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ABSTRACT: Seasonal variations result in hydrophytes and undrained hydric soil changes in wetland areas, which lead to a 

dynamic environment that makes wetland classification challenging. This study aims to explore the applicability of multi-seasonal 

Gray-Level Co-Occurrence Matrix (GLCM) texture-derived features for object-based wetland classification over large-extent for 

the first time. We attempted to enhance the performance of the random forest classifier by incorporating multi-source remote 

sensing data, including Sentinel-2, Sentinel-1, Alos-Palsar, and topographic features. A total of 47 features were extracted from 

multi-source remote sensing data. In this context, we assessed the applicability of multi- versus mono-seasonal derived features for 

the wetland's classes with low within-class separability. We investigated the mean decrease in the Gini impurity index for each 

GLCM feature. We observed that including GLCM features enhanced overall accuracy by 7.38% when using imagery from one 

season and 4.21% for multi-season imagery. The multi-season scenario that included GLCM measures (93.49%) attained the 

highest overall accuracy. For this scenario, the means of decrease in Gini impurity index suggested that Soil Adjusted Vegetation 

Index, Modified Normalized Difference Water Index, slope, correlation in summer (GLCM feature), and Sentinel-1 VH are the

most important features in increasing the random forest's classifier performance. In looking at the GLCM features, the separability 

analysis suggested that Entropy, Sum of Average, and Variance calculated from the summer imagery improve the classifier's 

performance while other textural features from spring imagery better contributed to classifier accuracy. 

1. INTRODUCTION

Wetlands are valued for their ability to recharge groundwater 

aquifers, support biodiversity, sequester carbon, and protect 

shorelines (Omernik & Griffith, 2014). However, human 

activities are degrading fragile wetland ecosystems. The 

high rate of wetlands loss during the 20th and 21st centuries 

has resulted in a global wetland decrease of 64–71% since 

1900 (Cowardin et al., 2013). The decline of inland wetlands 

is estimated to be higher than coastal wetlands. With an 

estimated extent of 249 million hectares, North American 

wetlands currently account for one-third of the world's 

wetlands (National Land Cover Database (NLCD) 2016 | 

Multi-Resolution Land Characteristics (MRLC) 

Consortium, n.d.). There is a clear need to monitor these 

regions; however, this environment's complexity and 

dynamic nature make characterization difficult. 

In the study of (Muñoz et al., 2019), object-based random

forest classifier performance was assessed for delineating 

emergent wetlands in three sites in New York, Alabama, and 

Georgia.  

They integrated Landsat imagery with Lidar-derived DEM

to enhance the classification of emergent wetland. They 

reported an improvement for delineating wetlands compared 

to the 2016 National Land Cover Database. 

Studies in the literature attempted to assess the influence of 

multi-source and multi-temporal imagery for wetland 

mapping. For instance, (Corcoran et al., 2013) demonstrated

that the most accurate random forest model for wetland 

classification was obtained when including Landsat 5 TM, 

*Corresponding author (sadeli@esf.edu) 

topographic, PALSAR, and soils data. The pixel-level 

classification was conducted on the regional extent in 

Minnesota.  

This study aims to develop an object-based classification 

workflow with the specific purpose of increasing the inter-

class separability of wetland classes over a large extent. We 

assessed different scenarios for improving the classification 

accuracy by incorporating a different combination of multis-

source and multi-seasonal input data over a large extent. In 

particular, the study was developed by attempting to address 

three main questions; 1) What textural features in what 

season are better able to delineate different wetland types; 2) 

what are the key features that contribute to increasing the 

classification accuracy; 3) how the classifier performance

changes when including multi-seasonal textural imagery.

We employ the trained model in each ecoregion of New 

York State to obtain a regional wetland map. 

2. METHOD

2.1. Study Area 

This study focuses on New York State (NYS), the largest 

state in the northeast United States, stretching from Lake 

Erie to the Atlantic Ocean with over 141,000 km2. Falling 

within the Appalachian Mountains, NYS has distinct 

geologies such as the Adirondacks and the Catskills, with 

high rainfall supporting lakes and wetlands of varying sizes 

across the state. Eastern temperate and northern hardwoods 

cover the bulk of forested areas in the state. NYS is now 

termed Level III of a hierarchical scheme; NYS is divided

into nine ecoregions (Omernik & Griffith, 2014) (Figure 1). 
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Due to variation in climate and vegetation structure in each 

ecoregion, we defined several sites (with an approximate 

area of 120 km2) to train the model. The total number of sites 

used was fourteen. 

