
EVALUATION OF FEATURE SELECTION METHODS FOR VEGETATION MAPPING 

USING MULTITEMPORAL SENTINEL IMAGERY 
 

D. Dobrinić 1 *, M. Gašparović 2, D. Medak 1 

 
1 Faculty of Geodesy, Chair of Geoinformatics, University of Zagreb, 10000 Zagreb, Croatia - (ddobrinic, dmedak)@geof.unizg.hr 

2 Faculty of Geodesy, Chair of Photogrammetry and Remote Sensing, University of Zagreb, 10000 Zagreb, Croatia - 

mgasparovic@geof.unizg.hr 

 

Commission III, WG III/6 

 

 

KEY WORDS: CORINE, Random Forest, SAR, Sentinel-1, Sentinel-2, Variable Selection, Vegetation Mapping. 

 

 

ABSTRACT: 

 

With the recent advances in remote sensing technologies for Earth observation (EO), many different remote sensors (e.g., optical, 

radar) collect data with distinctive properties. EO data have been employed to monitor croplands and forested areas, oceans and seas, 

urban settlements, and natural hazards. The spectral, spatial, and temporal resolutions of remote sensors have been continuously 

improving, making geospatial monitoring more accurate and comprehensive than ever before. To tackle this issue, various variable 

selection methods (e.g., filter, wrapper, and embedded methods) are nowadays used to reduce data complexity, and hence improve 

classification accuracy. Therefore, the goal of this research was twofold. Firstly, to assess the performance of the random forest (RF) 

classifier in a large heterogeneous landscape with diverse land-cover categories using multi-seasonal Sentinel imagery (i.e., Sentinel-

1; S1 and Sentinel-2; S2) and ancillary data. Secondly, to compare RF variable selection methods to identify a subset of predictor 

variables that will be included in a final, simpler model. Using mean decrease accuracy (MDA) as a feature selection (FS) method, 

an original dataset was reduced from 114 to 34 input features, and its classification performance outperformed all-feature (114 

features) and band-only (36 features) model with an OA of 90.91%. The most pertinent input features for vegetation mapping were 

S2 spectral bands (14 features), followed by the spectral indices derived from S2, texture features, and S1 bands. This research 

improved vegetation mapping by integrating radar and optical imagery, especially after applying FS methods which removed 

redundant and noisy features from the original dataset. Future research should address additional feature selection methods (i.e., 

filter, wrapper, or the embedded) for vegetation mapping, combined with advanced deep learning methods.  

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

During the last decade, the rapid development of remote sensing 

(RS) imagery techniques (i.e., optical and radar sensors) has 

produced a tremendous amount of earth-observation (EO) 

image data used for, e.g., land-cover or vegetation mapping. 

Therefore, new prospects for research and applications are 

possible with the recent arrival of the Sentinel-1 and Sentinel-2 

time series imagery (Niculescu et al., 2018; Dobrinić et al., 

2021). However, vegetation mapping in heterogeneous 

landscapes is challenging since land-cover categories are 

difficult to separate spectrally due to low inter-class separability 

and high intra-class variability (Rodriguez-Galiano et al., 2012). 

Although ancillary derived input features (e.g., textural 

measures, vegetation indices) can be useful for EO image data 

classifications, they can add up to several hundred, sometimes 

irrelevant, and redundant features (Georganos et al., 2017). 

Thus, with an increasing number of input variables, highly 

correlated or redundant variables create noises in datasets, 

affecting prediction accuracy (Zhang and Yang 2020).  

 

State-of-the-art machine learning (ML) methods, such as 

Random Forest (RF), can handle high data dimensionality and 

multicollinearity since it works with subsets of data. Introduced 

by Breiman (2001), RF is a supervised ML method that is 

constructed from a multitude of decision trees (DT). Through 

bagging, the trees are created by drawing a subset with about 

two-thirds of the training samples, whereas the remaining one-

third of the data (out-of-bag – oob) can conveniently be used as 

a test set (Belgiu and Drăgut 2016). The final classification 

decision is made through a majority vote calculated by all 

produced trees. Therefore, RF is increasingly being applied in 

vegetation mapping using multispectral (Noi and Kappas 2018; 

Dobrinić et al., 2020) and radar (Gašparović and Dobrinić 2020) 

satellite sensor imagery. Furthermore, RF provides variable 

importance measures using the Gini index and the oob subset. 

