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ABSTRACT: 

Forest fires would be a global disaster if they were not addressed seriously? From 2015 to 2021, the number of forest fires in India 
nearly tripled. According to FSI, the North Eastern Himalayas, one of UNESCO's 36 Biodiversity Hotspots, account for 36% of 
forest fires in India. This state is dominated by tribal population which practices shifting agriculture. It’s 76.01% of total forest cover 
is highly prone to Forest fires. Despite this, there hasn't been any time-series research on forest fires in this region. The Normalized 
Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Burnt Ratio (NBR), Aerosol Free 
Vegetation Index (AFRI 1600), and Land Surface Temperature may all be linked to forest fires (LST). For Mizoram, India, random 
samples were taken every 16 days using Landsat 8 satellite data across different land cover types, including dense forest, sparse 

forest, farmland, and bare land etc. The study was conducted on a bimonthly basis from January 2016 to June 2021. The findings of 
this work show that an automated temporal analysis utilizing GEE may be used successfully over a wide range of land cover types, 
providing critical data for future monitoring of such threats. 

1. INTRODUCTION 

There has been a progressive increase in temperature and 
decrease in precipitation in recent years as a result of global 
warming, which has resulted in an increase in forest fire 

incidences(Vilar et al., 2016). The most visible effect of climate 
change in the last decade has been the increase in the number of 
forest fires around the world(Krikken et al., 2021) . Forest fires 
have become a serious environmental hazard in many nations 
throughout the world as a result of changing climates and 
concomitant local and regional warming (Zhang-Turpeinen et 
al., 2020). As a result, forest fires have wreaked havoc on flora 
and fauna, as well as on the human life and infrastructure(Vega 
Hidalgo et al., 2013) . 

Tropical forests serve as a natural conservation area and play an 
important function in balancing carbon dioxide levels in the 
atmosphere (Bonan, 2008; Nuthammachot and Stratoulias, 
2021).Despite their importance, tropical forests are rapidly 
disappearing(Abdullah and Nakagoshi, 2007; Sánchez-Azofeifa 
et al., 2001). Forest fires, developmental activities, a fast 
growing population, and other anthropogenic activities were the 
main causes of deforestation in the recent decade(Uusivuori et 

al., 2002). Shifting agriculture is still widely practised by 
indigenous people in many tropical parts of the world. Shifting 
cultivation, also known as 'slash and burn' and 'bush fallow,' is 
performed all over the world and is known as Ladang in 
Indonesia, Kaingin in the Philippines, and Ray in the 
Philippines. Ray in Vietnam, Brazil, the Congo's Masole, and 
Central Africa, as well as the Manchurian highlands, Korea, and 
southwest China(Layek et al., 2018) and Jhum cultivation in 

North East India. As forest fires are harmful to the ecosystem, 
so adequate preventive and mitigating measures, as well as the 
development of forest fire sensitive zones, are becoming a 
necessity for minimising the ever-increasing threat of forest 
fires (Kale et al., 2017). 

Because most forest fires occur in remote areas, they go 
undetected. As a result, India lacks complete statistical data on 
active forest fire incidences. As a result, remotely sensed 

satellite data is an excellent alternate source for forest fire 
research. Nowadays, remote sensing is becoming an 

indispensable technique for monitoring large-scale events in 
terms of both area and time, particularly in distant locations 
such as forests(Sobrino et al., 2019). Furthermore, Landsat 
satellites offer the free of cost, best resolution and spectral 

efficiency for tracking occurrences such as forest fires 
(Konkathi and Shetty, 2021). Remotely sensed satellite data is 
used to create indices that serve as indicators for many aspects 
of the earth's surface, such as vegetation, temperature, and 
humidity. The Normalized Difference Vegetation Index (NDVI) 
is one of the oldest and most important indexes for assessing 
vegetation vigour and its potential as a source of forest fire fuel 
(Long et al., 2019). This indicator has also been used in studies 
on forest fires to detect burnt areas and changes in flora as a 

result of the fire. Since the last two decades, the Normalized 
Burnt Ratio (NBR), a comparatively newer metric than NDVI, 
has been frequently and successfully utilised in forest fire 
studies(Lozano et al., 2007). Other indices, such as the 
Normalized Difference Moisture Index (NDMI) and the Aerosol 
Free Vegetation Index (AFRI), are also examined to support the 
findings. The environmental variable Land Surface Temperature 
(LST) was also investigated in relation to forest fires (Ermida et 

al., 2020). 

