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ABSTRACT: 

Coastal interfaces are subject to an unprecedented rate of risks, gathering waves and rainfalls’ hazards, human assets’ densification, 

sea-level rise and precipitation intensification. Their sound management requires iterative observation at the highest possible spatial 

resolution. Sentinel-2 (S-2), provided with 13 spectral bands, datasets leverage high temporal resolution (one week) but spatial 

resolution (from 60 to 10 m) often remains too coarse to finely classify and monitor the coastal patches. PlanetScope-2 (PS-2) 
imagery benefits from very high temporal resolution (<one week) and high spatial resolution (3 m) for its blue-green-red-near-

infrared dataset. 

This research paper proposes to, first, downscale 12 S-2 bands (cirrus S10 being evicted) by using neural network (NN) regressions 

built on the 4 PS-2 bands following two methods, and second, evaluate the NN classification performance of the 12-band datasets at 
3 m for mapping 8 common coastal classes on a representative site (Brittany, France). Straightforward and stepwise downscaling 

procedures, respectively based on 12 and 22 NN regressions, generated very good performances (R2
test=0.92 ± 0.02 and 0.95 ± 0.01, 

respectively). The 3-m NN classifications were considerably improved by the number of spectral bands (overall accuracy, OA, of the 

4 bands: 48.12%) but also the precision of the downscaling (OA of the straightforward and stepwise downscaling: 75.25% and 

93.57%, respectively). For the best classification, examination of the contribution of the individual bands revealed that S5, S7, S1, 
S9, S6 and S8A were meaningful (62.42, 55.02, 50.82, 46.4, 45.1, 31.02%, respectively), contrary to S12, S11 and S12 (12.47, 0 and 

0%, respectively). 

* Corresponding author 

1. INTRODUCTION

1.1 Coastal Satellite Remote Sensing 

Worldwide coastal fringe is facing paramount anthropogenic 

pressures at un unprecedented pace in the Human history. Those 

factors are derived from global and local changes from both 

landward (agriculture and urban conversion, Pouteau et al., 
2013, James et al., 2020) and seaward (stormy/cyclonic erosion 

and submersion, Collin et al., 2020, Mury et al., 2020) sides. 

Remote Sensing (RS) is an affordable and efficient approach to 

iteratively monitor the variability of high resolution coastal 

features, distributed as land use / land cover (LULC, James et 
al., 2022) and sea use / sea cover (Collin et al., 2021a) types 

along the space-time continuum. Requiring high spatial 

resolution (HSR) imagery but over regional areas, today’s 

coastal open access RS, spearheaded by Sentinel-2 (S-2) 

MultiSpectral Imager (MSI, Bergsma, Almar, 2020) and 
Landsat-9 Optical Land Imager (OLI)-2 (Masek et al., 2020), 

enables to capture regional areas (several km2) at a weekly rate 

with a relatively coarse spatial resolution (10 - 15 m pixel size).  

Those superspectral (13-band and 9-band, respectively) optical 

sensors provide meaningful products for the water chlorophyll 
(Pahlevan et al., 2020), turbidity (Sebastiá-Frasquet et al., 2019) 

or bathymetry (Poursanidis et al., 2019) mapping, as well as 

homogeneous ecosystems, such as seagrasses (Traganos, 

Reinartz, 2018), tidal flats (Jia et al., 2021) or sand dunes 
(Marzialetti et al., 2019). Finer-scale coastal mapping has also 

been successful with commercial 1.5-to-5-m SPOT series 

(Wilson et al., 2019), 3-m PlanetScope (PS) Dove series (Collin 

et al., 2021b), 0.5-m Pléiades-1 series (Collin et al., 2018), and 

0.3-to-0.5-m WorldView series (Collin et al., 2021a). 

1.2 Downscaling Satellite Optical Remote Sensing Imagery 

The downscaling procedure has allowed spectrally-riched, 

regionally-acquired, coarse-scaled imageries to be refined at 

higher spatial resolution. 
The MODIS chlorophyll-a level-3 product at 4 km pixel size 

has been downscaled to 30 m using Landsat-8 OLI for complex 

coastal water monitoring (Fu et al., 2018). In turn, Landsat-8 

OLI 30-m multispectral bands have been pansharpened to 15 m, 

then downscaled to 5.8 m (using ZiYuan-3 imagery) for better 
extracting coastlines (Wang et al., 2018). The bathymetry 

mapping (without in situ data) has been enhanced from Landsat-

8 to very HSR (VHSR) satellite sensors (Gaofen-1/2, ZiYuan-3, 

WorldView-2, Liu et al., 2021). 

S-2 MSI 60-m and 20-m bands have been successfully
downscaled to 10 m for improving LULC mapping (Zheng et 

al., 2017). The S-2 coastal band, downscaled from 60 m to 10

m, was deemed very promising to both deepen the water depth
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and seagrass mapping in Mediterranean Sea (Poursanidis et al., 

2019). 

