures is through 

applying spectral unmixing that allows for extracting subpixel 

information from mixed pixels. In particular, spectral unmixing 

allows estimating the fractional abundances corresponding to 

distinct materials, so-called endmembers (EMs) (Kizel and 

Benediktsson, 2020; Kizel and Shoshany, 2018; Shoshany et al., 

2011).  

Usually, the fraction estimation follows a preliminary step for 

EM determinations. Different approaches are available for this 

step. However, the most common approach relies on the 

automatic extraction of the EMs from the data. Well-known 

algorithms such as N-FINDR (Winter and E. Winter, 1999) and 

Vertex Component Analysis (VCA) (Nascimento and Dias, 

2005) exploit a multidimensional geometrical feature of the 

data. A simplex is formed by all data points in N-dimensional 

space (N - number of wavelengths) such that the pixels 

containing the purest EM are located at the extreme points. The 

VCA algorithm is fast and suitable also for data without pure 

pixels due to low spatial resolution (Bioucas-Dias et al., 2012).  

On the other hand, the BRDF effect bears an undesired 

variability in the spectral measurements under various 

geometrical specifications in data acquisition. Therefore, 

researchers have mainly focused on eliminating the variability 

caused by BRDF (Jia et al., 2020) through inverting models to 

characterize the captured surfaces (Zhang et al., 2018). 

However, the BRDF effect combines the material’s properties 

and roughness (Shoshany, 1991). Thus, analyzing the variability 

caused by the BRDF effect can provide valuable information 

regarding the sub-pixel characteristics of the surface. 

Nevertheless, this information is only geometrical regardless of 

the material composition within the pixel. On the other hand, 

spectral unmixing provides sub-pixel information regarding this 

composition, but only quantitatively.     

This work addresses the mutual influence of the spectral 

unmixing and the BRDF effect and studies their combination to 

extract sub-pixel topographic information from mixed pixels.     

2. METHODS

Our main objective is to study the mutual influence of spectral 

unmixing and the BRDF effect to extract sup-pixel topographic 

information from mixed pixels. For this purpose, we created 

artificially hand-made mixed pixels with various sub-pixel 

topographic properties. In particular, we used a background 

made of one material and placed cubes made of another material 

on it. Then, we created two sets of surfaces with a repetitive 

internal topography containing two materials:  

1. Set #1: To create different sub-pixel topography, we

arranged the cubes in four different arrangements varying by
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rotation and the distance between the cubes. Figure 1 

presents the repetitive pattern in the four arrangements. 

2. Set #2: In this set, we focus on a single sub-pixel 

topographic property, precisely the height of the cubes. 

Thus, we created six surfaces with the exact arrangement of 

the cubes on top of the background but at varying heights, as 

Figure 2 presents. 

 

We used each set of surfaces to create a dataset of mixed 

pixels measured from multiple viewing angles as follows:   

1. First, we acquire a spectral image of each surface from 

different viewing angles. 

2. Then, we create mixed pixels from each pattern by sampling 

a region of interest (ROI) representing the repetitive part of 

the pattern and averaging its pixels.  

 

Then, to study the mutual influence of the spectral mixture and 

the BRDF, we analyze each dataset as follows:   

1. Extract the EMs from the pixels of each pattern. For this 

purpose, we examined the VCA and N-FINDR algorithms. 

Currently, we use the original images of repetitive patterns 

(before averaging) for the EM extraction for more accurate 

results.  

2. Apply the spectral unmixing algorithm to estimate fractional 

abundances for each mixed pixel. 

3. Analyze the relationship between the fractions and the sub-

pixel topographic properties of each pattern.   

We conducted the proposed study in two phases. In the first 

phase, we used Set #1 to examine the separability between the 

different patterns by analyzing the spectral reflectance and the 

fractions obtained from the various viewing directions. Then, 

we used Set #2 in the second phase to focus on a single sub-

pixel topographic feature and estimate it by analyzing the 

fraction variation vs. the imaging viewing angle.      

 

 
Figure 1. The repetitive pattern in the four internal arrangments 

that we use to create dataset #1: schematic description of the 

patterns (left column) and the selected corresponding parts from 

the spectral images acquired from a vertical viewing direction 

(right column). 

 

 
Figure 2. The mixed surfaces we used to create dataset #2. The 

repetitive pattern in each surface is marked approximately with 

a red polygon. The heigh of the blue cubes varies from 1 cm (in 

the most left pattern) to 5 cm (in the most right pattern).  

 

Figure 3. An overview of the study’s workflow. 

