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ABSTRACT: 

 

The purpose of this study is to enhance point cloud semantic segmentation by using point clouds from multiple distinct technologies 

on the same capture location and to determine whether employing various technologies throughout the acquisition process yields better 

performance during classification. The different point clouds were captured in the same geographical location and have previously 

been aligned and classified by professionals of the field. Three locations have been scanned with airborne lidar, terrestrial lidar and 

photogrammetry using UAV or helicopter. The use of various sources of capture on the same location opens the door to creating new 

features, such as the proportion of each source involved in the semantic segmentation of point clouds. This plurality of sources also 

enables us to spread various features, such as RGB colors, that have been propagated to other sources via the neighborhood. The initial 

results lean towards capture using different technologies as the overall accuracy increase by two to four points and the mean Matthews 

correlation coefficient increase by four to seven points. The main drawbacks are the cost of some technologies, as well as the processing 

time, which is greater than with a single technology. 

 

 

1. INTRODUCTION 

Using multiple acquisition technologies is necessary in some 

projects depending on the location to be scanned. This is mainly 

the case when acquiring in dangerous or steep locations. In such 

situations, it is sometimes not possible to use a Terrestrial Laser 

Scanner (TLS). Technologies such as Airborne Laser Scanners 

(ALSs) or drones to perform photogrammetry are then necessary. 

Using multiple scanning technologies over the same 

geographical location is still not common practice. In many 

cases, only the most suitable technology for the project is used. 

Algorithms that consider different input sources are therefore 

only rarely used. The sources can be a TLS, an ALS onboard, an 

aircraft, a helicopter (the latter of which is known as a Helicopter 

Laser Scanner or HLS) or a drone that can capture pictures to 

create a cloud using photogrammetry. These sources each have 

their own advantages, such as the large geographical area of 

coverage at a low cost for the ALS and the density of the point 

cloud for the TLS. But they do also have disadvantages, such as 

the density of points in an ALS acquisition, which can be as low 

as one point per square meter, or the price and time-intensiveness 

for the TLS.  

The main purpose of this article is to evaluate if there is any 

benefit to using multiple capture technologies when scanning the 

same location. Contrary to other articles that use sources 

providing data of heterogeneous nature such as point clouds 

associated with images, our work focuses on sources providing 

data of the same nature. This evaluation has been conducted by 

first considering two types of features. First, there are acquired 

features that are not available from all acquisition technologies, 

such as color with RGB features or intensity. Such features will 

be propagated to the clouds acquired from different sources via a 

neighborhood search mechanism. Second, calculated features 

will be created using human concepts such as linearity or 

sphericity that have been used for the semantic segmentation. The 

use of calculated features enables discrimination of classes. This 

choice of features is mainly conditioned from the data, which 

represent large areas ranging in size from a hundred square 

meters to ten square kilometers, with large empty areas that could 

be too time consuming to classify using other methods.  

Convolutional Neural Networks (CNNs) are one of the most used 

images and point cloud semantic segmentation algorithms. They 

are best used with ordered data, which is why voxels are often 

used. But the use of voxels can be time consuming, as our data 

cover a large area, and the CNNs using images would have had 

to be colored by the use of features in the case that the color is 

not present in our cloud. The choice of calculated features and 

neural network is due to the limited number of point clouds at our 

disposal as it is difficult and time-consuming to scan and process 

the data from different locations with multiple sources. The 

calculation of features makes it possible to use each point 

individually, which artificially increase the data.  

Our main contributions are therefore : a neural network-based 

architecture for projects that use multiple sources of acquisition 

and the combination of different sources of point clouds to 

classify them, the propagation of features on the different data 

sources, and the use of an uncommon metric in this field, i.e. the 

Matthews Correlation Coefficient (MCC). 

This article is divided as follows. The next part presents the 

related works in similar fields. Then the methodology is 

presented following the designed workflow. The methodology 

part also presents the features and metrics used, the propagation 

of features and the neural network. The penultimate part 

highlights and discusses the results. Finally, the conclusion 

summarizes the important points of this article and highlights the 

advances and possible future works in the fields of multi-source 

semantic segmentation. 
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2. RELATED WORKS 

The related works section is divided into three parts. After a quick 

introduction of the semantic segmentation algorithms 

components, the second part is dedicated to the semantic 

segmentation of point clouds and the last part is about the 

semantic segmentation of multi-source.  