Recently, Landsat-8 OLI 15-m panchromatic band has been 

downscaled to 3-m PS Dove imagery, then used for 

pansharpening the 30-m multispectral bands in order to map 
bathymetry (Gabr et al., 2020). 

 

1.3 Sentinel-2 and PlanetScope-2 fusion 

Landsat-8/9 and S-2 bands or by-products constitute tangible 

advances for coastal mapping when downscaled with higher 
commercial optical spaceborne sensors. Given its comparable 

high temporal resolution (HTR) with Landsat-8/9 and S-2, the 

PS constellation could be considered as a good candidate for 

downscaling both freely available HSR NASA and ESA 

imagery. Contrary to SPOT of finer imagery series, PS 
leverages greater global distribution and cheaper prices (even 

free for granted scientists, Planet Team, 2017).  

This research study innovatively proposes to produce 12 bands 

at 3 m spatial resolution for coastal mapping by fusing both 

HTR (two 60-m, six 20-m and four 10-m) S-2 and (four 3-m) 
PS-2 (PS-2) imageries through neural network (NN) modelling. 

First, the NN regression downscaling will be optimized by 

testing the statistical reliability of the straightforward versus the 

stepwise approaches. 

Second, the NN classification of a complex, thus representative, 
coastal area, composed of 8 common classes (Figure 1), will be 

quantified at the scene scale for the two downscaling techniques 

and also for the original PS-2 dataset, for the sake of 

comparison. 
 

 

Figure 1. Natural-coloured imagery of the study area based on a 

PlanetScope-2 surface reflectance imagery (3097 × 2124 

pixels). 

 

2. METHODOLOGY 

2.1 Study Area 

The investigated coastal zone (48°37’N; 2°7’W) is located 

along the Emerald Coast in Brittany (France). It features coastal 

shallow and optically-deep seawaters, muddy estuaries, sandy 
beaches, rocky cliffs, resort cities, crop fields and semi-natural 

vegetated areas (Figure 1 and Table 1). Subject to a megatidal 

regime, the intertidal zone alternates with emersion and 

immersion phases, entailing sediment class features to be 

examined in their wet and dry status. For the sake of 
transferability, the generic terms of crop and soil encompass all 

features of the herbaceous stratum, and unvegetated bare but 

living layer, respectively.   

 

Class name Description Thumbnail 

Forest Even arborescent and 
arbustive woods and hedges of 

deciduous temperate trees 

 
Crop Herbaceous plants including 

agricultural parcels of cereals 
and vegetable contents, urban 

lawns or salt marshes 

 
Urban Artificially-covered roads, 

houses and buildings 

 
Soil Unvegetated agricultural 

parcels 

 
Dry sediment Emerged ways, rocky cliffs, 

sandy beaches and muddy 
estuaries 

 
Wet sediment Immersed rocky cliffs, sandy 

beaches and muddy estuaries 

 
Seawater Optically-deep (no bottom 

albedo influence) salted or 

brackish water 

 
Freshwater Inland water bodies (rivers, 

lakes and ponds) 

 
Table 1. Description of the 8 Coastal Use / Coastal Cover 

Classes. 
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2.2 Imagery Sources 

2.2.1 Sentinel-2: The S-2 dataset was drawn from the S-2A 

satellite (10-day revisit and 290 km swath). The S-2A sensor 

was launched on 23 June 2015 and orbits at 786 km. The 

imagery was collected on 19 September 2019 at 11 h 07 min 21 
sec (UTC), then geometrically- and radiometrically-corrected at 

the bottom-of-atmosphere reflectance (BOA, level-2A). The 

calibrated dataset was composed of 4 bands at 10 m, 6 bands at 

20 m, and 2 bands at 60 m (since the SWIR cirrus band, S10, 

was not investigated due to the absence of surface information) 
(Table 2).  

 

Sentinel-2  
band name 

Wavelengths (nm) Resolution (m) 

S1 433-453 60 

S2 458-523 10 

S3 543-578 10 

S4 650-680 10 

S5 698-713 20 

S6 733-748 20 

S7 773-793 20 

S8 785-900 10 

S8A 855-875 20 

S9 935-955 60 

S10 1360-1390 60 

S11 1565-1655 20 

S12 2100-2280 20 

Table 2. Spectral specificities of the Sentinel-2A MultiSpectral 

Imager (S10 is disqualified in the study). 