 

Figure 3 presents the study’s workflow. Besides, in the 

following subsections, we detail each of its steps.  

 

 

2.1 Multiview Imaging  

To understand the mutual influence of the BRDF and the 

spectral mixture, we created two datasets of mixed pixels with 

the previously described internal topographic patterns. For this 

purpose, we captured spectral images of each pattern from 

different viewing angles. The setup specifications, e.g., the 

number of acquired images, the camera positions, and the light 

source, vary between the two datasets.  

We acquired hyperspectral images under controlled conditions, 

including camera positions, light source, patterns, and 

calibration panel. The patterns in each scene have been captured 

from multiple viewing angles.  

We acquired the two datasets in a dark room using the Specim 

IQ hyperspectral camera. This camera employs a push-broom 

line scanner mounted behind the optical lens with an internal 

rotating mechanism. The obtained images have a size 

of 512 512  pixels and 204 spectral bands within 400-

1000nm. The camera’s field of view is 31 31  , and provides 

a spatial resolution of 1mm at a 1m distance. Besides, we used 

the C12 silent halogen lamp provided by Hedler 

(https://www.hedler.com). To retrieve the reflectance values in 

each spectral image, we divided each pixel’s radiance by the 

radiance of the BaSO4 (barium sulfate) calibration panel that 

we placed within the image’s frame. Under these specifications, 

we created two datasets as follows: 

 

Dataset 1: This dataset includes four patterns (Figure 1) of 

green foam cubes arranged on a carton background. We located 

the light at the zenith angle 30
i
 =   and captured each pattern 

from 5 view zenith angles [ 60 , 30 ,0 ,30 ,60 ]
r
 = −  −      at the 

principal plane. At the view angle, 30
r
 = −  , the light source 

and camera coincide, and the camera’s shadow appears on the 

scene. Thus, we located the camera, in this case, near the light 

source with a slight deviation from the principal plane. After 
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selecting and averaging the repetitive pattern area in each 

image, Dataset #1 includes 20 mixed pixels, five per pattern.  

 

Dataset 2: The mixed surfaces are blue foam cubes arranged on 

recycled mat paper sheets in this dataset (Figure 2). We use the 

same cubes’ arrangement in all patterns but with five different 

1,2,3,4,5 [cm], arranged symmetrically with a 1 cm distance 

between each row and column. Figure 4(a) presents one of the 

surfaces with a polygon representing the repetitive pattern. We 

located the camera at a 1m distance from the sampled surface at 

seven view angles [ 60 , 45 , 20 ,0 ,20 ,45 ,60 ]
r
 = − − −  along 

the principal plane. Besides, we placed the light source at a 

zenith angle 30
i
 = . Figure 4(b) demonstrates one of the 

mutual camera-illumination geometries in the imaging setup. 

Finally, after selecting and averaging the repetitive pattern area 

in each image, Dataset #2 includes 35 mixed pixels, seven per 

pattern (cube’s height).  

 

 
Figure 4. Experimental imaging configuration for Dataset #2: 

(a) an example of the surface with 1cm height cubes, the red 

polygon represents the repetitive pattern’s selected region. (b) 

experimental setup for 60° view zenith angle and a pattern with 

4cm height cubes. 

 

2.2 Mixed pixels 

To create mixed pixels from each surface, we first select the 

ROI representing the repetitive pattern from each image. Then, 

we sampled these ROIs manually using MATLAB 2021b. The 

sampled ROI represents the fundamental component of an 

infinite surface with a repeating pattern. Therefore, it simulates 

structures captured at a lower resolution or from a distance. 

Eventually, the spectral mixture is calculated by averaging the 

reflectance values of all pixels within the ROI as follows: 

 1
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Where, R  and 
i
R  are the reflectance spectra of the obtained 

mixed pixel and the i-th pixel, out of n pixels with the ROI, 

respectively. The wavelength   indicates a spectral band.    

 

2.3 EM extraction and Spectral Unmixing 

First, we automatically extracted the EMs from each pattern’s 

pixels (i.e., different viewing angles). For this purpose, we 

examined the VCA and N-FINDR algorithms. Three EMs were 

determined: background, cubes, and shaded areas. Then, we 

applied the unmixing for all mixed pixels. The main objective 

of the unmixing process is to estimate the fractional abundance 

of each EM within the pixel. Given the linear model, the light 

from the captured surface is received as a weighted mixture of 

the EMs. Thus, we represent a mixed spectrum as follows: 

 

r = Ma +w  (2) 

Where 1br   is an observed reflectance spectrum of a pixel, 
b dM  is a matrix containing the EMs’ reflectance, 
1da  is the fractional abundance vector, bw   is a 

systematic noise (assumed to distribute as mean-zero Gaussian 

function), and ,d b  are the number of EMs and spectral bands, 

respectively. Additionally, the estimation of fractional 

abundance vector, â , is subject to sum-to-one and 

nonnegativity constraints, i.e., 
1

ˆ ˆ1 and 0
D

i i
i

 
=

  . 