 

2.1 Overview of Semantic Segmentation Algorithms 

Components 

The use of point clouds for autonomous navigation or 

topographic purposes is more and more democratized following 

the use of lidar technologies and artificial neural networks. 

Nowadays, it is possible to classify a point cloud using many 

methods and algorithms. Several approaches are relevant to 

address semantic segmentation issues including methods using 

prior human knowledge and deep learning methods that are based 

only on raw data as described in (Te et al., 2018). This review 

nevertheless makes it possible to see that despite the variety of 

methods, a common basis of grouping points is necessary, with 

the use of various methods such as voxels, bounding boxes and 

neighborhood searching. In some cases, sampling is used to 

decrease computing time before moving on to the grouping of 

points and the use of a mapping function as shown in (Guo et al., 

2021). 

 

2.2 Point Cloud Semantic Segmentation  

Point cloud semantic segmentation refers to the act of giving a 

label to a point. This label is a class that reflects the meaning or 

use of the object. Semantic segmentation can be used to find a 

specific object like a car, and in some cases, it is used to define a 

drivable area. The semantic segmentation is useful to understand 

the point cloud or to perform different tasks on it. It is mainly 

done by hand, but algorithms tend to yield good results for 

repetitive tasks. CNNs are one of the algorithms most commonly 

used for point cloud semantic segmentation. They require 

structured and ordered data to be used. (Atzmon et al., 2018; 

Boulch, 2020; Maturana and Scherer, 2015) propose using a 

point cloud directly by employing a continuous convolution 

rather than a discreet one. Recently, (Boulch, 2020), with its 

PCNN, proposes a data fusion model to be able to use different 

sources as inputs, which increases semantic segmentation 

accuracy. In (Lei et al., 2019), the authors use spherical 

convolution kernels to have a structure that is centered on the 

points, contrary to the approaches that use voxels. This approach 

coupled with the use of octree is also faster and improves the 

semantic segmentation performance metrics. It is also possible to 

find graph-based CNNs as in (Wang et al., 2019). Graphs make 

it possible to use the geometrical information of a grouping of 

points and the relation between classes. This grouping of points 

can be predefined or be dynamic according to the layers of the 

neural network.  

Apart from a CNN, which relays on an end-to-end Neural 

Network (NN) approach, some projects use human prior 

knowledge of the classes to classify or create specific features to 

classify point clouds. In some specific cases, when it is not 

necessary to classify all the points, only specific structures like 

power lines are classified as shown in (Shi et al., 2020). It is 

therefore possible, for simpler subjects like the discrimination of 

particular classes such as buildings in (Huang et al., 2018), to 

implement more cost-effective algorithms and delegate more 

difficult tasks to a NN. Our study uses a NN because it was 

decided to use calculated features, which are attributes that 

describe a characteristic of a point or its neighborhood.  

 

2.3 Multi-Source Semantic Segmentation  

Some of the challenges that can be encountered in projects that 

use various sources are described in (Hullo et al., 2015), in which 

the authors use point clouds and images to recreate the interior of 

a power plant. The amount of data to be processed, and the lack 

of tools to process data of different kinds and from different 

sources are the main challenges of projects that use multiple 

sources.  

The use of images from two different sources, one of which is on 

the ground and the other of which is in the sky, is shown to 

improve semantic segmentation results in (Srivastava et al., 

2019). (Cao et al., 2018) show that the collaborative fusion of the 

different sources via a CNN and the use of semantic features 

makes it possible to obtain better image semantic segmentation 

results. (Siddiqui et al., 2020) use three data sources (lidar, single 

photon lidar and camera) to improve data semantic segmentation 

for autonomous cars. (Li et al., 2021) use two data sources (lidar 

and hyperspectral imagery) to better classify the points and pixels 

in their data. In their case, both data sources have the same point 

of view, as the data are aerial/spatial. To make the best use of 

their sources, they had to develop a data fusion module based on 

extracted features. (Qin et al., 2018) also take into account 

different points of view.  

