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ABSTRACT:

Mapping coastal habitats is essential to their preservation, but the presence of water hinders seamless data collection over land-water
interfaces. Thanks to its dual-wavelength and optical properties, topo-bathymetric lidar can address this task efficiently.
Topo-bathymetric lidar waveforms contain relevant information to classify land and water covers automatically but are rarely
analysed for both infrared and green wavelengths. The present study introduces a point-based approach for the classification of
coastal habitats using bispectral waveforms of topo-bathymetric lidar surveys and machine learning. Spectral features and differential
elevations are fed to a random forest algorithm to produce three-dimensional classified point clouds of 17 land and sea covers. The
resulting map reaches an overall accuracy of 86%, and 65% of the prediction probabilities are above 0.60. Using this prediction
confidence, it is possible to map coastal habitats and eliminate the classification errors due to noise in the data, that generate a clear
tendency of the algorithm to over-estimate some classes at the expense of some others. By filtering out points with a low prediction
confidence (under 0.7), the classification can be highly improved and reach an overall accuracy of 97%.

1. INTRODUCTION

The global coastal population has been growing fast for a few
decades. In 2003, 41% of the world's global population lived
within 100 km of the coastline (UNPD, 2005), and 21 of the 33
world’s megacities were located on coastal fringes. Moreover,
Martínez et al. (2007) showed that the wide diversity of
ecosystems located at the interface between the Earth’s oceans
and continents produced 77% of the estimated economic value
of the services and goods provided by ecosystems around the
world in 2007, based on the method in (Costanza et al, 1997).
All of these observations converge to show how ecologically,
socially and economically important coastal ecosystems are
(Martínez et al., 2007, Costanza et al., 1997 and Barbier et al.,
2011). However, marine and terrestrial habitats are threatened
by climate change and anthropic pressure (Barbier et al., 2011),
and numerous studies agree that their evolution is difficult to
anticipate and must be monitored to ensure continual support to
littoral communities (Barbier et al., 20011, Martínez et al.,
2007, Costanza et al., 1997).
Currently, the observation of coastal ecosystems without
interruption between marine and terrestrial domains remains a
methodological challenge due to the presence of water, which
complicates their exploration with passive imagery (Kutser et
al., 2020), and due to their vast diversity. Topo-bathymetric lidar
is particularly suited to the task, as an active sensor able to
penetrate the water surface and collect information both on
ground and on the sea- or river-bed (Philpot, 2019, Lague and
Feldmann, 2020). Lidar surveys of coastal areas are mostly used
as 2D rasters (Wedding et al., 2008), or 3D point clouds
(Hansen et al., 2021, Tulldahl and Wikström, 2012), that are
classified to study given land or sea covers. Nonetheless, the
origin of lidar data, which lies in signal processing of the lidar
waveforms - the complete laser signal backscattered by the

environment - and its potential contribution to coastal habitats
monitoring remain underexplored. Lidar waveform analysis has
been developed for topographic lidar data classification (Mallet
and Bretar, 2009, Mallet et al., 2011, Reitberger et al., 2009,
Zorzi et al., 2019), but little methodological research on the
exploitation of bathymetric or topo-bathymetric waveforms
exists. Yet, these data include more detailed information on the
physical properties of the environment surveyed than the
elevation contained in rasters or point clouds, by registering also
the way the Earth’s covers interact with light. This information
is particularly useful to classify covers that have distinct
spectral signatures (e.g., Letard et al., 2022) or subtle geometric
features at decimeter scale that discrete echoes cannot capture
(e.g. Launeau et al., 2018).
Exploiting lidar data requires adapted processing methods, as
this sensor produces rich but complex information on the
environment, with sometimes dozens of point records and
several waveforms of up to a thousand of samples per square
metre. Although efficient tools exist to process lidar derived
rasters or point clouds, methods to efficiently exploit the
knowledge enclosed by the waveforms are still expected, as
they remain mainly experimental.
In this study, we propose a topo-bathymetric lidar
waveform-based coastal habitat classification and explore its
abilities to map 17 different types of marine and terrestrial
covers. This method relies on the use of a random forest
algorithm to classify features extracted from green and infrared
(IR) lidar waveforms. The article focuses on addressing three
main questions: (1) are topo-bathymetric lidar waveforms
usable for detailed coastal habitat mapping?, (2) what is the
added value of bispectral lidar data compared to a simple
bathymetric lidar survey? and (3) what prediction confidence
can we expect of our algorithm?
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2. MATERIALS AND STUDY AREA

In this section, we briefly recall the operating principles of
full-waveform lidar and describe our datasets.