 

The unmixing process estimates a vector of fractional 

abundances corresponding to the EM set by solving an 

optimization problem that minimizes the spectral distance 

between the measured and reconstructed spectra. Different 

methods for unmixing vary mainly according to the metric used 

as an objective function and the type of optimization. We 

examined the two methods: Vectorized Projected Gradient 

Descent Unmixing (VPGDU) algorithm (Kizel et al., 2017), and 

SUNSAL (Bioucas-Dias and Figueiredo, 2010) sparse unmixing 

by variable splitting and augmented Lagrangian. The VPGDU 

algorithm is robust to amplitude variation, as may be caused by 

illumination changes. This robustness is an advantage over the 

SUNSAL and the classical unmixing techniques such as Fully 

Constrained Least Squares FCLS (Heinz and Chang, 2001). On 

the other hand, SUNSAL is fast and computationally light.  

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

We intended to understand whether spectral mixture analysis 

combined with a multiview imaging can assist in understanding 

sub-pixel topography within mixed pixels. Thus, we designed 

two experiments using the previously described Dataset #1 and 

Dataset #2. In both sets, the hand-made mixed pixels include 

background cubes and a mutual shadowing effect. Thus, during 

the unmixing process, we consider that each mixed pixel has 

three EMs. Moreover, we hypothesize that the mutual shadow 

and the obstructed parts of cubes or background are the most 

important aspects to investigate in this study. Therefore, 

multiview variation of these EMs will be addressed in the 

following two experiments. 

 

3.1 Experiment 1:  Understanding the separability between 

sub-pixel topography patterns 

Analyzing mixed-pixel data captured from different viewing 

angles has the potential to determine pattern variation and 

accordingly provide valuable information regarding their sub-

pixel topography.  

In this experiment, we used the mixed pixels from Dataset #1. 

Recall that this set has 20 mixed pixels, each five corresponding 

to a particular pattern we captured from five different viewing 

angles. First, automatically extracted the EMs for each pattern. 

Figure 5 presents the result for the examined four patterns in 

Dataset #1. Then, we estimate the abundance fractions of the 

EMs in each mixed pixel.   

The results in Figure 5 show that the extracted EMs for the 

background and the cube vary between the different patterns. 

However, all the patterns are made of the same two materials. 

Thus, this variation occurs only due to the sup-pixel topography 

variation between the patterns. Therefore, the extracted EMs 

from the different patterns can be the first indicator for the sub-

pixel topography within mixed pixels.  
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Figure 5. EM extracted by NFINDR algorithm, (a) example of 

pattern A measured pixels and EMs; extracted EMs for A-D 

patterns: (b) #1 background, (c) #2 cube, (d)#3 shadowed areas. 

 

 

 

 

Figure 6. Top left: reflectance values at 525.1 nm as measured 

from the four patterns, A, B, C, and D, measured from the 

different viewing angles. The other three tiles present the 

corresponding estimated fraction for the EMs: EM#1-

background, #2-cubes, #3-shadowed areas. 

 

Next, we observed the obtained reflectance and EMs fractions 

for each pattern from the different viewing angles. The plots in 

Figure 6 show that the results vary between the different 

patterns. Again, since all patterns are made of the same two 

materials, this variation indicates a variation in the subpixel 

topography.   

Then, for a quantitative assessment of this indication, we 

measured the separability between the patterns in the reflectance 

and the fraction domains as follows: 

Given two signals, 
1
s  and 

1 2
,s s  we compute the Euclidean 

distance (ED) between them as follows: 

 

 
1 21 2

( , ) ,ED s s s s= −  (3) 

 

where  denotes the 2 norm. A signal corresponding to a 

particular pattern in a specific band in the spectral domain 

includes all the reflectance values measured from the different 

viewing angles (i.e., [ 60 , 30 ,0 ,30 ,60 ]
r
 = −  −     ). Similarly, 

the corresponding signal in the fraction domain includes all the 

estimated fractions of the EM in the different viewing angles.      