2.2. Classification System 

 

We will follow National Land Cover Dataset (NLCD) 

defined classes for categorizing upland classes, and National 

Wetland Inventory (NWI) maps for classifying wetland 

areas to ensure the greatest utility. Since the focus of the 

study is monitoring wetlands, we grouped three different 

classes of forested uplands and three classes of developed 

areas in two single categories. NWI follows the Cowardin 

classification system to impose geometrical boundaries on 

the deep water and wetland habitats (Cowardin et al., 2013). 

2.3. Reference Data 

 

We acquired the reference data following the Cowardin 

system with two different wetland classes—forested/scrub-

shrub and emergent wetland—included in the reference data 

for the study site. We used the latest version of the NLCD to 

define detailed reference data for the upland classes. The 

reference data was verified through visual inspection using 

the latest high-resolution NAIP imagery (we used NAIP 

imagery acquired in the summer from 2016 to 2019). We 

used 30% of reference data for accuracy assessment and the 

rest for training the classifier. 

2.4. Derived Features From Multi-Source Imagery 

 

We calculated soil, vegetation, and water indices from the 

Sentinel-2 imagery to support the classification (Adeli et al., 

2021). The span, total power, co-polarize, and cross-

polarized ratio of Sentinel-1 and Alos-Palsar are generated. 

We also include the topographic derivative features of slope 

and aspect from SRTM DEM. The input features are shown 

in Table 1. 

 
Sentinel-1  𝜕𝑉𝑉, Vertically transmitted, vertically 

received SAR backscattering coefficient 𝜕𝑉𝐻, 

Vertically transmitted, Horizontally received 

SAR backscattering coefficient 
|𝑆𝑉𝑉|

2

|𝑆𝑉𝐻|
2
, 

|𝑆𝑉𝑉|
2 − |𝑆𝑉𝐻|

2, |𝑆𝑉𝑉|
2 + |𝑆𝑉𝐻|

2 Span or total 

scattering power 

 

ALOS-

PALSAR 
𝜕𝐻𝐻 ,Horizontally transmitted, horizontally 

received SAR backscattering coefficient. 𝜕𝐻𝑉, 

Horizontally transmitted, vertically received 

SAR backscattering coefficient.|𝑆𝐻𝐻|
2 +

|𝑆𝐻𝑉|
2, |𝑆𝐻𝐻|

2 − |𝑆𝐻𝑉|
2,
|𝑆𝐻𝐻|

2

|𝑆𝐻𝑉|
2
 Span or total 

scattering power 

Sentinel-2 B2 (Blue), B3 (Green), B4 (Red), B8 (NIR), 
B11 (SWIR), normalized difference 

vegetation index (NDVI), Enhanced 

Vegetation Index (EVI), Green Soil-Adjusted 
Vegetation Index (GSAVI), Soil-Adjusted 

Vegetation Index (SAVI), Normalize 

Difference Build-up Index (NDBI), 
Normalized Difference Water Index (NDWI), 

Modified Normalized Difference Water Index 

(MNDWI), Green and Red ratio Vegetation 
Index (GRVI), Green Normalized Difference 

Vegetation Index (GNDVI) 

DEM 

(SRTM) 

Slope, Aspect 

Textural 

features 

Angular Second Moment (ASM), Contrast, 

Correlation, Entropy, Variance, Inverse 

Difference Moment (IDM), Sum Average 
(SAVG) 

Table 1. The input features extracted from Sentinel-1, 

Alos-Palsar, Sentinel-2 and DEM. The textural features 

extracted from arithmetic ratio of Sentinel-2 imagery. 

 

The textural features were produced using the mathematical 

ratio of Sentinel-2 bands. 

 

2.5. Textural Analysis 

 

We computed the mono and multi-seasonal GLCM textural 

features of the study site. GLCM measures the frequency of 

pair of pixels' digital numbers in a specific and pre-defined 

direction (Tassi & Vizzari, 2020). Since we employ object-

based classification, we computed GLCM features for each 

segment rather than a pixel or window-based approach. We 

assessed the applicability of multi-temporal GLCM texture-

derived features for wetland classification using four 

different scenarios. The first and second scenarios did not 

include texture features. We used them to evaluate classifier 

performance, with the first scenario incorporating only 

summer imagery and the second scenario using spring and 

summer imagery. The third and fourth scenarios included 

mono-seasonal and multi-seasonal textural features, 

respectively. We used seven of the 17 different GLCM 

features (as suggested by (Tassi & Vizzari, 2020)). These 

seven features were sum average (SAVG), correlation, 

entropy, variance, angular second moment (ASM), contrast, 

and inverse difference moment (IDM). 