2.1 Full-waveform lidar

Airborne lidar sensors emit laser pulses towards the ground and
record the backscattered signal, from which two types of data
can be obtained: lidar waveforms and lidar point clouds.
Waveforms are time series of the complete backscattered signal,
while point clouds are obtained through processing of the
waveforms: each major peak in the waveform corresponds to an
object encountered by the laser beam. The coordinates of these
obstacles can be computed using the time range for the laser
signal to travel back and forth, which enables the reconstitution
of the whole scene surveyed into 3D point clouds. Topographic
lidars operate with an IR laser, which is unable to travel through
water surfaces. Topo-bathymetric lidars use a green laser in
addition to the IR one, green lasers being able to reach the
ground below the water surface. They are thus able to collect
data on marine and terrestrial environments, without
interruption between submerged or emerged domains.
Lidar waveforms contain important information on the physical
properties of the objects encountered by the laser emitted,
namely through the way light is reflected by them. They can
therefore be used to map the Earth’s covers (Collin et al., 2012,
Letard et al., 2022). Each peak in the waveform has a different
shape depending on what it originated from on the ground.
Typical bathymetric waveforms have the particularity of
integrating three main components: a peak produced by the
water surface and elongated by a water column component, and
another peak corresponding to the bottom if it is reached. Two
typical waveform examples are presented in Figure 1.

Figure 1. Typical example of a) a bathymetric waveform and b)
a topographic waveform.

2.2 Lidar dataset

The lidar dataset was acquired in September 2019 for the Litto
3DⓇ (Shom et al., 2021) project operated by the French
Hydrographic Office (Shom). It was collected with a Leica
HawkEye III full-waveform topo-bathymetric lidar using
wavelengths at 1064 nm and 515 nm and collecting data with an
elliptic pattern. Each green waveform and every 32 IR
waveforms were recorded with a time frequency of 1.8 GHz,
resulting in a backscattered intensity value every 556
picoseconds. The survey was led with a constant laser
amplification, and the intensity of each emitted pulse linked to a
waveform is available. There are on average 6.7 green
waveforms and 0.5 IR waveforms per square metre. The green
laser’s spot size diameter is 1.8 m, while the IR laser’s is 0.2 m.

2.3 Study area and ground-truth data acquisition

The study area is located on the coasts of Brittany, France in a
town called Sables d’Or les Pins (48.6373, -2.4067). It features
typical coastal habitats such as salt marshes, seagrasses, sandy

dunes, sandy beaches, pebble beaches, pine trees or
macroalgaes. It is presented in Figure 2.
A ground-truth data acquisition campaign took place in 2021 to
gather knowledge on the land and sea covers in this area,
through unmanned airborne vehicles (UAV) and unmanned
surface vehicle (USV) RGB imagery. Figure 2 shows the areas
covered by these acquisitions. The UAV used was a RGB DJI
Phantom 4 Pro V2, and the USV was a PowerVision
PowerDolphin. The UAV flights were calibrated with a total of
55 ground control points. 150 geolocated photoquadrats were
also collected on site. Photogrammetric reconstructions of the
UAV images, and an RGB orthoimage from 2014 were used to
create the labelled lidar training and test datasets (necessary to
perform habitat classification) via photointerpretation.

Figure 2. The area studied, and the location of the 6
ground-truth data acquisitions (WGS 84/UTM 30N).

3. METHOD

In this study, we evaluate a point-based classification method
relying on the classification of features extracted from bispectral
waveforms. Green and IR waveforms are first processed to
extract features describing them. The attributes obtained with
each wavelength are then matched in a single dataset and fed to
a random forest algorithm to be classified into 16 classes. These
classes are presented and illustrated in Table 1.