The former measure is based on the average loss of entropy 

criterion, whereas the latter observes the values of the variables 

which are randomly permuted in the oob samples (Genuer et al., 

2012). 

 

Although RF can handle high dimensional data, various variable 

selection methods (e.g., filter, wrapper, and the embedded 

methods) can be used in combination with RF classification, to 

determine a subset of predictor features to be included in a final 

model. Filter methods rank the relevance of individual features 

by their correlation with the dependent variable, wrapper 

methods use feature subsets and evaluate them based on the 

classifier performance, whereas embedded methods combine 

the qualities of filter and wrapper methods (Saeys et al., 2007). 

A detailed comparison of RF variable selection methods can be 

found in the paper by Speiser et al. (2019). The authors used 

more than 300 classification datasets to assess different variable 

selection techniques to identify preferable methods based on 

applications in expert and intelligent systems. For land cover 

mapping in a complex environment (e.g., urbanized coastal 

area), Zhang and Yang (2020) examined various DT models and 

feature importance measures in RF. By using Landsat-8 

imagery and best fit model (10 features), the overall accuracy 
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(OA) was 89.03% compared to the all-feature model which 

achieved an OA of 88.21% with 22 features. Stromann et al. 

(2019) and Orynbaikyzy et al. (2020) used Sentinel-1 (S1) and 

Sentinel-2 (S2) imagery for land cover and crop type 

classification, respectively. Both research assessed the impact of 

feature selection on the classification accuracies, however, the 

best variable selection methods identified in the research by 

Speiser et al. (2019) were not investigated for vegetation 

mapping using S1 and S2 imagery. 

 

Due to the challenges in vegetation mapping in heterogeneous 

agricultural landscapes using multitemporal or multi-source 

(i.e., radar and optical) input data, the goal of this study was 

twofold. Firstly, to assess the performance of the random forest 

classifier in a large heterogeneous landscape with diverse land-

cover categories using multi-seasonal Sentinel imagery and 

ancillary data. Secondly, to compare RF variable selection 

methods to identify a subset of predictor variables that will be 

included in a final, simpler model.  

 

 

2. STUDY AREA AND DATA 

2.1 Study site extent and LC classification system 

Eastern part of central Croatia which covers the territory of 

Bjelovarsko – Bilogorska County was chosen as the study area 

in this research (Figure 1). The study site covers an area of 2639 

km2, where 1475 km2 is agricultural land, which mostly 

includes croplands and gardens (68.7%), grasslands and 

pastures (27.4%), orchards (2.7%), and vineyards (1.2%) 

(Tomic 2012). Small-scale farms dominate the County 

croplands with 0.95 ha of average field size (Tomic 2012). 

According to the Koppen–Geiger climate classification system 

(Beck et al., 2018), this region has a temperate oceanic climate 

(Cfb), characterized by warm summer. The mean annual 

temperature for 2018 in the study area is 12.8°C with 

precipitation of 802.8 mm/year (Croatian Statistical Information 

2019). Summer crops are sown at the end of March—beginning 

of April and harvested at the end of August—beginning of 

September. 

 

 

Figure 1. Overview of the Bjelovarsko – Bilogorska County on 

S2 imagery (“true colour” composite; sensing date: 21-08-2018) 

As ground truth data on crop types for the year 2018, a hybrid 

classification scheme, proposed in the research from Dobrinić 

and Gašparović (2021), was used. According to the proposed 

approach, reference data was derived from CORINE, LUCAS, 

and Land Parcel Identification System (LPIS) land-cover 

database. Reference points were manually collected by remote 

sensing experts and confirmed on a time-series of Landsat and 

Google high-resolution imagery. Afterward, their semantic 

levels were adjusted according to the classification schemes 

from the aforementioned land-cover (LC) databases. In general, 

seven major LC classes were proposed in this research (Table 

1). These reference points were uniformly distributed over LC 

classes (200 samples per class). 