 

2.6. Object-Based Random Forest Classification 

 

We used a random forest classifier to develop the wetland 

maps within an object-based framework. Random forest was 

employed due to its ability to mitigate overfitting and handle 

a large number of input features. We segmented the Sentinel-

2 imagery in summer using the simple non-iterative 

clustering (SNIC) function. SNIC uses four parameters: 

1. Compactness (affects cluster shape). 

2. Connectivity (influences merging of adjacent 

clusters). 

3. Neighborhood size (avoids tile boundary 

artifacts). 

4. Seed size (Achanta & Susstrunk, 2017). 

Per object semantic segmentation of wetland, classes are 

assessed on both mono and multi-seasons scenarios. 

Selecting optimal segment size and shape is necessary for a 

successful object-based classification, with a preference for 

over-segmentation rather than under-segmentation (Adeli et 

al., 2021). We assessed the effect of different parameter 

values by visually evaluating the segmentation results to 

ensure segments correspond to single land cover classes. We 

changed one parameter in each test while holding other 

parameters constant (starting with neighborhood size). Once 

we selected the segmentation parameters, the random forest 

classifier was applied on the object level. 
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3. RESULTS  

The input used imagery on one of the study sites is shown in 

Figure 2 (a-f). We integrated Sentinel-1 and 2 and ALOS-

PALSAR imagery. We tested four different scenarios to assess 

the effect of multi-seasonal textural features on classifier 

performance. 

 
Figure 1. Nine Level III ecoregions of New York State. 

Figure 3 shows classified maps for one of the sites used to 

train and test the classifications developed using the four 

different dataset combinations. Figure 3(a) shows the output 

from the first scenario that used only summer imagery and 

no GLCM texture features. Figure 3(b) illustrates the 

classified map from the second scenario when spring 

imagery is included in the classifier. The third scenario used 

GLCM texture-derived features for the summer season only 

(Figure 3(c)), and the last scenario (Figure 3(d)) used 

summer and spring imagery with the corresponding GLCM 

features. As illustrated, the delineation within the two classes 

of emergent and forested/scrub-shrub wetland is enhanced in 

the last scenario. The reason for this enhanced 

discrimination is the changes in the water level of wetland 

areas in spring compared to summer. The other reason is that 

the backscattering mechanism of SAR in the leaf-off season 

is different from leaf-on the season (Adeli et al., 2020). This 

can stimulate the better delineation of wetland classes from 

surrounding when multi-season imagery is used. The 

inclusion of GLCM textural features also demonstrates an 

enhancement in between class separability of wetland and 

non-wetland classes. It can be seen; some areas are not 

identified as wetlands when GLCM is excluded. However, 

the same area is identified as wetlands when GLCM features 

are incorporated into the classifier. 

We assessed the classifier's performance in four different 

scenarios (Figure 4). Overall, the producer's and user's 

accuracy of each scenario is calculated. We observed an 

enhancement in the overall accuracy of mono seasonal when 

GLCM features were included (7.38%). The overall 

accuracy is increased by 4.21% when GLCM features are 

included in the case of multi-season. We obtained the highest 

overall accuracy in the last scenario (93.49%). The user's and 

producer's accuracy of water was highest among all the 

classes (98.57%, 97.36%, respectively). The user's accuracy 

of upland classes in the last scenario varied between 88.65% 

to 95.57%, corresponding to scrub/shrub upland and pasture 

hey, respectively. The producer's accuracy of upland classes 

in the last scenario varied between 83.42% to 96.15%, 

corresponding to scrub/shrub upland and pasture hey, 

respectively. Notably, the user's accuracy of the emergent 

wetland class was low in the first scenario. The inclusion of 

multi-seasonal textural features was able to increase it. 