Class name Illustration Class name Illustration

Algae Seagrass

Submerged
sand

Submerged
rock

Rock Pebble

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-463-2022 | © Author(s) 2022. CC BY 4.0 License.

 
464



Wet sand Surf zone

Dry sand Artificial
ground

Boat Roof

Car Salt marsh

Low
vegetation

(lawn)

Intermediate
vegetation

(shrub)

Tree

Table 1. Presentation of the land and sea covers classes studied.

3.1 Extraction of spectral features from the lidar
waveforms and constitution of a bispectral dataset

To extract parameters describing the ground modelled by the
waveforms, the peaks corresponding to the ground cover had to
be isolated from the noise (topographic waveforms) and from
the water components (bathymetric covers). All waveforms are
first divided by the emitted intensity of the laser pulse they
reflected. They are then smoothed using a Savitzky-Golay filter
to attenuate the noise. Green and IR waveforms were not
processed the same way since they do not have the same
behaviour in the presence of water. In both cases, the
first-derivative of the waveform was computed and thresholded
in order to detect peaks in the signals and isolate the noise.
For green waveforms, if more than one peak were detected,
features were computed on the group of peaks located after this
first peak. The exponential decay of the lidar waveform under
the influence of water was corrected as explained in (Letard et
al., 2021). If only one peak was identified, features were
computed on this peak.
For IR waveforms, features were computed on the group of
peaks identified. The features are presented in Table 2.

Feature name Definition
Complexity Number of sign changes of the first derivative

Mean Mean pseudo-reflectance
Median Median pseudo-reflectance

Maximum Maximum pseudo-reflectance
Standard
deviation Standard deviation of the pseudo-reflectance

Skewness Skewness of the peak
Kurtosis Kurtosis of the peak

Area under curve
(AUC) Area under the curve formed by the peak

Time range Time duration of the peak

Height Difference of elevation between the beginning
and the end of the peak

Position of the
maximum

Position of the maximum in the peak (in
sample indices)

Difference of
elevation (DZ)

Difference between the elevation of the IR
return and the green return

Table 2. Definition of the features extracted in the waveforms.

These features were computed for each waveform, resulting in
two sets of waveform features: a green waveform features
dataset and an IR waveform features dataset. They were
combined into a bispectral dataset using a nearest neighbour
matching method: each green waveform features set was
associated to its closest neighbour in the IR waveforms features
dataset. This was made using the software “CloudCompare”
(Girardeau-Montaut, 2016), which relies on the euclidean 3D
distance of each point to the rest of the cloud’s components to
find its nearest neighbour.

3.2 Random forest classification

The features were computed as attributes of the points forming
the two point clouds, in order to avoid any information loss that
could occur when rasterizing the data. These point clouds were
then directly classified into the 16 classes defined above.
A random forest classifier was chosen for its performance on
multiclass problems implying dozens of features and its
robustness to overfitting. The possibility to retrieve feature
importance and prediction probability made it particularly
suited to our needs. This algorithm has also been tested multiple
times in 3D point clouds classification research, with consistent
observations of high accuracy in land cover identification (Yan
et al., 2015, Chehata et al., 2009). The random forest model
employed was set to contain 150 trees and classical parameters.
We used the implementation of the “scikit-learn” library
(Pedregosa et al., 2011).
A set of 1000 samples of each class was used to train the model.
Another set of 500 distinct samples of each class were then used
to assess the quality of the model’s predictions. These samples
form the training and test datasets of 16000 and 8000 feature
sets respectively, that are shown in Figure 3.

Figure 3. Distribution of the distinct a) train and b) test samples
across the studied area (the natural colored imagery was

acquired four years prior to the lidar survey).
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3.3 Classification result assessment

To quantify the performances of our classifier, the overall
accuracy (proportion of correct predictions, best when its value
is 1), the average precision (proportion of correct detections of
each label, best when its value is 1), the average recall
(proportion of points of each label that are identified correctly,
best when its value is 1) and the average F-score (combination
of precision and recall, best when its value is 1) were computed
for each classification on the test dataset (data that were never
seen by the algorithm during training).
A class-wise analysis was also performed, by detailing the
metrics obtained for each class for each experiment.