In our case, these different points of view are captured using 

different technologies, some moving in the sky and others on the 

ground. Our work uses point clouds from different sources to 

classify all the sources using a single workflow. 

 

 

3. OVERALL FRAMEWORK 

This section mainly develops the proposition used to carry out 

the experiments. Our workflow (Figure 1) describes the different 

steps that make it possible to segment multi-source point clouds. 

The workflow includes two parts. The first one (A) comprises the 

calculation of some features and the propagation of others. These 

features are then aggregated in a vector 𝑇. Each point in the point 

clouds to classify has a 𝑇𝑖 vector associated with it. The second 

part (B) encompasses the NN, which classifies points using their 

vector of features. Part A has three branches, to calculate 

monosource and multi-source features and propagate features in 

some point clouds as they are acquired. These different 

calculations and steps are described in the following subsections.  

The main input of our project is a set of point clouds that are 

visible on the left of Figure 1 and represent Location #1 which 

will be the first of three cases describe in the results. These clouds 

come from various technologies that will be noted 𝑘 𝜖 ⟦1. .3⟧ for 
the three sources. In this specific case, initial data comes from 

three sources: TLS, ALS and photogrammetry from a drone. 

Because different acquisition technologies are used, it is possible 

that some of the features acquired with one technology (RGB, 

intensity, etc.) are missing from another point cloud acquired 

using a different technology. Hence, the acquired features are 

represented in orange while the missing ones are represented in 

dark gray and the propagated features in pink in the Figure 1.  

For each point, 𝑃𝑖 (𝑖 𝜖 ⟦1. . 𝑁⟧), the vector 𝑇𝑖 is composed of the 

following. The technologies in grey, the calculated monosource 

features in green{𝑓𝑚𝑜𝑛𝑜}, the calculated multi-source features in 

yellow {𝑓𝑚𝑢𝑙𝑡𝑖} and the propagated features in pink 

{𝑓𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑}. 

In phase A, the Cartesian coordinates of points are used to 

calculate the geometric features (Branch 1 and 2). This is 

described in section 3.1. Then, the coordinates are also used to 

propagate to other clouds the features acquired with some 

technologies (Branch 3), as described later in section 3.2. 
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A NN is then used to calculate the probability of each point 

belonging to each class in Part B of Figure 1 (these values are 

represented in red in Figure 1). The NN and its uses are described 

in subsection 3.3.  

 

3.1 Feature Calculation  

Since different technologies having different point densities exist 

in the dataset, focus has been put on the size of the 3D sphere to 

capture and estimate the nature of the point. Relying on multiple 

technologies allows us to use and create two types of features: 

monosource features and multi-source features.  

 

3.1.1 Monosource Features: It was decided to calculate 

monosource features (Branch 1, Figure 1) first to be able to 

compare the monosource results with those obtained using both 

monosource features and multi-source features. To calculate 

geometric features without considering their multi-source aspect, 

all features are computed for each source independently. To 

compute these features, a sphere captures a subset of points that 

are close to the point to be classified. The geometric features are 

then computed on this smaller point cloud that represents the 

geometry local to the point to be classified. Most of the features 

are derived by Principal Component Analysis (PCA). PCA 

makes it possible to obtain the three main components of the 

point cloud or its main axes from which the features are extracted. 

In our case, eleven (11) features are considered for each sphere. 

Once the first three principal components are computed for each 

point {𝑝𝑐1, 𝑝𝑐2, 𝑝𝑐3}, it is possible to calculate linearity, 

flatness, sphericity, omnivariance, eigenentropy, anisotropy, 

verticality and the sum of the three principal components, which 

are described in (Weinmann et al., 2015). Three spheres of 

different radii (0.5, 1 and 3 m) are used to obtain the geometric 

features at different scales for better results. In this case, it was 

decided to determine sphere size by specifying the radius rather 

than the number of neighbors, as an object like a car would have 

the same dimensions but not the same number of points 

depending on the density of the technology. As three different 

sizes of spheres are used, a total of 33 features have been 

computed. 

