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ABSTRACT: 

 

Registration for multi-sensor or multi-modal image pairs with a large degree of distortions is a fundamental task for many remote 

sensing applications. To achieve accurate and low-cost remote sensing image registration, we propose a multiscale unsupervised 
network (MU-Net). Without costly ground truth labels, MU-Net directly learns the end-to-end mapping from the image pairs to their 

transformation parameters. MU-Net performs a coarse-to-fine registration pipeline by stacking several deep neural network models on 

multiple scales, which prevents the backpropagation being falling into a local extremum and resist s significant image distortions. In 

addition, a novel loss function paradigm is designed based on structural similarity , which makes MU-Net suitable for various types of 

multi-modal images. MU-Net is compared with traditional feature-based and area-based methods, as well as supervised and other 
unsupervised learning methods on the Optical-Optical, Optical-Infrared, Optical-SAR and Optical-Map datasets. Experimental results 

show that MU-Net achieves more robust and accurate registration performance between these image pairs with geometric and 

radiometric distortions. We share the datasets and the code implemented by Pytorch at https://github.com/yeyuanxin110/MU-Net. 

 

 

1. INTRODUCTION 

Remote sensing image registration (RSIR) aims to obtain 

geometric transformation parameters (TPs) between images by 

correspondence detection. RSIR is a preliminary task, which 

directly influences the performance of the following tasks, such 

as image fusion, change detection and deformation monitoring. 

From traditional to deep learning (DL) techniques, many 

inspiring methods for image registration have been developed in 

the remote sensing community. 

 

Traditional methods can be generally classified into two 

categories: feature-based methods and area-based methods (Ma 

et al., 2021). Feature-based methods extract the salient and 

repeatable features from two images and establish their 

correspondences. The scale invariant feature transform (SIFT) 

(Lowe, 2004) is a representative, and many algorithms are 

proposed on the basis of SIFT, such as the speed up robust feature 

(SURF) (Bay, 2008), and the oriented FAST and rotated BRIEF 

(ORB) (Rublee, 2011). These SIFT-like methods are suitable for 

extracting repeatable features from single-modal images, but 

vulnerable to multi-modal images with radiometric changes such 

as optical-SAR image pairs. To improve the robustness to 

radiometric differences, some local feature descriptors were 

proposed, such as the radiation-variation insensitive feature 

transform (RIFT) (Li et al., 2020). Overall, the main challenge of 

feature-based methods is to extract highly repeatable and distinct 

features and match them correctly. 

 

Area-based methods often adopt a template scheme and detect 

correspondences by evaluating the similarity of images. Some 

widely used similarity metrics are the sum of squared differences 

(SSD), the normalized cross correlation (NCC) (Sarvaiya et al.,  

2009) and the mutual information (MI) (Kern et al., 2007). The 

performance of the above metrics is easily affected by 

                                                                 
* Corresponding author (Email: yeyuanxin@home.swjtu.edu.cn) 

radiometric changes. The latest research of area-based methods 

is to integrate structural features into similarity metrics for coping 

with radiometric changes (Ye et al., 2017; Ye et al., 2019). 

Although the area-based methods based on structural features can 

effectively address radiometric changes, it is necessary to 

eliminate the obvious geometric distortions between images  

before image registration. This requires manual selection of 

control points or requires the images with geo-referenced 

information, making area-based methods limited. Overall, the 

main limitation of area-based methods is that they cannot 

effectively handle the images with large geometric distortions. 

 

The two types of traditional methods respectively have the 

above-mentioned shortcomings. Besides, they commonly include 

a matching process integrating features or local descriptors 

extracted by handcraft rather than automated learning. Since no 

information feedback among feature extraction, description and 

matching, these approaches lack deep-level semantic 

information. When image source changes, these handcrafted 

features usually need redesigning to maintain the matching 

performance. Therefore, traditional methods are often difficult to 

handle both geometric distortions and radiometric differences  

between multi-modal images. 

 

Recent years, a growing number of researches focus on DL. To a 

certain extent, DL methods can solve the shortcomings of 

traditional methods. Generally, DL methods can be classified into 

two categories: integrated learning methods and end-to-end 

learning methods (Jiang et al., 2020). 