3.4 Feature selection

To avoid potential negative feedback on the classification
accuracy due to information redundancy among the 24
predictors, an importance analysis was performed to select the
most relevant attributes for the final habitat map. To evaluate
the contribution of each predictor to the overall classification
accuracy, they were each successively dropped to compare the
overall accuracy obtained without them to the reference
accuracy obtained on the complete set of features. The
predictors that contributed negatively to the classification
accuracy were removed from the classification attributes.

3.5 Production of a 3D habitat classification

The output of our method consisted in a set of labelled
waveform features vectors. Using the coordinates of each
waveform, this dataset was turned into a 3D point cloud of the
terrestrial and marine habitats of Sables d’Or les Pins.

4. RESULTS

4.1 Results obtained with different sets of predictors

Classification experiments were led on five different sets of
predictors in order to evaluate their relevance and added-value.
These five sets are the following:

- all green waveform features (11 features)
- all IR waveform features (11 features)
- DZ (one feature only)
- green and IR waveform features (22 features)
- all waveform features, plus DZ (23 features)

The performances of the classifications obtained for these sets
are presented in Table 3.

Model OA Precision Recall F-score
Green 0.823 0.825 0.823 0.821

IR 0.315 0.309 0.314 0.292
DZ 0.216 0.218 0.215 0.216

Green + IR 0.846 0.85 0.846 0.842
Green + IR +DZ 0.848 0.854 0.848 0.843

Table 3. Classification performances for different predictors.

Overall, the most relevant predictors for the classification of
coastal land and sea covers are descriptors of the green lidar
waveforms. IR data or differential elevation values appear to
misclassify more than two thirds of the points.

4.2 Classification performances difference between
both wavelengths

Since each wavelength of the topo-bathymetric lidar was
designed to survey a specific type of environment (IR laser for
topography and green laser for bathymetry), we performed an
in-depth analysis of the classification results obtained using
successively green data only and green + IR data. This analysis
features the mean precision and recall obtained for each class.
It allowed us to observe which type of habitat was best
described by each wavelength. The mean prediction confidence
obtained for each point is also taken into account, in order to
better understand the potential classification errors and what
they imply. This prediction confidence corresponds to the
probability of membership of each point to the class it was
assigned. The complete class-wise analysis conducted for the
green model, and the Green + IR + DZ model are presented in
Figure 4.

Figure 4. Class-wise classification metrics obtained when using
a) green and b) bispectral waveform features as predictors.

The use of green waveform parameters produced an accurate
labelling, though the algorithm showed weaker performances on
topographic classes as lawn and artificial ground. The
combination of both wavelengths and DZ produces a more
accurate result and improves the recall of every class except low
vegetation (lawn). Class-wise recall and precision values reveal
that some classes were overestimated at the expense of others.
This is the case of submerged rock, algae and lawn, which have
lower recall values than precision.
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4.3 Bispectral dataset classification

To generate the final coastal habitat classification, we analysed
the contribution of each feature to the overall accuracy, and
excluded from the predictors the features that impacted it
negatively: green waveforms’ skewness, IR waveforms’ AUC,
IR waveforms’ skewness, IR waveforms’ maximum and IR
waveforms’ mean. The metrics and the map obtained with the
final set of features are presented in Table 5 and Figure 5.

OA Precision Recall F-score
0.856 0.862 0.856 0.852

Table 5. Performance metrics obtained after selecting the
features based on their contribution to the classification.

Selecting attributes based on their importance makes the overall
accuracy reach 86%. Globally, the classifier’s tendency to
overestimate submerged rock or algae identified with the low
recall in Figure 4 is observable in Figure 5, where these classes
respectively invade the seagrass meadow and the surf zone.

Figure 5. Coastal habitats map obtained when classifying a
selected set of bispectral waveform features.

Other obvious confusions exist between rock and dry sand, or
submerged rock and surf zone or submerged sediment. They are
also revealed by the precision and recall values of these classes
in Table 4. One of the main confusions is between pebble and
sand; yet it is not as clearly quantified by the metrics.