In addition to using a sphere, some features can be computed by 

considering cylinders of z-axis and diameter Ø1 m. The first 

feature is the rank of the point, which corresponds to the number 

of the point if they were classified according to their sequence 

along the z-axis of the cylinder. The second feature is the number 

of points in the cylinder. This second feature is similar to the 

number of returns, which is the total number of returns given one 

laser pulse, while the first feature is similar to the return number, 

which is the pulse return number of an ALS if the capture had 

been done vertically. A total of 35 features are therefore 

calculated in the monosource calculation branch. They are shown 

in green {𝑓𝑚𝑜𝑛𝑜} in Figure 1. 

 

3.1.2 Multi-source Features: One of the novelties of this 

article is the use of points acquired by multiple technologies on 

the same location. Therefore, geometric features calculated 

considering only points from a single source (as explained in 

subsection 3.1.1) can be calculated again considering all points 

obtained using different acquisition technologies. It is therefore 

possible to calculate the 35 features discussed in subsection 3.1.1, 

but this time considering all the points available from different 

technologies for the spheres and cylinders. 

In addition, it is possible to calculate statistical features based on 

the number of points from each technology present in the spheres. 

These features were introduced to highlight the density 

differences (ranging from 2 to 100 times greater) between the 

airborne lidar and other technologies. This adds 2 or 3 features 

depending on the number of technologies used. 

The various technologies can capture the area from different 

angles, mainly a terrestrial view for TLS and a sky view for ALS, 

HLS and drone photogrammetry. These different points of view 

make it possible to combine the different clouds in a passive way 

using geometrical and statistical features. As an example, for a 

building, TLS makes it possible to capture the various visible 

walls while the aerial technologies make it possible to add the 

roof. The multi-sources features are shown in yellow {𝑓𝑚𝑢𝑙𝑡𝑖} in 

Figure 1. 

 

3.2 Feature Propagation  

In addition to the different points of view, the different 

technologies offer a range of features that are acquired during 

area acquisition. These different features, which are inherent to 

one or more technologies, are originally available only on the 

points captured by said technology(ies). These features are listed 

Figure 1. Flowchart of the method, with the representation of a point vector and the color legend. 
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in Table 2 for each point cloud and are shown in orange in Figure 

1.  

The various acquisition technologies used in this study each have 

different features that are acquired during the acquisition phase 

of a project. The different features to propagate are the colors 

(RGB), the intensity of the TLS, ALS and HLS, and the number 

of returns and return numbers from the ALS and HLS. 

Using the neighborhood, which is the subset of point cloud 

contained in the above-mentioned spheres, combined with the 

calculation of the average of the feature missing in the point, it is 

possible to split the use into three cases. The first case (C1) is a 

point with missing features that has, in its close neighborhood, a 

point with the features it is missing. The second case (C2) is a 

point with missing features that does not have a value for the 

missing features in its close neighborhood range. The third case 

(C3) corresponds to a point, with missing features, that does not 

have a close neighborhood.   

For example, with C1, in the scenario of missing color, only one 

out of the three technologies in Location #1 has RGB data. In this 

scenario, for points without RGB data that are close enough to a 

point with RGB data, it is possible to take as an approximation 

the nearest point with the missing features. Of course, some 

conditions must be satisfied in order to propagate the features. A 

threshold value (𝑡1) of 50 mm is deemed as a reasonable 

approximation due to the technologies used and cloud density. 

The missing features value will be the same as their nearest point 

if the distance between them is smaller than 𝑡1. This 

approximation is efficient but in the case of moving objects, it 

will be false. If the source point cloud and the destination point 

cloud are not well enough positioned with respect to each other, 

or if the two clouds have been scanned at such distant time 

periods that change in the location have been made, this 

approximation will be much less accurate. 

In some cases C2, where an object like a tree is removed between 

two acquisitions, it is possible to find the nearest neighbor at a 

distance greater than the threshold value. A sphere of radius 1 m 

has been used, and the median of the missing feature has been 

taken.  

In the case C3 neither the nearest neighbor nor the sphere of 

radius 1 m is enough to have a point with the missing feature, the 

point will not be used for the semantic segmentation process and 

therefore will not be classified. 