 

2.2.2 PlanetScope-2: The PS-2 dataset was derived from a 

Dove Classic nanosatellite (1-day revisit and a frame size of 24 

km × 8 km). The Dove Classic constellation was launched in 

2016 and 2017. The imagery was acquired on 09 October 2019 

at 10 h 49 min 48 sec (UTC), then orthorectified and 
radiometrically-corrected at the surface reflectance (the 

equivalent of the BOA). The resulting dataset consisted of 4 

bands at 3-m pixel size (Table 3). 

 

PlanetScope-2  

band name 

Wavelengths (nm) Resolution (m) 

P1 455-515 3 

P2 500-590 3 

P3 590-670 3 

P4 780-860 3 

Table 3. Spectral specificities of the PlanetScope-2 Dove. 

 

2.3 Imagery Processings 

Downscaling Process: The entire scene was first divided into: 

 

• a calibration,  

• a validation, and  

• a test sub-datasets, whose their number of pixels was 
equalized and randomized for each spectral band. 

 

Two approaches of imagery fusion based on NN regression 

were designed and evaluated. 

The first procedure, coined as straightforward, sought for 
predicting the 12 S-2 bands from the 4 PS-2 bands, regardless 

of the S-2 native resolution (Figure 2). 

 

Figure 2. Neural Network straightforward 12-band Sentinel-2 

downscaling to PlanetScope-2 spatial resolution. 

 

The second approach, called stepwise, progressively predicted 
the coarsest S-2 bands (namely 60-m S1 and S9) from the less 

coarser ones (20-m S5, S6, S7, S8A, S11 and S12), then 

predicted the 20-m newly-modelled dataset (S1, S5, S6, S7, 

S8A, S9, S11 and S12) from the finest S-2 bands (10-m S2, S3, 

S4 and S8), and finally predicted the resulting 12 10-m S-2 
bands from the 3-m PS-2 bands (Figure 3).  

 

Figure 3. Neural Network stepwise 12-band Sentinel-2 

downscaling to PlanetScope-2 spatial resolution. 

 

Both workflows were based on NNs built on fully connected 

one-neuroned one-layered perceptrons, in which the hidden 

layer integrated a single hidden neuron (Heermann and 

Khazenie, 1992). At the neuron scale, an activation function 

was implemented as a linear combination of the predictors: 
 

                                       𝑁(𝑋) = (∑i 𝑤𝑗𝑛𝑗(𝑋)),                               (1) 

 

where wj = jth is a weighted activation function, 

           nj = jth neuron, 

           X = predictors. 
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The activation function was a function of transformation, 

defined as a hyperbolic tangent function (TanH), scaling values 

between -1 and 1 bounds: 

 

                                                       ,                                   (2) 
 

 

where z = a linear combination of the predictors (X). 

 

Pixel-wise Classification: The 8 classes were each represented 
by 1000 pixels, randomly split into calibration and validation 

datasets. The “calval” pixels were selected based on a 

pansharpened multispectral Pléiades-1 imagery acquired on 22 

October 2019 at 11 h 25 min 49s (UTC, James et al., 2020). The 

500-pixeled calibration datasets were used to construct NN 
learners defined as one-neuroned two-layered perceptrons 

provided with a logistic (sigmoid) activation function. 

Following the classification procedure, the 500-pixeled 

validation datasets were used to quantify the overall accuracies 

(OAs) derived from the PS-2, straightforward- and stepwise-
downscaled S-2 confusion matrices.  

 

3. RESULTS AND DISCUSSION 

The fusion of the 12-band S-2 and 4-band PS-2 yielded, despite 

a slight difference, very satisfactory results for both NN 
downscaling procedures. The classification of the 8-class 

coastal scene was much better with the 12-band than the 4-band 

dataset at 3 m.    

 

3.1 Performance of the Downscaling Procedure 

The straightforward downscaling necessitated 12 NN 

regressions, compared to 22 ones for the stepwise approach, 

what implied a faster process.  

 
Straightforward Downscaling: The lowest regression 

performance, even satisfactory, was tied with the coastal band 

(B1, R2
test=0.79), followed by B5 (R2

test=0.83), and B2 

(R2
test=0.84). The regressions of the remaining bands bottomed 

at 0.91 (B9) and topped at 0.99 (B8). The overall mean and 
standard deviation reached 0.92 ± 0.02. The 60-m, 20-m and 10-

m means and standard deviations were 0.85 ± 0.06, 0.94 ± 0.02 

and 0.94 ± 0.01, respectively (Figure 4). 

 

 

Figure 4. R2 performance of the Neural Network 

straightforward downscaling based on the test dataset. 