Additionally, temporal analysis of forest fire creates a large 
volume of data that is difficult to pre-process and evaluate using 
standalone computer system. Google Earth Engine, a cloud 
computing platform with access to a massive collection of 
satellite data, has changed study in this field in recent years. 
Furthermore, it significantly improves practically any geo-
computation regime used in time series or spatial analysis 

(Wagle et al., 2020). 

Forest fires in India have gotten a lot of attention in recent years 
because of its ecological, economic, social, climatic, and 
political implications(Vadrevu et al., 2010) . Forest fires are 
also becoming a major cause of forest degradation, particularly 
in tropical areas with dry deciduous forests, such as Madhya 
Pradesh, Odisha, and Chhattisgarh (Chandra and Bhardwaj, 
2015). It is a significant contributor to changes in forest 

structure and function. As a result, there has been an increase in 
data gathering for forest fires. As a result, multiple studies on 
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forest fires have been conducted in various parts of 

India(Srivastava et al., 2019; Tiwari et al., 2021). Although 
forest fires can occur naturally, over 90% of forest fires in India 
are caused by humans(Roy, 2003) . Due to the age-old practise 
of shifting cultivation and the spread of fires from jhum fields, 
the North-eastern Himalayas, UNESCO's one of the richest 
biodiversity hotspots, is badly impacted by forest fires (Puri et 
al., 2011). 90% of the population of Mizoram, a state in North 
East India, is tribal (“Census of India Website : Office of the 

Registrar General & Census Commissioner, India,” ), and most 
of them engage in shifting cultivation (Sati and Rinawma, 
2014). However, it is paradoxical that, despite having some of 
the world's greatest flora and fauna in North East forest and 
ranking second only to central India in terms of fire proneness, 
comparatively few research had been conducted(Ahmad et al., 
2018) . These findings influenced our decision to study in north-
eastern India. 

All previous forest studies in North Eastern India are at least 7 

years old. As a result, many investigations lacked either high-
resolution Landsat 8 data or effective cloud-based geo-
computing platforms such as Google Earth Engine(Puri et al., 
2011). Apart from that, it's worth noting that, according to the 
Forest Survey of India (FSI), the total forest cover of Mizoram 
has been divided into the following five classes based on their 
fire proneness: Extremely fire prone 29.91 percent, very highly 
fire prone 38.46 %, highly fire prone 24.64 %, moderately fire 

prone 5.35 %, and less fire prone 1.64 % (IFSR 2019). This 
clearly reveals that more than 90% of Mizoram's forest area is at 
risk of fire. Furthermore, while India's total forest cover has 
increased in the last two years, it has decreased in the north 
eastern states (IFSR, 2019). According to the Mizoram 
government's Fire and Emergency Services Department, there 
were 69 forest fires in 2016, 46 in 2017, 56 in 2018, and 82 in 
2019 ("Fire & Emergency Services Department, Mizoram"). In 

April 2021, there were also numerous serious forest fire 
incidents, according to news reports. All of this inspired us to 
conduct study on forest fires in Mizoram in North East India. 

Furthermore, no temporal analysis of forest fire indices has been 
conducted for Mizoram in the last fifteen years. Forest fire 
studies must also be reanalysed utilising current technology and 
high-resolution data due to significant changes in the 
environment over the last decade. This would allow us to 

improve the accuracy of the data collected and gauge the impact 
of forest degradation. This could be used for a variety of forest 
fire-related investigations, such as identifying forest fires, 
mapping forest fire zones, evaluating the ecological and 
economic impact of forest fires, and so on. 

Thus, in this work, we investigated indices such as NDVI, 
NBR, NDMI, AFRI, and LST for the Mizoram state of India 
between 2016 and 2021 using Landsat 8 data on Google Earth 
Engine platform. Furthermore, the temporal analysis using GEE 

provided valuable insights into vegetation phenology, which 
will aid in the development of critical phenological criteria for 
forest fire. The study's main goal is to do a temporal analysis of 
forest fire-related indices and see the land surface temperature 
variance. 