 

ID Class CORINE LUCAS 

1 Cropland 2.1, 2.4 B00 (except B70) 

2 Forest 3.1 C00 

3 Water 4.1, 5.1 G00 

4 Built-up 1.1, 1.2 A00 

5 Bare soil 3.3 F00 

6 Grassland 2.3, 3.2 D00, E00 

7 Orchard 2.2.2 B70 

Table 1. Overview of the land-cover classes used in this 

research, including CORINE Level 2/3 and LUCAS 

classification scheme codes. 

 

2.2 Data preparations  

For this research, S1 imagery as a ground range detected (GRD) 

product was acquired from the ESA’s Sentinel HUB. S1 GRD 

imagery has a spatial resolution of 10 m and consists of vertical-

vertical (VV) and vertical-horizontal (VH) polarization bands. 

Standard pre-processing steps for the GRD imagery are to apply 

a precise orbit of acquisition, remove thermal noise, calibration, 

and Range Doppler terrain correction for geometric distortions 

caused by topography (Filipponi 2019). Additionally, speckle 

filtering, caused by the interference of waves, was made with a 

Lee filter with a window size of 5x5 pixels, effectively 

preserved edges and features, as shown in the research from 

Gašparović and Dobrinić (2021). Furthermore, very-high-

resolution optical imagery (i.e., four spectral bands at 10 m, six 

bands at 20 m, and three bands at 60 m resolution) acquired 

from the Sentinel-2 (S2) satellites was also used. The S2 

products were downloaded the ESA’s Sentinel HUB as Level-

2A products, which provides orthorectified Bottom-Of-

Atmosphere (BOA) reflectance, with sub-pixel multispectral 

registration (Mercier et al., 2019). In this research, the S2 bands 

with 60 m spatial resolution were not used, whereas 20 m 

spectral bands were resampled to 10 m using the nearest 

neighbour method to preserve the pixels’ original values 

(Osgouei et al., 2019). 

 

To create classification maps in the highly heterogeneous study 

area with spectrally similar land covers, it is common to use 

multitemporal and multi-source remote sensing data to provide 

phenological changes in vegetation cover states (Jin et al, 2018). 

Therefore, radar and optical data from April, August, and 

October have been used for vegetation mapping because these 

three periods represent the most significant characteristics of the 

main vegetation types in the study area (Table 2). 
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 S1 S1 Orbit S2 S2 Cloud Cover 

Date 

04-04-2018 ASC 08-04-2018 4.70 

20-08-2018 ASC 21-08-2018 0.75 

01-10-2018 ASC 05-10-2018 0.05 

Table 2. Overview of the radar (S1) and optical (S2) satellite 

imagery used in this research. 

 

In the most common way, land cover classification could be 

improved by using more input features that represent the feature 

domain more in detail (Zhang and Yang 2020). Therefore, in 

this research, textural features and spectral indices were derived 

from optical and radar satellite imagery, respectively. Therefore, 

Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Soil Adjusted Vegetation Index 

(SAVI), Pigment Specific Simple Ratio (PSSRa), Normalized 

Difference Water Index (NDWI), Modified Chlorophyll 

Absorption in Reflectance (MCARI), Green Normalized 

Vegetation Index (GNDVI), Modified Soil Adjusted Vegetation 

Index (MSAVI), Normalized Difference Index 45 (NDI45), and 

Inverted Red-Edge Chlorophyll Index (IRECI) were calculated 

from S2 imagery (Dobrinić et al., 2021). Textural features were 

calculated from the grey-level co-occurrence matrix (GLCM) 

and used as input features (Haralick et al., 1973), as follows: 

Mean, Variance, Homogeneity, Contrast, Dissimilarity, 

Entropy, Second Moment, and Correlation (Gašparović and 

Dobrinić 2021). Overall, 38 input features were used in this 

research per date, 114 in total. 