 

3.3 Segmentation Using Neural Network 

A variety of empirical tests had to be performed to obtain the 

architecture of the Neural Network (NN) and adjust the various 

hyperparameters. First, architectures were tested with two, three 

or four hidden layers of neurons even if it meant overfitting the 

training data to reduce the bias. These initial tests made it 

possible to overfit the test data while choosing a learning rate 

alpha (10−5 ≤ 𝛼 ≤ 10−2) and the most adapted learning rate to 

the data. The tests were performed with between 16 and 1,024 

neurons per hidden layer.  

In a second step, dropout was added (0.2 ≤  𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ≤ 0.5) 

and the weight regularized (10−1 ≤  𝑙2  ≤ 10−5) to reduce 

variance. The resulting NN was thus composed of a first-hidden 

layer of 512 neurons with a dropout of 0.5 and a regularized 

weight of 10−4 activated with a Rectified Linear Unit (ReLU). 

The second and third hidden layers were composed of 256 and 

128 neurons, respectively, with a dropout of 0.5 and activated 

with a ReLU. The last hidden layer was composed of 72 neurons, 

with a dropout of 0.5 and activated with a ReLU. The last layer 

was composed of 7 neurons – one for each class – and activated 

with a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥. The “predicted class” is the one with the highest 

score after the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer. Since the various geographical 

locations, which each represents a different dataset, do not 

necessarily each have all the sources available to them, the global 

architecture of the NN remains the same, but the inputs and the 

input layers vary slightly. As mentioned earlier, these features are 

not present in all the point clouds or in all the geographic 

locations; this is partly why algorithms have been trained and 

tested only on the same types of point clouds and in the same 

locations. 

Weights have been added to the classes to improve training based 

on the location and the classes present in the clouds. The formula 

for the weights of the classes is (Eq. 1), and it makes it possible 

to take into account the number of points per class without 

arriving at overly high weights for the dominant classes or overly 

low ones for the classes that are represented by fewer points. 

 

 𝑤𝑗 =
1

√𝑛𝑗
  (1) 

 

where 𝑤𝑗  is the weight of class 𝑗 and 𝑛𝑗  is the number of points 

in class 𝑗. 

The inputs of this NN are: the technologies in grey, the calculated 

monosource features in green {𝑓𝑚𝑜𝑛𝑜}, the calculated multi-

source features in yellow {𝑓𝑚𝑢𝑙𝑡𝑖} and the propagated features in 

pink {𝑓𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑}. The outputs of this NN are the probabilities 

in red {𝑓𝑝𝑟𝑒𝑑}, of each point belonging to the classes proposed. 

 

3.4 Metrics and Validation 

As in (Bai et al., 2018), metrics such as F1-score are needed to 

validate our results. The metrics used in this article are those 

commonly found in the literature plus the Matthews correlation 

coefficient, which appears less in the literature but is very 

relevant for semantic segmentation. A 3D visualization technique 

is also used, as it makes it possible to locate where mis-

segmentation occurred, whereas the metrics provide overall 

characteristics. 

 

3.4.1 Confusion Matrix and Overall Accuracy: The 

confusion matrix (see Table 1) allows for each class to have the 

distribution of the points of this class among the other classes 

once classified. This matrix allows, at first, to see which classes 

are confused between them, or are similar to the semantic 

segmentation algorithm. It is in some cases possible to create one 

or more specific features to try to improve the semantic 

segmentation, by specifically targeting the classes that are 

confused. 

 

 Predicted = 1 Predicted = 0 

Actual = 1 True Positive (𝑇𝑃) False Negative (𝐹𝑁) 

Actual = 0 False Positive (𝐹𝑃) True Negative (𝑇𝑁) 

Table 1. Confusion matrix representation for two classes. 

Overall Accuracy (𝑂𝐴) (Eq. 2) makes it possible to know, for the 

whole cloud, the number of points that are properly classified 

compared to the total number of points. 

 

 𝑂𝐴 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (2) 
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3.4.2 Matthews Correlation Coefficient: Although this 

metric (MCC) is currently used less frequently in the field of 

point cloud semantic segmentation than in the medical field, as 

shown in (Li et al., 2021), it is nevertheless an interesting metric 

when a point cloud is composed of points from multiple sources. 