 

2. STUDY AREA, DATASET AND METHEDOLOGY 

2.1 Study Area 

The state of Mizoram lies between 21°56' N to 24°31' N latitude 
and 92°16' E to 93°26' E longitude covering an ares of 21,081 
sq km. The state's geography is primarily mountainous, with 
rocky and steep slopes creating deep valleys that lead to a 

number of streams and rivers in the lowlands. Almost all of the 

hill ranges are in north-south orientation. When compared to the 
western portion of the state, the eastern part has a higher 
elevation. In south-eastern Mizoram, the tallest mountain, 
Phawngpui, stands at 2,165 m. Hill ranges, on the other hand, 
have an average height of roughly 920 metres. In the state, there 
are 15 major rivers, seven of which flow north and the rest flow 
south or west. 

Mizoram is a monsoon-rich state, with annual rainfall ranging 

from 2,100 to 3,500 mm and yearly temperatures ranging from 
11°C to 24°C during the winter months of November to 
January, and 18°C to 29°C during the summer months of March 
and April. It rains heavily during the monsoon season, which 
runs from May through September. According to ISFR 2019, 
Mizoram has a forest cover of 18,005.51 sq km, accounting for 
85.41 % of the state's entire geographical area, making it the 
state with the greatest forest proportion out of the total 
geographical area in the country. The major types of forest in 

the state are tropical semi-evergreen (71.94%), tropical moist 
deciduous (27.4%), subtropical broad leaved (0.04%), and 
subtropical pine forests (0.62%).  

Mizoram has a population of 1.09 million people, according to 
the 2011 census and a population density of 52 people per sq 
km, which is significantly lower than the national average of 
382 people per sq km. The rural population accounts for 47.89% 
population, while the urban population accounts for 52.11%. 

The tribal population accounts for 94.43% population. 
However, the state's literacy rate is 91.33%. 

 

 

Figure 1: Map drawn using ArcMap showing the study area of 
Mizoram, North East India. 

 

2.2 Dataset 

The LANDSAT/LC08/C01/T1-SR and LANDSAT/LC08/C01/ 
T1-TOA dataset from the USGS Landsat series of Earth 
Observation satellites is used in this study. The study area falls 

in path 135/136 and row 43/44/45 which makes the whole set of 
the image collection. The atmospherically corrected surface 
reflectance of 5 visible and near-infrared (VNIR) bands, 2 short-
wave infrared (SWIR) bands, and 2 thermal infrared (TIR) 
bands are used (Hislop et al., 2018). Tier 1 Landsat scenes are 
appropriate for temporal analysis because they have the best 
data quality available for free.  

 

2.3 Methodology 

The workflow was broken down into three sections namely data 
gathering and pre-processing, data processing, and time series 
analysis are all steps in the process. 

Data Gathering and pre-processing: 
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The Landsat 8 surface reflectance images were selected from 

the image collection on GEE for the study area. The image 
collection was filtered based on the study location, time period 
and minimum cloud percentage. After that, cloud masking was 
applied to remove the errors caused by cloud covers and cloud 
shadows in the filtered images. Then mosaicking was done for 
the same dates and the study area was clipped from the image.  

 

Figure 2: Methodology used for time series analysis of Indices 

calculated for the Mizoram region 

 

Calculating Indices: 

On the extracted satellite images many indices were calculated 
for the requisite time period. The NDVI, NDMI, NBR (Lozano 
et al., 2007), and AFRI were calculated using the below 
mentioned formula,  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
       (1) 

 

𝑁𝐷𝑀𝐼 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅1)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅1)
      (2) 

 

𝐴𝐹𝑅𝐼 = 𝑁𝐼𝑅 − 0.66 ∗
(𝑆𝑊𝐼𝑅1)

(𝑁𝐼𝑅+0.66∗𝑆𝑊𝐼𝑅1)
     (3) 

 

𝑁𝐵𝑅 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅2)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅2)
      (4) 

 

LST was also calculated from using the formula given below 
(Ermida et al., 2020). 

𝐿𝑆𝑇 = 𝐴𝑖 ∗
𝑇𝑏

ℇ
+ 𝐵𝑖 ∗

1

ℇ
+𝐶𝑖       (5) 

 

 

Time series Analysis: 

The total forest cover of Mizoram is highly prone to forest fires, 
yet, there hasn't been any time-series analysis on forest fires in 

this region. Further the effect of land use practices on forest 
fires is not analyzed yet. Hence in this work, 30 random 
samples were taken on different land cover types, including 
dense forest, sparse forest, farmland, and bare land at every 16 
days using Landsat 8 satellite data. The study was conducted on 
a bimonthly basis from January 2016 to June 2021. All the 
indices as mentioned above were calculated for these points and 
for representation their mean value was considered. The basic 

statistical analysis for these indices derived for above mentioned 
classes is shown in table 1. Points depicting burned areas/scars 
of recent forest fires in Mizoram were collected using Google 
Earth Pro for the purpose of validation and estimating the forest 
fire extents. 