 

 

3. METHODS 

3.1 Hyperparameter optimization 

In order to prevent overfitting of the training data, RF involves 

several hyperparameters, which can be tuned for each 

classification task. For RF, ntree represents the number of trees 

in the forest, and mtry is the number of variables randomly 

chosen in each split. Whereas the former parameter should be 

set sufficiently high for optimal performance of the model, the 

latter is usually set as a square root of the input variables (Probst 

et al., 2019). Although ntree and mtry have shown effects on the 

RF performance stability, they should be carefully chosen so 

that the variable importance scores can converge to a stable 

mean (Behnamian et al., 2017). Therefore, a grid search 

approach with cross-validation was used in this research for 

hyperparameter optimization. 

 

3.2 Variable importance measurements and selection 

Many research avoid the feature selection process before 

classification, by assuming that various machine learning 

methods are robust to high dimensional datasets although noisy 

and correlated features are included (Ma et al., 2017). 

Therefore, feature selection (FS) can be defined as a process 

that reduces the number of input variables to reduce the 

computational cost and improve the model's performance 

(Zhang and Yang 2020). Depending on the variable selection 

approach (e.g., filter, wrapper, or the embedded methods), many 

packages for variable selection in R software have been 

developed. 

Recursive feature elimination (RFE) takes all features firstly in 

the initial input and iteratively, at each step, the least important 

predictor is removed. It belongs to a wrapper-type FS method, 

and when the least important predictor(s) are removed, the 

model is re-built, and importance scores are computed again. 

This process is repeated until a specified number of features 

remains. (Georganos et al., 2018). 

Boruta algorithm is a wrapper method that randomly designs 

shadow features and compares them with the importance of the 

real predictor variables. The values of those shadow variables 

are generated by permuting the original values across 

observations and therefore destroying the relationship with the 

outcome. A RF is trained on the extended data set, and the 

variable importance values are collected (Degenhardt et al., 

2019). 

Within RF, two different importance measures are 

implemented, mean decrease accuracy (MDA) and mean 

decrease Gini (MDG), that can be used for ranking variables 

and variable selection. The former measure assesses the 

importance of a variable by measuring the change in prediction 

accuracy when the values of the variable are randomly 

permuted compared to the original observations, whereas the 

latter is the sum of all decreases in Gini impurity due to a given 

variable, normalized by the number of trees (Calle and Urea 

2010). 

The VSURF or variable selection using the RF algorithm 

implements backward elimination then forward selection based 

on its importance and removes all the irrelevant features. 

Therefore, the least important predictors, which increase oob 

error by a margin larger than a threshold, are removed from the 

model. At the final step of the procedure, a list of the most 

discriminant features is obtained (Georganos et al., 2018). To 

summarize, in this research, the best performance of RF model 

was determined by evaluating various feature selection 

methods, which choose an optimal subset of features according 

to a certain criterion (Figure 2). 

 

 

Figure 2. Flow chart of the main steps of the research.  
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3.3 Accuracy assessment 

For this research, stratified random sampling was chosen as a 

sampling design to produce 200 samples per class, and LC 

classes were used as strata (Olofsson et al., 2014). 

Subsequently, a training set ratio of 50% sampling was applied 

to each stratum to obtain the training objects for constructing 

the classification model randomly. This number of samples was 

chosen because it is large enough to be adequately dispersed 

across the study site. 

 

Confusion or error matrix (Stehman and Foody 2019) was used 

for accuracy assessment between the reference and predicted 

data. Overall accuracy (OA) was computed as the map-level 

accuracy metric, whereas F1 score was used to report class-level 

accuracy. The F1 score (Equation 1) is defined as the weighted 

harmonic mean of User’s accuracy (UA) and Producer’s 

accuracy (PA) and was calculated as follows: 

 

 
PA×UA

F1=2×
PA+UA

 (1) 

 

where PA and UA are defined as the complement of the 

omission and commission error probability, respectively. 

 

Furthermore, as discussed in the research by Pontius and 

Millones (2011), Kappa coefficient is highly correlated with 

overall accuracy, and reporting them both is redundant. 

Therefore, the classification results were also evaluated with 

two simpler summary parameters: quantity disagreement (QD) 

and allocation disagreement (AD). Also, a 95% confidence 

interval (CI) was reported for all accuracy estimates since 10 

random trials for each classification scenario were generated.  