4.4 Prediction confidence analysis

To further assess the abilities of our method to classify land and
sea covers, we analysed the prediction confidence across the
studied area. Figure 6 shows the maps obtained when setting a
confidence threshold, below which the points are labelled as
unclassified. Most points are kept with a threshold set at 70%
(which means the probability that the point belongs to the class
it was given is at least 70%). This is in line with the mean

confidence of 77% obtained on the test dataset (see Figure 4).
However, when the threshold is increased at 90%, more
complex areas, mainly at the interface between different classes,
disappear, as they are classified with a lower confidence.

Figure 6. Land and sea covers map obtained at a) a 70%
confidence level and b) a 90% confidence level.

A closer look at the misclassified samples shows that the
confidence level is globally lower for them. Indeed, on the test
dataset, samples that were wrongfully classified have a median
confidence of 47% with a standard deviation of 17%. The
overall accuracy values obtained when filtering the points based
on their confidence predictions confirm that misclassified points
can be discarded using this criteria: Table 6 presents the
accuracies obtained for different confidence thresholds.

Threshold 0.6 0.7 0.8 0.9
OA 0.95 0.97 0.98 0.99

Table 5. Overall accuracy of the resulting classification
depending on the prediction confidence threshold.

5. DISCUSSION

5.1 Usability of full-waveform lidar for coastal habitat
mapping

The final result obtained confirms the observations of (Mallet et
al., 2011, Letard et al., 2022, Collin et al., 2012) and the
potential of lidar waveforms for classification tasks. Here, a
single dataset made the classification of 17 different land and
sea covers possible with high accuracy (86%, see Table 4). The
resulting 3D map is presented in Figure 7. It is dense and has a
high spatial resolution, suited to the realisation of ecological
assessments such as ecosystem services evaluation, as
performed in Martínez et al. (2007) and Costanza et al. (1997).
Considering the thematic objectives of this research, the results
are promising, since all habitats that provide goods and services
are described with a relatively high precision (on average, 87%,
see Figure 4) and in 3D, contrary to other methods developed in
existing papers (Collin et al., 2012, Letard et al., 2021).
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Figure 7. Resulting 3D point cloud of a coastal area and its habitats classified with full-waveform topo-bathymetric lidar

One of the main objectives of this study was to develop a
method for seamless spatial modelisation of marine and
terrestrial habitats. Here, the land-water continuum is classified
without interruption, which is a key methodological aspect of
coastal habitat monitoring (Collin et al., 2012). Figure 7 shows
that the output of the classification produces an uninterrupted
restitution of the land-water interface. However, our approach
has limitations that necessitate further investigation: the
classifier has a tendency to overestimate algae at the expense of
seagrass, and pebble at the expense of sand, for example, as
observed in previous research (Letard et al. 2022). Even though
these classes are close semantically and can have similar
waveform signatures due to their size, physical properties, and
texture relative to the laser spot size, a better distinction is
needed for ecological applications. Boat and car are also often
falsely detected. Figures 5 and 7 illustrate well this issue, as a
great number of points are classified as car on land, and part of
the boulders of the dyke are labelled as boat. Figure 8 focuses
on the sandy dune, which features many false detections of car.

Figure 8. Extract of the resulting 3D classification: the sandy
dune of Sables d’Or les Pins and its surroundings.

These errors may be explained by the albedo of cars and boats,
which can vary considerably between two different types of
vehicles. The wide colour spectrum they can have is difficult to
model in a training dataset which can lead the classifier to learn
confused information. The procedure to adopt with such classes
in order not to compromise the wider objective - ecological
monitoring - should be further discussed. These classes could be
merged in a more global vehicles class, or an unclassified class
could be added to handle unusual feature vectors and avoid their
detection at the expense of natural habitats mapping, as in
Figure 8 where the sandy dune - a key ecosystem - is mapped as
car. Despite these mistakes, the possibility to have 3D
assessments of the spatial repartition of different ecosystems
already bears encouraging perspectives for coastal ecology, and
could enhance results outlined by previous studies using
rasterized topo-bathymetric lidar data (Wedding et al., 2008,
Collin et al., 2012). The highly informative content of lidar
waveforms, already stated in existing research on the topic
(Mallet et al., 2011, Collin et al., 2012) is illustrated by their
constant contribution to the resulting classification accuracy
(Table 3). Lidar waveforms contain enough information to