 

3. RESULTS 

The temporal graph of NDVI for different classes like dense 

forest, sparse forest and bare land shows that the value of NDVI 
starts increasing from May, reaches near peak value in mid-June 
and maintains a high value above 0.8 for almost 5 months and 
then starts decreasing from mid-November and reaches a 
minimum value of around 0.6 sometime in April end. This 
behaviour is seen to be repetitive for all the years showing the 
phenological pattern of the vegetation growth in the area. 
Almost same behaviour is seen for other indices and LST was 

found to be higher at the fire incidents. 

 

Fig. 3: Mean NDVI for 30 random points taken in each land 
cover class of Mizoram area from year 2016-2021. 

The average NDVI values for sparse forest, farmland and bare 
terrain were determined to be 0.77, 0.51 and 0.70, respectively. 
The NDVI for the dense forest region is around 0.8 on average, 

with highest values reaching 0.9 having standard deviation of 
0.06. The farmland and bare land show a minimum value of 0 
and 0.12 and maximum value of 0.8 and 0.9 with a similar 
standard deviation of 0.15. The maximum value of NDVI is 
reached in the month of October 2016 for the bare land region 
and in the month of September 2016 for the farmland region. 

Interestingly, around March 28, 2016, the NDVI reaches its 
lowest point which can be seen from the figure 3, with a value 

of 0 for farmland, 0.12 for bare terrain and 0.18 for sparse 
forest. Also, the minimum value of NDVI for dense forest 
points is around 0.56, which corresponds to 6 April 2016, as 
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shown in figure 3, implying that there is a likelihood of a forest 

fire at that time.  

Similarly, during March 2021, low NDVI values in the dense, 
sparse forest and bare land region is observed that indicates the 
presence of some fire events during that time. This was 
validated with the news reports and the high-resolution satellite 
image of that time period. 

 

Fig. 4: Mean NDMI for 30 random points taken in each land 
cover class of Mizoram area from year 2016-2021. 

 

According to the data, the average NDMI for the dense forest 
region is 0.34, with a maximum of 0.48 and a standard 
deviation of 0.05. The minimum NDMI of dense forest points is 
around 0.16, which corresponds to March 28, 2016, showing 
that there may have been a dip in moisture content due to a fire 
occurrence at that time. In the sparse forest region, the NDMI 
has an average value of 0.45 while the minimum value for the 
sparse forest zone, which corresponds to February 9, 2016, 

indicating reduced moisture content at that time means there is 
high chance of some event of forest fire. (Figure 4). Minimum 
NDMI value for the farmland was found to be -0.13 around 05  

Table1: Statistical estimates for various indices for different 
land cover types gathered from 2016 to 2021. 

March 2016 shows these months to have registered some event 
(Figure 4). Similarly, on 29 May 2021 the NDMI value for bare 
land reaches a minimum of -0.14 indicating very low vegetation 
moisture content.  

 

 

 

The average value of AFRI in sparse and dense forested region 
is 3411 and 3007 with the standard deviation of 749 and 658 
respectively (Table 1). While the average AFRI for bare land 
and farmland is 3410 and 2727 with the standard deviation of 
838 and 734 respectively. 

The lower values of AFRI for the farmland is observed in April 
2016; July 2019 and May 2021 while that for bare land is 
observed in January 2017. However, for dense and sparse 

vegetation the lowest AFRI value is seen around January and 
February 2016, that matches with the time period when other 
indices are also low suggesting that these are the months of 
degradation in vegetation health, most probably due to forest 
fire events. The peak shown in the figure 5 might be the outlier.  

 

 

Fig. 5: Mean AFRI for 30 random points taken in each land 

cover class of Mizoram area from year 2016-2021. 

 

There are days when many indices are lower and it is expected 
that there must have been some forest fire indices. Hence to 
corroborate that, NBR was calculated using equation 4. The 
temporal variation of mean NBR is shown in figure 6. The 
maximum value of NBR for all the land cover types is around 
0.71-0.75 and except dense vegetation the minimum value of 
NBR for other land cover types is near 0. The average NBR 

value for farmland and bare land region is 0.35 and 0.51, while 
that for sparse and dense forest in 0.58 and 0.64 respectively. 
The standard deviation for bare land farmland, sparse forest, 
dense forest regions is 0.16, 0.19, 0.10, 0.06 respectively (Table 
1).  