 

 

4. RESULTS AND DISCUSSIONS 

4.1 Random Forest hyperparameter optimization results 

As outlined in Section Methods, ntree and mtry 

hyperparameters of the RF classifier can be tuned to find the 

optimal LCC values and decrease the runtime needed for 

prediction (Probst et al., 2019). Grid search, in which all given 

ntree and mtry values are evaluated, was used for 

hyperparameter tuning (Table 3).  

 

 

ntree 

100 500 1000 

mtry 

4 92.1 92.2 92.5 

7 94.3 93.8 93.1 

10 93.6 93.9 93.5 

Table 3. RF hyperparameter tuning of mtry and ntree according 

to the overall accuracy (%) using grid search approach. 

 

Since the addition of more trees, neither increases nor decreases 

the generalization error (Rodriguez-Galiano et al., 2012), for 

this research the ntree parameter was set to 100. Usually, the 

mtry parameter is set to a square root of a total number of input 

features, since a very high mtry may increase the dependency of 

member trees and thus compromise the model stability. Hence, 

similar to the research from Zhang and Yang (2020), the mtry 

was set as (n/10 + 1) where n represents the number of input 

features. 

4.2 Feature selection 

In order to select the ideal feature subset for vegetation 

mapping, five variable importance measurements (i.e., RFE, 

Boruta, MDA, MDG, and VSURF) were generated. As 

mentioned in Section 3.2., RFE method firstly creates a model 

with all variables and then continues until all variables have 

been removed and consequently, ranked (Georganos et al., 

2018). For MDA and MDG, OA was compared depending on 

the number of the most important predictors (which were 

incrementally added until a model with all variables was 

reached), whereas Boruta and VSURF provide a report with 

information on which features were included or rejected. 

Therefore, Table 4 shows the OA of each feature selection (FS) 

method tested and a number of variables included within the 

reduced models. The top two methods, with similar OA, were 

MDA and VSURF, whereas MDG performed poorly in 

comparison to the other methods. Although MDA produced the 

lowest OA in the research by Georganos et al. (2018), still 

MDA method is frequently used to pre-select the most 

important variables (Belgiu and Drăgut 2016; Dobrinić et al., 

2021). Furthermore, this research also confirmed that VSURF 

method offered the lowest number of input variables, as 

mentioned in the paper from Speiser et al. (2019). This should 

also be considered as a trade-off between accuracy (i.e., MDA) 

and complexity of the model (i.e., VSURF). 

 

FS method OA [%] Nr. of features 

RFE 90.09 80 

Boruta 89.95 105 

MDA 90.91 34 

MDG 89.45 37 

VSURF 90.77 19 

Table 4. Peak overall accuracy (%) for Random Forest 

classifier, based on different FS methods. 

 

Furthermore, the variable importance rankings generated from 

MDA method are shown in Figure 3. The ideal feature subset 

derived from MDA method consists of 14 S2 spectral bands, 12 

spectral indices, six GLCM textural features, and two radar 

bands. The five most important variables were summer Green 

and Red Edge-1, spring Green and Red Edge-2 S2 bands, 

respectively, and summer GLCM Mean derived from S1 VH 

band.  

 

 

Figure 3. Number of input variables generated by the MDA FS 

method and grouped by the source of the input feature. 
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The results above coincide with similar research, e.g., Abdi 

(2019), where Red Edge bands from spring and summer dates 

were mostly included in LCC in a boreal landscape using S2 

data. Also, the high importance of the Red Edge spectral bands 

could be associated with the mapping of different crop types 

(Forkuor et al., 2018). Regarding the Green spectral band, its 

value has also been proven for vegetation classification 

(Orynbaikyzy et al., 2020; Zhang and Yang 2020). Furthermore, 

texture features as a measure of image roughness, especially 

GLCM Mean proved to increase the classification accuracy for 

LCC (Balzter et al., 2015; Gašparović and Dobrinić 2021). 