This metric is especially of interest in the case of imbalance 

which is particularly the case as it can be seen in §4.1 on the 

representation of classes in different point clouds. MCC can be 

written as follows (Eq. 3) using the notations from Table 1:  

 

 𝑀𝐶𝐶 =  
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   (3) 

 

 

4. RESULTS AND DISCUSSION  

This section is divided into two parts. The first one introduces the 

different dataset used and the second is about the results and their 

interpretation. 

 

4.1 Dataset 

Despite differences in geographical areas, Ground and 

Vegetation are often the predominant classes in the clouds, as is 

illustrated in Table 2. Location #1 is in a rural area and 

intersected by a road. It has three different data sources – airborne 

lidar (ALS), sampled terrestrial lidar (TLS), and drone 

photogrammetry (HLS). Therefore, most of the points are in the 

Ground and Vegetation classes. The classes of Power lines and 

the Pylons holding them are less represented in Location #1. In 

order to be able to classify the whole location, point clouds have 

been split to perform the training on the first dataset and the 

validation on the second. Location #2 corresponds to a large 

building that is surrounded by vegetation and water surfaces. It 

has the following sources: ALS and sampled TLS with RGB 

colors. There are also large structures, such as various types of 

electrical pylons. The same method was used for Location #2 as 

was used for Location #1 to train and validate the NN. 

Location #3 corresponds to a collection of three urban areas. It is 

a point cloud composed of TLS, ALS and HLS technologies. It 

has less vegetation and water surfaces. Instead, there is a greater 

variety of conductors, pylons and buildings of different sizes. 

However, the majority (more than 80%) of the points correspond 

to the Ground class. This time, Location #3.1 is used for training, 

and testing and validation are performed on Locations #3.2 and 

#3.3 respectively. These training and validation methods do not 

permit using 70% to 90% as recommended for machine learning. 

The use of spheres to compute features prevents us from 

performing a random split for learning and validation. A random 

split might result in points from the learning set and testing set to 

be in the same spheres and therefore having similar features. 

Since the three clouds have very diverse datasets, with data 

gathered from different technologies and during different 

seasons, training and semantic segmentations are done on subsets 

of each cloud. 

 

4.2 Ablation Study and Results 

To judge the interest of using different acquisition technologies 

for the semantic segmentation, an ablation study has been carried 

out. Semantic segmentation performance was tested first 

considering only the monosource features as well as the 

propagated features (the results of which are presented in 

subsection 4.2.1). Then the monosource and multi-source 

 
Location #1 Location #2 

Location 

#3.1 

Location 

#3.2 

Location 

#3.3 

 

   

Technologies 
ALS, TLS and UAV 

(photogrammetry) 
ALS and TLS ALS, HLS and TLS 

Acquired features 

RGB, Intensity, 

Return number, 

Number of returns 

RGB, Intensity, 

Return number, 

Number of returns 

Intensity (ALS, HLS, TLS), 

Return number (ALS, HLS), 

Number of returns (ALS, HLS) 

Ground 
9,219,176 

(36%) 
16,512,741 

(31%) 

60,653,208 

(82%) 

78,727,491 

(85%) 

55,254,561 

(81%) 

Vegetation 
13,102,686 

(52%) 

16,088,473 

(30%) 

3,370,985 

(5%) 

4,945,552 

(5%) 

3,359,675 

(5%) 

Buildings 
764,485 

(3%) 

11,386,493 

(21%) 

1,232,888 

(2%) 

2,535,929 

(3%) 

4,054,964 

(6%) 

Water Surfaces 
1,050,067 

(4%) 

4,341,752 

(8%) 

68,113 

(0.1%) 
- 

128,802 

(0.2%) 

Power lines 
1,561 

(0%) 

335,759 

(0.6%) 

615,008 

(0.8%) 

956,192 

(1%) 

750,014 

(1%) 

Roads 
1,244,555 

(5%) 

1,706,033 

(3%) 

6,856,725 

(9%) 

4,723,342 

(5%) 

4,695,847 

(7%) 

Pylons 
25,564 

(0.1%) 

2,588,986 

(5%) 

981,236 

(1%) 

843,458 

(1%) 

339,631 

(0.5%) 

Total 
25,408,094 

(100%) 

52,960,237 

(100%) 

73,778,163 

(100%) 

92,861,022 

(100%) 

68,583,494 

(100%) 

Table 2. Point cloud representations with their classes and acquired features. 
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features as well as the propagated features have been considered 

(the results of which are presented in subsection 4.2.2). 