It can be seen that farmland and bare land attains minimum 
value around mid-March 2016 and beginning of April 2021 
(Figure 6). The value of NBR for bare land region reaches its 

lowest value to -0.01 on 11th April 2021, and that for farmland 
the minimum value is observed 1st April 2020 (Figure 6). Thus, 
the April of 2016 and 2021 seems to be the time when forest 
fire had occurred which led to decrease in NBR value in 
farmland and bare land. Similarly, for the sparse forest regions, 
during mid-April 2016 and for dense forest regions, during the 
end of March 2016, the NBR values are minimum indicating the 
occurrence of forest fire event. This is also be validated by local 

media coverage.  

 

Index 
Statistical 

Parameter 

Dense 

Forest 
Sparse Forest 

Farm 

land 

Bare 

land 

NDVI 

Min 0.56 0.18 0.00 0.12 

Max 0.92 0.91 0.84 0.91 

Avg. 0.82 0.77 0.51 0.70 

Std. Dev 0.07 0.10 0.15 0.15 

    
 

      

NDMI 

Min 0.16 -0.10 -0.13 -0.14 

Max 0.48 0.45 0.52 0.45 

Avg. 0.34 0.29 0.12 0.24 

Std. Dev 0.05 0.09 0.17 0.12 

    
 

      

AFRI 

Min 2024.01 1684.00 792.00 1333.00 

Max 5210.34 5643.60 9575.00 6976.01 

Avg. 3006.81 3411.05 2726.92 3410.41 

Std. Dev 657.57 749.01 733.83 837.82 

    
 

      

NBR 

Min 0.40 0.05 0.02 -0.01 

Max 0.75 0.75 0.71 0.76 

Avg. 0.64 0.58 0.35 0.51 

Std. Dev 0.06 0.10 0.19 0.16 
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Fig. 6: Mean NBR for 30 random points taken in each land 
cover class of Mizoram area from year 2016-2021. 

 

These incidents when we expect that forest fire had occurred, 
would led to increase in the temperature of the surrounding area 
and so we calculated the LST for those points in different land 
cover types. During different time periods, we didn’t get the 

LST values because of presence of clouds at that time. The 
results showed that the effect of fire events has indeed increased 
the temperature which can be seen in the temporal graph shown 
below. 

In general, the maximum temperature of the study area is 
around 27°C and that in forested areas is few degrees lower. But 
the land surface temperature for May 2016, 2020 and 2021 was 
higher than this value. But during March 2016, 2019, 2020 the 

temperature for sparse forest is more than even 30°C (Figure 7). 
In general, the LST for the farmland was found to be maximum 
in May (Figure 8). Many fire events have occurred during this 
time period of March - May mainly due to slash and burn 
agricultural practices (jhum cultivation). However, these results 
needed more detailed analysis to converge to exact time frame 
for estimation of forest days based on LST values. But for the 
initial work, we obtained sufficiently good results. 

 

 

Fig. 7: LST Mean Degree Celsius for Sparse Forest region from 
year 2016-2021 in Mizoram region  

 

 

Fig. 8: LST Mean Degree Celsius for Farmland region from 

year 2016-2021 in Mizoram region  

 

We found that the NBR gives better results and to validate those 
results, we marked the burnt areas for 2021 on Google Earth 
Pro. There were many big fires in the months of March-April, 
2021 in Mizoram, so those locations were marked in GE pro 
manually. Then for these points NBR was calculated for the 
whole-time frame. Due to cloud masking many data points were 

not obtained, as we got gaps in the data as shown in figure 9. 
The minimum, maximum and the mean values of NBR value 
for all those burnt areas were plotted (Figure 9). It is interesting 
to observe that during 2021 the NBR value for those burnt 
pixels/ areas dropped significantly. The maximum value of 
NBR also was very low during the period of forest fire in 
between March to May 2021. It's vital to remember that these 
fire points are from the fire outbreak in March and April of 
2021. When we see the NBR graph for other land cover types in 

figure 6, we observe lower values in 2016 which seems to be 
due to forest fire events in 2016 and indeed some event had 
happened in 2016 in Mizoram. Thus, NBR gives good proxy for 
estimating the forest fire areas. More detailed work is required 
to estimate and define the threshold for NBR corresponding to 
forest fire events.  