 

4.3 Validation in vegetation mapping scenarios 

 

In order to evaluate the efficiency of the feature selection 

process, and as shown in Section 4.2, MDA FS method (34 

input features) was used for comparison of the model’s 

performance with the band-only model (36 input features) and 

the all-feature model (114 input features). The LCC produced 

by the MDA model had the highest OA of 90.91%, followed by 

the maps from all-feature and band-only models with an OA of 

89.65% and 81.55%, respectively (Table 5). A similar trend, in 

terms of OA, was reported in the research from Zhang and Yang 

(2020), where the RF model and the ranking of MDA (10 

features) outperformed all-feature (22 features) and band-only 

(13 features).  

 

Class or  

summary metric 

F1 score or model statistics 

Band-

only 
All-feature Best-fit  

Cropland 0.81 0.80 0.85 

Forest 0.90 0.90 0.95 

Water 1.00 0.96 1.00 

Built-up 0.74 0.81 0.95 

Bare soil 0.69 0.93 0.95 

Grassland 0.77 0.79 0.83 

Orchard 0.78 0.93 0.89 

OA 81.55 89.65 90.91 

QD 7.77 4.44 2.39 

AD 10.68 5.91 6.70 

95% CI  (72, 88) (85, 93) (86, 94) 

Table 5. Accuracy results for band-only, all-feature, and best-fit 

(MDA) model. 

 

Although OA of the best-fit model was higher than an all-

feature model, AD was lower for the best-fit model, which 

means that larger number of the location of a class pixel in the 

training data was different from the location of the same class in 

the test data (Pontius and Millones 2011). It should also be 

noted that every FS method, except MDG, outperformed both 

all-feature and band-only models. Likewise, Sun et al. (2020) 

and Schulz et al. (2021) used S1 and S2 time series with RF 

classifier for crop type mapping over agricultural areas and land 

use mapping in a heterogeneous landscape in Africa, 

respectively. Former research used recursive feature increment 

for FS and achieved an OA of 83.22% for a distribution map of 

five major crop types, whereas the latter removed features with 

pairwise correlations higher than 0.8 by calculating the 

correlation matrix and achieved an OA of 73.3%. 

 

To assess the ability of differentiation between the LC classes, 

F1 score is presented in Table 5. According to the F1 score of 

individual LC classes, the best-fit model outperformed other 

models, except for the orchard due to the high heterogeneity, 

where the all-feature model performed better. Also, the best-fit 

model proved to differentiate better several vegetation classes 

(e.g., cropland, grassland) than the other two models. For the 

class with the lowest F1 score (i.e., grassland), possible lower 

classification performance could be associated with the 

semantic interpretation of LUCAS, CORINE, and LPIS land-

cover databases and/or large positional error of the ground truth 

reference point data (Weigand et al., 2020). 

 

Figure 4 represents the best supervised pixel-based 

classification scenario (i.e., best-fit model using MDA). Water 

and forest were in good agreement with testing data, whereas 

some orchard pixels were classified as cropland or grassland. 

Also, some confusion occurred between the built-up and forest 

part in the southeastern part of the study site. Due to the terrain 

topography or SAR shadowing, this misclassification could be 

removed using a high-quality digital elevation model (DEM) or 

additional textural features to enhance the land cover classes 

(Pesaresi et al., 2016). 

 

 

Figure 4. Variable importance of S1 and S2 input features 

sorted by the decreasing MDA values. 

 

5. CONCLUSIONS 

This research aimed to evaluate the performance of various 

feature selection methods for vegetation mapping using 

multitemporal Sentinel data and RF classifier.  

Using MDA as a FS method, an original dataset was reduced 

from 114 to 34 input features, and its classification performance 

outperformed all-feature and band-only model with an OA of 

90.91%. The most pertinent input features for vegetation 

mapping were S2 spectral bands (14 features), followed by 

spectral indices derived from S2, GLCM features, and S1 bands. 

However, regarding the classification performance, a trade-off 

between accuracy (i.e., MDA) and complexity of the model 

(i.e., VSURF) must be considered for vegetation mapping. 

Future research should address additional feature selection 

methods (i.e., filter, wrapper, or the embedded) for vegetation 

mapping, combined with advanced deep learning methods. 
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