describe surface covers, despite their lack of information on
their neighbourhood’s geometry and spatial repartition (Table
3). This loss of spatial context information - compared to point
cloud classification techniques involving neighbourhoods
(Brodu and Lague, 2012) - is also one of the strengths of
waveform-based processing. It avoids spatial averaging of
information that can result in classification artefacts depending
on the neighbourhood radius defined (Brodu and Lague, 2012).
Classifications based on waveforms and not on spatial context
may consequently gain in horizontal resolution, keeping in mind
the influence of the laser’s footprint diameter (Letard et al.,
2022). However, both wavelengths do not perform equally, as
expected since they were each specifically designed for
different environments (Philpot, 2019). Infrared waveforms
cannot be used alone to study both dry and wet environments:
the metrics obtained for the IR model (Table 3) quantify the
limitations of topographic lidar for the survey of highly diverse
environments, and corroborates previous research results
(Letard et al. 2022). Green lidar waveform features perform
better: their classification reaches 82% of overall accuracy, and
similar values of precision and recall. Their ability to label some
classes of ground is limited, which is why dual-wavelength
datasets are relevant.

5.2 Contribution of the bispectral information

The combination of infrared and green datasets produces the
most accurate classification overall, as in (Letard et al., 2022).
The addition of the infrared features to the green parameters
improves the distinction of the different types of grounds, and
results in an increase of 3% of the overall accuracy, precision
and recall. This can be explained by the properties of the lidar
system: the infrared laser modelises a more concise and precise
surface, while the larger size of the green laser may sometimes
result in the mixing of different land covers into one single
return, but is able to penetrate through water (Philpot, 2019).
We suggest that the combination of two types of spot sizes and
wavelengths optimises the information collected on a given area
in terms of albedo, water content and surface rugosity, which all
impact the waveform and characterise natural surfaces.
Having two different lasers also provides a good understanding
of the vertical complexity of the scene (Collin et al., 2012).
Surfaces are sampled with varying sizes of laser beams thanks
to the dual-laser system. A wider footprint hits a wider portion
of surface at a time: it can mix information about several layers
of covers and create intermediate points between the canopy
and the ground. This phenomenon is documented in all laser
scanning systems (Brodu and Lague, 2012). The smaller
footprint of the infrared laser may not alway penetrate through
dense covers, but creates less mixed points. The combination of
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both sources of data results in local differences of elevation and
a greater vertical density over more complex surface covers and
non planar areas. Bispectral lidar thus gives a more thorough
review of the vertical structure of the environment, which can
explain the improvement of the classification accuracy (+0.2%)
when adding DZ to the predictors. Using DZ is also a way of
including spatial context data, which is particularly contributive
in point clouds classification (Brodu and Lague, 2012), to the
model, without making it too dependent on the training area or
involving neighbours.
Finally, the few predictors discarded after the importance
analysis - green waveforms’ skewness, IR waveforms’ AUC,
skewness, maximum and mean - show that both wavelengths
contain relevant information. They also confirm the
theoretically more exhaustive nature of the green waveform.
Indeed, infrared waveforms seem to contain less essential
details on the surveyed scene, as most of the features dropped
after this step concerned the characteristics of the infrared
return, whereas nearly all descriptive parameters of the green
returns were useful to the random forest model.