 

Figure 9: Min, Max, and Mean NBR of the burnt area points 

taken from Google earth pro in the Mizoram region. 

 

4. DISCUSSION 

Forest fires are most common in tropical climates during the 
long, dry summer season. They have a significant impact on 
atmospheric chemistry, biogeochemical cycle, and ecosystem 
structure. This feedback relationship may be increased during 
these times of rapid change in environmental conditions. As a 
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result, it's critical to analyse, interpret, and explain the findings 

of this research work. 

Mizoram is a monsoon-rich state, with monsoon season 
beginning in May and ending in September. As a result, the 
majority of the vegetation blooms at this time, increasing the 
NDVI value around September-October and falling NDVI 
values throughout the hot months of March-April. In addition, 
Mizoram's forest cover accounts for more than 85% of the 
state's total land area. Dense forests have high NDVI values, 

often greater than 0.8, whereas sparse forests have mean NDVI 
values that range between 0.6 and 0.8. In both dense and sparse 
forest, the maximum and minimum NDVI values were found in 
September-October and March-April, respectively. Paddy is the 
major food crop grown in Mizoram's shifting cultivation 
dominated topography due to abundant rain (Wapongnungsang 
and Tripathi, 2018). It is planted at the beginning of the Kharif 
season, in May-June, and harvested in October-November. In 
September-October, the paddy sapling grows into a green plant. 

This is supported by high NDVI values for farmlands in 
September, followed by a drop in NDVI due to harvesting in 
October and November. Farmers often grow vegetables such as 
cabbage, cauliflower, beans, and other similar crops during the 
Rabi season, which begins in November and lasts 45-60 days. 
Furthermore, during the Rabi season, the NDVI values show a 
lot of zig-zag patterns with brief cycles. This trend could be 
attributable to a number of factors. Additionally, the spectral 

characteristic of farmland fluctuates greatly during the year. 
When harvested or tilled, it resembles a burned-out field. The 
values of NDVI of farmlands also drop sharply after ripening 
and before harvesting (Long et al., 2019). 

As NDVI, NDMI and NBR are all normalised indices with the 
same NIR band, the relative behaviour of all three indices are 
nearly identical across all land use groups. Despite the fact that 
the AFRI was not a normalised index, it behaved similarly to 

the NDMI because its calculation included NIR and SWIR 1. 
Due to the presence of the SWIR band, a comparative analysis 
of the graphs of different indices clearly demonstrates that the 
NBR index is more capable of identifying fire conditions than 
the other indices(Hislop et al., 2018). Similar to NBR, NDMI 
outperformed NDVI in capturing changes in vegetation 
moisture and fire-like conditions. The presence of SWIR bands, 
which at least penetrate thin clouds, could explain the higher 

performance of NBR and NDMI(Lozano et al., 2007). NDMI is 
also more useful in detecting water stress areas that are 
susceptible to forest fire since it is more susceptible to moisture 
levels in crops and trees (Tian et al., 2013). 

In general, the estimated mean Land Surface Temperature 
(LST) for various land cover classes displays the yearly highest 
values in March and April. This corresponds to the actual 
situation. The LST values were also found to be significantly 
higher than the respective month's average maximum 

temperature on the days that had chances of forest fire events. 
This is also consistent with the results of the other indices, and 
it concord the real data. 

As the revisit time of Landsat 8 satellite is of 16 days so it 
becomes challenging to identify active fire points. But still, if 
more sample points would have been selected in each of the 
land use classes then results would have been much better. Thus 
the findings of this work show that an automated temporal 

analysis utilizing GEE may be used successfully over a wide 
range of land cover types, providing critical data for future 
monitoring of such threats. 

 

5. CONCLUSION 

 

 The time series analysis of these indices revealed that, in 
general, all indices increased during the monsoon season, 

peaked around September, and then began to decline, 
reaching a minimum value in April.   

 Furthermore, all indices deviated from the general trend in a 
few instances, which could be related to a few forest fire 
events. In addition, the majority of fire accidents were 
discovered to occur in the month of March, with few 
outliers for winter events. 

 NBR captures the forest fire events more prominently than 
other indices and hence could be used as proxy to forest 
fires. 

 The general behaviour and anomalies were adequately 
described, and the results were consistent with real-world 
settings and incidents of forest fire. 
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