 

 

 

4.2.1 Monosource: This section is dedicated to the results and 

their interpretation of the semantic segmentation using only 

monosource features and the features acquired by each cloud 

(corresponding of the branches 1 and 3 of the Figure 1). Tables 3 

and 4 are the confusion matrices of the first two locations, and 

Table 7 shows the MCC value for each class in each location. The 

confusion matrix (Table 3) shows that classes with few examples 

as Power lines, Pylons in the Location #1 are still well classified. 

However, because other classes are confused with Power lines 

due to their proximity to Vegetation in this point cloud, the MCC 

value of small classes such as Power lines is below 50%. It is less 

the case with the Location #2 where the water surfaces and the 

road are confused with the ground class. Each of these three 

classes has geometrical similarity. The large building half buried 

in the ground has geometrical similarity and is confused with the 

ground. Small classes like power lines are this time easy to 

classify, and their geometrical shape and location help the 

semantic segmentation. For the Location #3, the main problem is 

the class water surfaces, which represent small rivers and lakes 

and are often surrounded by vegetation. The lack of some 

acquired features as colors may explain why their result is lower 

than with the Location #1 in classes such as Roads and 

Vegetation visible in Table 7. One of the drawbacks of this 

method, using sphere to calculate geometrical features, is the 

mis-segmentation of points on the border of the cloud. Since the 

environment of the point is not fully captured, it is easier to 

confuse it with a power line or a pylon, as they are often 2D at 

large scale. 

 

 

Table 4. Confusion matrix after monosource semantic 

segmentation of Location #2. 

 

4.2.2 Multi-source vs. Monosource: In this part, the 

branches 1, 2 and 3 of the Figure 1 are used. With the addition of 

multi-source features and the propagation of acquired features, 

some of the problems related to the representation of some 

classes still appear in Tables 6 and 7. Small classes including 

Roads or Water Surfaces in Table 6 and Pylons or Water surfaces 

in Table 5 have lower values. This is the case for the classes that 

are not sufficiently represented in the data, like the Pylons in 

Location #1 (see Figure 2) or the water surfaces in Location #3 

(Figure 3 and Figure 4). The difference in values between 

semantic segmentation with and without multi-source features is 

barely noticeable in Figures 3 and 4. Using all the features – 

acquired, monosource and multi-source features – helps with the 

semantic segmentation of the different point clouds. The mean 

MCC and OA values are improved when multi-source features 

are considered, as shown in Table 8. In each location, the OA 

increase at least of 2 points and the mean MCC increase of 4 

points to 7 points for the Location #3.2. The better result of 

Location #3.2 in comparison from Location #3.1 and 

Location #3.3 is due to the lack of Water surfaces that weight 

down the result of Location #3.1 and #3.3. The main drawbacks 

is the time consumed by using three technologies instead of one. 

By using three technologies, features calculation for each 

technology is added to the calculation time for all point clouds.  

 

Location #1 
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R
o
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s 

P
y
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n
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Ground 0.91 0.03 0.02 0.01 0.00 0.03 0.00 

Vegetation 0.04 0.94 0.01 0.00 0.00 0.00 0.01 

Buildings 0.04 0.03 0.91 0.00 0.00 0.00 0.01 

Water surfaces 0.04 0.06 0.04 0.84 0.00 0.02 0.00 

Power lines 0.00 0.00 0.00 0.00 0.99 0.00 0.00 

Roads 0.02 0.00 0.02 0.01 0.00 0.95 0.00 

Pylons 0.02 0.09 0.00 0.00 0.11 0.00 0.79 

 

Table 5. Confusion matrix after multi-source semantic 

segmentation of Location #1. 

 

 

Table 6. Confusion matrix after multi-source semantic 

segmentation of Location #2. 