 

Then, to compute the separability between two patterns, we 

compute the ED between them in all spectral bands and EM 

fractions. Next, to allow comparison between the two domains, 

we normalized the ED values in each domain by computing as 

follows:  

 * ED ED
ED

ED
 (4) 

where, ED  and 
*ED  are the mean and normalized ED values. 

Finally, we compute the separability metric between the two 

patterns in the spectral domain as the ED with the maximal 

value over all the spectral bands. Similarly, the separability 

metric in the fraction’s domain is the ED with the maximal one 

over all the EMs. Table 1 summarizes the results that show that 

the separability varies between the patterns according to their 

internal topographic variation. The separability is mainly higher 

for pairs that vary in rotation and spacing between the cubes. 

Besides, except for the case A-C, the separability in the fraction 

domain is higher. Thus, we believe that the variation in the 

fraction values over the different viewing angles is a better 

indicator for the sub-pixel topography.  

 

Variation Pattern 
Max ED 

Spectral Fractions 

rotation A-B 0.52 0.55 

space A-C 0.70 0.38 

rotation&space A-D 0.59 0.67 

rotation&space B-C 0.83 0.86 

space B-D 0.28 0.31 

rotation C-D 0.35 0.36 

Table 1. Separability between patterns in spectral and fraction 

domains. 

 

3.2 Experiment 2: estimating topographic sub-pixel 

information 

Encouraged by the first experiment’s results, we focused on one 

sub-pixel topographic feature in this experiment. In particular, 

address the variation in cubes height within the mixed pixels. 

Thus, we use the mixed pixels from Dataset #2. As mentioned 

before, the patterns with five different heights of 1,2,3,4,5[cm] 

are arranged similarly with a 1cm distance at five rows and five 

columns in this set. In this way, the representative part of the 

infinite pattern is at the center of a pattern Figure 4(a)). First, we 

automatically extracted three EMs for each pattern. Figure 7 

presents the results. The shape of the EMs from the different 

patterns are highly similar. However, the magnitude of the 

extracted EMs for the cube varies significantly between the 
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different patterns. To test the relationship between EM 

magnitude and the sub-pixel topographic feature, we plot the 

cube’s heigh vs. the reflectance in the spectral band 464 nm and 

compute their correlation. Figure 8 presents the results that 

show a correlation of 0.89 between the cube’s EMs reflectance 

magnitude and the cube’s height.  

Then, we tested the correlation between statistical features of 

the EMs fraction and the cube’s height in each pattern. In 

particular, we tested how the mean and maximal values of the 

cube and shadow EMs over the different viewing angles vary as 

a function of the cubes. Figure 9 shows the data plots and 

correlation coefficients. Together with those in Figure 8, these 

results significantly indicate that analyzing the measurements of 

mixed pixels from various viewing angles assets in extraction 

information regarding the sup-pixel topography. 

 

 
Figure 7. EMs extracted from each pattern using VCA:  

background (top), cubes (middle), and shadow (bottom). 

 

Figure 8. A 2D plot of the cube’s EM reflectance at 464 

nm vs. its height in each pattern. The coefficient of 

determination, R2, shows a significant relationship 

between them. 
 

 

 

 
 

Figure 9. 2D plot of the EMs’ fraction statistic features 

vs. the cubes’ height in each pattern. (a) and (b), fraction 

of the cube and shadow EMs, respectively from zenith 

view image. (c) and (d), the mean fraction of the cube and 

shadow EMs, respectively. The coefficient of 

determination between the statistical feature and the 

cube’s height presented as R2. 
 

4. CONCLUSIONS 

We presented a study addressing the mutual influence of the 

spectral mixture and the BRDF effect. In particular, we studied 

the option of extracting information regarding the sub-pixel 

topography within mixed pixels by analyzing multiview images 
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of such pixels from various viewing directions. We 

hypothesized that the sub-pixel topography of a mixed pixel 

influences its BRDF. Thus, the variability of the fractions vs. 

the imaging viewing angle should indicate some of this internal 

topography. To test this hypothesis, we conducted experiments 

with data sets of artificially created mixed pixels that involve 

different patterns of a sub-pixel topography. The results support 

our assumptions and clearly show a correlation between the 

sup-pixel topography of mixed pixels and their fraction 

variability when observed from different directions. These 

promising results indicate that spectral measurements can help 

extract topographic information from surfaces with internal 

patterns more minor than the image resolution. However, we 

should invest many efforts to achieve this objective. Thus, we 

will examine the proposed study on natural mixed surfaces in 

future work.      
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