5.3 Classification algorithm and prediction confidence

Overall, our observations corroborate existing research on the
classification of lidar data using random forest algorithms (Yan
et al., 2015, Hansen et al., 2021, Letard et al., 2022). As
documented in (Letard et al., 2022), the model was quickly
applied to a great number of features and points, and shows a
good ability to exploit information and detect the 17 classes.
The average prediction probability is 77%. This criteria and the
qualitative results in Figures 5 and 6 outside the test dataset
show that the classifier is robust to overfitting and is
generalisable to a wider scene. The average prediction
confidence being high, it can be used to filter the results and
preserve the overall quality of the map even if it means
compromising on the 3D density in some areas, as introduced
by Brodu and Lague (2012). Table 5 and Figure 6 show how
points can be removed by applying a confidence criteria in order
to prioritise solid predictions, and thus improve the overall
accuracy, as in Brodu and Lague (2012). The points affected by
this filtering step give indications on the strengths and
weaknesses of the random forest model. Misclassified points
with high prediction probability are evidence of training errors.
This is the case of the false detections of submerged rock along
the surf zone, which Figure 9 shows more clearly. In Figure 9,
the false detections of submerged rock are located along the surf
zone points. The submerged rocks detected next to the rocks in
the foreground are true positives. These mislabelled points have
a confidence value higher than 90%, as Figure 6 b) reveals,
which means that their descriptive features correspond to the
usual range of statistics describing submerged rock. In this case,
further investigation on the most distinctive feature of
submerged rock could help identify the origin of the issue. A
hypothesis could be that the similar DZ (i.e. water depth) of all
the samples of submerged rock in the scene introduces a bias
that causes the surf zone to be confused for submerged rock.

Figure 9. Extract of the resulting 3D classification: the
land-water interface and its habitats.

The prediction confidence is also lower for areas at the interface
between very distinct environments (Figure 6.b), where the
waveforms might integrate mixed information due to the size of
the laser spots. The same issue was documented in Brodu and
Lague (2012) in 3D terrestrial laser scanning data classification.
These areas were less documented in our training data, and the
prediction probability underlines this lower confidence.
On the other hand, errors made with low confidence reveal
poorly represented ranges of values among the training dataset,
that are difficult to place in the possible labels. They reveal less
about the training process than about the quality of the dataset.
Brodu and Lague (2012) identify that some areas of 3D point
clouds can have lower classification confidence due to a smaller
point density compared to the rest of the scene. In their case, the
classifier relies on geometrical features, and this difference in
the dataset’s constitution explains why their features are not as
distinctive. In our case, outliers and erratic values of intensity or
elevation in the data can be difficult to classify correctly, since
they are not included in the training data, that are rigorously
selected for their representativity of each class. In this respect,
our results illustrate how important the quality of the lidar
dataset is for classification tasks. Vertical or radiometric
calibration issues can severely impact the possibilities to detect
the nature of the surface, as we can see in Figure 5, and as
suggested in Brodu and Lague (2012). Flight lines can be
recognized through the classification obtained around the salt
marsh and on the beach between the boat moorings and the
dune. In our dataset, these lines had saturated intensities
difficult to interpret, and the elevations at the interface between
flight lines differed by several centimetres. The possibility to
analyse the prediction confidence is thus a great indicator of the
potential biases in the method. It also offers the possibility to
improve the classification accuracy (Brodu and Lague, 2012):
more than 10% of OA can be gained thanks to confidence-based
filtering (see Table 5).

6. CONCLUSION AND OUTLOOK

In this article, we presented a method to map terrestrial and
underwater habitats using a single source of data: full-waveform
topobathymetric lidar. Our results show how fit this sensor is to
survey diverse environments: using a random forest algorithm,
we obtain classification accuracies above 85% with a mean
prediction confidence of 77%. By filtering predictions
depending on their classification confidence, the quality of the
resulting map can be increased by up to 10%. Computing the
prediction confidence also gives an interesting insight on the
origin of the classification errors, which either reveal training
issues, or erratic values in the initial dataset. These could be
tackled with a deeper analysis of the most descriptive features
for each class, and with particular attention to the calibration of
the dataset and the definition of the classes during training. In
the end, we obtain an interesting 3D map of 17 different land
and sea covers that has potential for future ecological
assessments. The presence of vertical structure information
through the different spatial repartition of the points between
the two wavelengths makes this result encouraging for the
ecological monitoring of coastal areas. Indeed, combining
vertical structure information to the knowledge waveforms
provide on the physical properties of the environment could
serve as ecosystem services proxy data. Lidar waveform
processing also enables a finer horizontal resolution by avoiding
spatial averaging of information. In future work, classifying
each peak in the waveforms independently could improve the
vertical density of the map to further help with ecosystem
services valuation.
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