 

Location#1 
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R
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y
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Ground 0.94 0.02 0.01 0.00 0.00 0.03 0.01 

Vegetation 0.04 0.88 0.01 0.00 0.00 0.00 0.04 

Buildings 0.00 0.05 0.88 0.02 0.00 0.04 0.01 

Water surfaces 0.07 0.05 0.03 0.80 0.00 0.01 0.03 

Power lines 0.00 0.00 0.00 0.00 0.94 0.00 0.06 

Roads 0.01 0.00 0.00 0.01 0.00 0.97 0.01 

Pylons 0.01 0.03 0.00 0.00 0.11 0.00 0.85 

Location #2 

G
ro

u
n

d
 

V
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. 
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o
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R
o
ad

s 

P
y
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n
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Ground 0.89 0.00 0.02 0.03 0.00 0.05 0.01 

Vegetation 0.02 0.90 0.00 0.01 0.01 0.00 0.05 

Buildings 0.06 0.00 0.88 0.02 0.00 0.03 0.01 

Water surfaces 0.33 0.04 0.14 0.47 0.00 0.01 0.01 

Power lines 0.00 0.02 0.00 0.00 0.93 0.00 0.05 

Roads 0.45 0.01 0.10 0.02 0.00 0.40 0.00 

Pylons 0.03 0.03 0.00 0.00 0.07 0.00 0.87 

Location #2 
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R
o
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s 

P
y
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n
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Ground 0.95 0.01 0.02 0.03 0.00 0.00 0.00 

Vegetation 0.02 0.93 0.00 0.02 0.00 0.01 0.03 

Buildings 0.04 0.01 0.92 0.00 0.00 0.02 0.03 

Water surfaces 0.40 0.05 0.04 0.50 0.00 0.00 0.01 

Power lines 0.00 0.00 0.00 0.00 0.98 0.00 0.02 

Roads 0.43 0.02 0.15 0.07 0.00 0.30 0.00 

Pylons 0.03 0.01 0.04 0.00 0.02 0.00 0.91 

Table 3. Confusion matrix after monosource classification 

of Location#1. 
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Table 8. Mean metrics for different point clouds. 

 

 

Figure 2. Location #1 after multi-source semantic 

segmentation. 

 
 

Figure 3. Location #3.1 after monosource semantic 

segmentation. 

 

 

 

Figure 4. Location #3.1 after multi-source semantic 

segmentation. 

 

 

5. CONCLUSION 

A novel method is proposed to classify point clouds obtained 

using different technologies at a same location. A new dataset is 

presented and used as a benchmark in this study. It is composed 

of three multi-source point clouds for three locations containing 

data from different technologies and their acquired features 

(RGB, intensity, number of returns and return number). The 

proposed method classifies the multi-source point clouds with 

more accuracy. Its uses features of different scales and from 

different sources to more accurately classify multi-source point 

clouds. Using multiple sources generally yields better semantic 

segmentation performance than monosource semantic 

 Location #1 Location #2 Location #3.1 Location #3.2 Location #3.3 

MCC for each class Mono Multi Mono Multi Mono Multi Mono Multi Mono Multi 

Ground 0.88 0.88 0.78 0.82 0.62 0.70 0.56 0.65 0.68 0.76 

Vegetation 0.86 0.90 0.92 0.92 0.69 0.69 0.78 0.78 0.71 0.65 

Buildings 0.83 0.77 0.86 0.89 0.58 0.65 0.62 0.85 0.73 0.82 

Water Surfaces 0.78 0.85 0.54 0.56 0.14 0.17 - - 0.07 0.18 

Power lines 0.47 0.55 0.66 0.92 0.97 0.98 0.97 0.97 0.99 0.98 

Roads 0.88 0.86 0.36 0.41 0.52 0.67 0.29 0.40 0.69 0.79 

Pylons 0.16 0.31 0.75 0.80 0.84 0.87 0.78 0.81 0.79 0.76 

 
OA 

Mono 

OA 

Multi 

Mean 

MCC  

Mono 

Mean 

MCC  

Multi 

Location #1 0.90 0.92 0.69 0.73 

Location #2 0.84 0.88 0.70 0.76 

Location #3.1 0.89 0.91 0.62 0.68 

Location #3.2 0.86 0.90 0.67 0.74 

Location #3.3 0.90 0.92 0.67 0.71 

Table 7. MCC value for each class in the dataset. 
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segmentation and, in some cases, enhances point clouds with new 

features such as color and return number. Future works will focus 

on the use of CNN for the semantic segmentation of multi-

sources point clouds.  
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