To assess the importance of each feature, we used the Gini 

impurity index. The mean decrease in the Gini impurity 

index suggests that Soil Adjusted Vegetation Index,  

Modified Normalized Difference Water Index, slope derived 

from DEM, correlation in summer (GLCM feature) and  

Sentinel-1 VH is the most important in the random forest 

classifier. We also used the mean decrease in the Gini 

impurity index to analyse the importance of multi-seasonal 

textural features further. Three GLCM features calculated 

from summer imagery, entropy, SAVG, and variance, 

increased classifier performance, while other GLCM 

features from spring were more valuable. The detailed 

results using the mean decrease in Gini impurity to evaluate 

the muti-temporal texture features are shown in Figure 5. 

To better understand the discrimination ability of GLCM 

features, we generate box-and-whisker plots for each 

wetland class for both the summer and spring seasons 

(Figure 6). The reason for choosing these three features is 

that they showed a higher contribution on the variable 

importance analysis. We plotted three different features of 

SAVG, Correlation, and IDM. SAVG has a good ability in 

discriminating water from wetland classes in both summer 

and spring. This feature can better distinguish forested 

scrub/shrub from an emergent wetland in the summertime. 

Correlation is better able to separate the two wetland classes 

in summer. IDM's box and whisker plot showing enhanced 

discrimination within wetland classes in spring. Once we 

trained the classifier in different study sites, we applied the 

classifier over the whole of NYS. The result is shown in 

Figure 6. The mean decrease in Gini impurity index of the 

most important features in the last scenario is shown in Table 
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2. The generated map of New York state is shown in Figure 

7. 

 
 

 

Figure 2. (a) The Sentinel-2 imagery of the study site was 

acquired in summer 2021. (b) The zoom-in segmentation is 

superimposed on the classified map. c and d) Sentinel-1 

imagery of the area. e and f) Alos-Palsar imagery of the area.  

 

 
                                    (a) 

 
                                   (b) 

 
                                   (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    (d) 

Figure 3. (a-d) The classification results in the four different 

scenarios. a) Mono-season and no GLCM feature is 

included. b) Multi-season and no GLCM features are 

included. c) Mono-season and seven GLCM feature is 

included. d) Multi-season and seven GLCM features are 

included.
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Figure 4. User’s and producer’s accuracies of defined scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mean decrease in Gini impurity index of multi-

seasonal GLCM features.

4. DISCUSSION AND CONCLUSION 

 

Dynamic monitoring of wetlands is crucial since we are 

losing them at an increasing rate. Our results showed the 

importance of multi-seasonal object-oriented textural 

features for increasing the predictive ability of a random 

forest classifier. Some studies in the literature used multi-

seasonal imagery for vegetation mapping. For instance, (van 

Deventer et al., 2019) investigated the role of multi-seasonal 

Rapid eye imagery for the delineation of drylands and 

wetlands. Their results showed the highest overall accuracy 

when all four seasons were included. However, the question 

of what season provides the highest separation of vegetation 

in dryland and wetland is not investigated. In another study, 

(Lu et al., 2018) explored the use of an object-oriented 

classification model to monitor the dynamic of  mangrove 

forests in China. They demonstrated that the inclusion of 

leaf-on and leaf-off imagery leads to better delineation of the 

transitional zone because of the tidal state.   

This study assessed the importance of multi-seasonal 

textural features for wetland delineation on the object level. 

The  

Figure 6. The box and whisker plots of important GLCM 

features for different wetland classes in summer and spring. 

 

results demonstrated an enhancement when we included 

multi-seasonal textural features in delineating emergent and 

forested wetland classes. Such an investigation may 

facilitate a more accurate mapping of wetlands, leading to 

better preservation and management of these fragile lands. 

This study demonstrated that delineation of wetland classes 

is more challenging among different landcover types due to 

their high variability in their hydrology and hydric soil. The 

use of multi-seasonal textural features enhanced wetland 

classes discrimination. For future studies, accurate elevation 

models derived from Lidar data are expected to increase the 

delineation of wetland classes.
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Features Gini impurity 

index 

SAVISENT 1 

MNDWISENT 0.611 

Slope 0.563 

Correlation in spring 0.556 

VH 0.550 

B8 in spring 0.534 

GSAVI 0.467 

Sum of Average in 

summer 

0.458 

GRVI 0.441 

Entropy in summer 0.439 

Contrast in spring 0.434 

Table 2. The mean decreases in Gini impurity index for the first eleven important features. 

 

 

Figure 7.  The generated classified map over NYS.
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