 

Stepwise Downscaling: Three regression steps enabled to 

predict 12 bands at 3 m. The first regressions downscaled S1 

and S9 from 60 to 20 m, ranging from R2
test of 0.84 to 0.99, 

respectively. The second round of regressions downscaled both 

new 20-m S1 and S9, as well as native 20-m 6 bands, ranging 
from R2

test of 0.95 (S6) to 0.99 (S7, S8A, S9 and S11). Finally, 

the last round of regressions downscaled the 12 10-m bands, 

native or not, to 3 m spatial resolution, ranging from R2
test of 

0.84 (S2) to 0.99 (S1 and S8). The overall mean and standard 

deviation of the last round achieved R2
test=0.95 ± 0.01, and 

statistics of the first and second rounds hit 0.91 ± 0.05 and 0.98 

± 0.01, respectively (Figure 5). 

 

 

Figure 5. R2 performance of the Neural Network stepwise 

downscaling based on the test dataset. 

 

3.2 Classification Accuracy 

Scene Scale: The computation of the OA showed that the 3-m 

classification at the scene scale followed an increasing 

performance (Figure 6): 
 

• the 4-band PS-2 (OA=48.12%, Figure 6A),  

• the straightforward 12-band S-2 (OA=75.25%, Figure 
6B), and 

• the stepwise 12-band S-2 (OA=93.57%, Figure 6C). 

 

The first augmentation (by 27.13%), from the 4-band to the 

straightforward 12-band dataset, could be driven by the 
multiplication by three of the number of the spectral predictors. 

This result is intuitive and corroborates the RS assumption: the 

higher the number of spectral bands, the better the 

discrimination will be (Collin, Planes, 2011). The second 

enhancement (by 18.32%, that is to say, by 45.45% compared to 
the first OA) might be attributed to the finer process tied to the 

stepwise versus the straightforward approach. Downscaling NN 

regressions were indeed more successful for the last round of 

the stepwise regressions (R2
test=0.95 ± 0.01) than the single 
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batch of the straightforward regressions (R2
test=0.92 ± 0.02). 

Even if the process is longer (10 regressions more), it is highly 

recommended to implement the stepwise approach to produce a 

very satisfactory classification. 

 

 

Figure 6. Neural Network classification maps and overall 

accuracies of the 3-m (A) PS-2, (B) straightforward downscaled 

S-2, (C) stepwise downscaled S-2 datasets. 

 

Based on the best OA (that of the stepwise), the contribution of 

the individual NN-downscaled bands was quantified by 
referencing to the OA of the standard blue-green-red (S2-S3-S4) 

dataset (Figure 7). No spectral band, additional to the standard 

dataset, diminished the standard performance classification 

(OA=12.5%). S8 and S11 did not improve the standard OA, 

resulting in absence of gain. S12 brought then the lowest 
contribution to the standard OA. The poor results of those three 

bands could be explained by their large bandwidths compared to 

other bands (106, 91 and 175 nm, respectively). The narrow 

near-infrared S8A (21 nm bandwidth) band then provided a 

tangible increase of the standard OA (by 31.02%). The water 

vapour S9 and coastal aerosol S1 narrow bands (20 and 21 nm, 

respectively) drastically ameliorated the standard OA (by 46.4 
and 50.82%). Finally, the three vegetation red edge bands (S6, 

S7 and S5) produced the highest contributions (45.1, 55.02, and 

62.42%, respectively). 

 

 

Figure 7. Overall accuracies of the sole standard dataset, 

composed of S2-S3-S4 (blue-green-red, in blue bars), and the 

joint standard with other individual bands (in orange bars). 

 

4. CONCLUSIONS 

The fusion of the 12 S-2 bands, radiometrically corrected at the 

bottom-of-atmosphere, with the 4 3-m PS-2 bands was 
successful using a fully connected one-neuroned one-layered 

NN downscaling. Two approaches were assessed: one, 

straightforward, directly predicting S-2 bands at 3 m, 

irrespective of the native pixel size (that is to say 12 NN 

regressions); and another one, stepwise, first regressing both 60-
m S-2 bands at 20 m, second regressing resulting 6 20-m bands 

at 10 m, and third regressing 12 10-m bands at 3 m pixel size 

(that is to say 22 NN regressions). Both approaches were highly 

conclusive in a slight favour of the more precise but longer one 

(overall R2
test=0.92 ± 0.02 and 0.95 ± 0.01, respectively). 

One-neuroned two-layered NN classifications of the 3-m scene, 

including 8 common coastal use and cover classes, showed that 

the 4-band PS-2 dataset was increasingly surpassed by the 12-

band straightforward and stepwise datasets (OA=48.12, 75.25 

and 93.57%, respectively). Added to the blue-green-red 
standard dataset, the most contributing spectral bands, issued 

from the NN downscaling, were the vegetation red edge narrow 

bands, followed by the atmosphere and near-infrared narrow 

bands, while the wider bands barely or did not contribute to the 

standard OA. 
Even if the NN regression downscaling is more industrious, we 

advocate to implement the stepwise approach, especially when 

the goal is the supervised classification of the coastal landscape.  
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