 

Integrated learning methods usually integrate a deep neural 

network (DNN) (Liu et al., 2017) into a traditional method, and 

extract feature descriptors from the auto-learned feature maps. 

Traditional operations like keypoint detection, feature 

description or template sliding are conducted on the auto-learned 
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feature maps instead of the original images or the handicraft  

feature maps. Some researches combined SIFT descriptor with a 

DNN (Ye et al., 2018), or put multi-orientated gradient features 

into a DNN (Zhou et al., 2022). However, these integrated 

learning methods cannot match images with large geometric 

distortions, and they still require designing a specific DNN for 

different data. Compared with traditional methods, the 

computational complexity increases many times, but the 

registration effect has not been improved significantly.  

 

End-to-end learning methods aim to directly predict the TPs. 

According to whether the optimizer require the ground truth TPs, 

end-to-end learning methods can be divided into supervised end-

to-end learning methods (hereafter called supervised methods), 

and unsupervised end-to-end learning methods (hereafter called 

unsupervised methods) (Jiang et al., 2020), and their common 

architecture are shown in Figure 1 (a) and (b), respectively. 

 

Supervised methods minimize the discrepancy between the 

predicted TPs and the ground truth TPs during training process, 

as Figure 1 (a) shown. Related studies include the Deep Image 

Homography Estimation Network (DHN) (DeTone et al, 2016), 

the Multi-scale Deep Image Homography Estimation Network 

(MHN) (Le et al., 2020), and the Deep Lucas-Kanade Feature 

Map (DLKFM) (Zhao et al., 2021). However, the network of 

supervised methods requires training by a large number of 

images with the ground truth TPs. One big challenge is that true 

labels are costly and hard to acquire in RSIR. Such limitation 

makes supervised methods difficult to be widely applied in 

practice. 

 

Unsupervised methods optimize the similarity between images  

during training process, and the ground truth TPs is not required, 

as Figure 1 (b) shown. Recently, unsupervised methods have 

been developed in medical image registration, because it solves 

the problem that network cannot be trained effectively with no 

ground truth TPs. Related masterpieces include VoxelMorph 

(Balakrishnan et al., 2019), and the deep learning image 

registration framework (DLIR) (Vos et al., 2019). However, it 

may be not appropriate to directly apply  the related methods to 

RSIR for the following reasons. Firstly, current methods cannot 

effectively handle noise and non-linear radiometric differences, 

which make these methods vulnerable for multi-modal RSIR. 

Secondly, these methods require images roughly aligned before 

image registration, whereas in RSIR, it’s the goal rather than a 

preprocessing step to eliminate the geometric distortions. When 

images have significant geometric and radiometric differences, 

these methods often suffer large registration errors.  

 

Generally speaking, there is a lack of which can effectively and 

simultaneously handle the large geometric distortions and 

radiometric differences between images without the ground truth 

TPs, and our work has filled this gap.  

 

We propose a multiscale unsupervised network (MU-Net) for 

RSIR, and it is an end-to-end mapping scheme from the input 

image pairs to their TPs. We stack several DNN models for a 

coarse-to-fine registration pipeline, and each DNN model 

represents a workflow performed on an individual scale. On each 

scale, the corresponding DNN is trained by optimizing the 

similarity between images, thereby circumventing the need for 

the ground truth TPs. Firstly, each DNN model is individually  

and successively trained to initialize the network weights. 

Secondly, all DNN models are stacked in a cascading way to 

form a combined registration pipeline, and the parameters of 

which are jointly trained to output the final TPs. Besides, the 

similarity evaluation of image pairs is performed on structural 

features rather than image intensity, which is suitable for multi-

modal RSIR.  

 

Our main contributions have three aspects:  

(1) We propose a registration network with unsupervised 

learning, which is an end-to-end mapping scheme from the 
image pairs to their transformation parameters. 

(2) We stack several DNN models on multiple scales to 

generate a coarse-to-fine registration pipeline, which avoids 

being trapped in a local extremum and resist a large range 

of image distortions.  
(3) We design a novel loss function paradigm based on 

structural similarity, which makes the registration network 

suitable for various types of multi-modal images.  

 

2. METHODOLOGY 

In this section, the proposed MU-Net for RSIR is elaborated, 

which passes the images through several designed DNN 

architectures on multiple scales to regress the TPs, then corrects 

the sensed image to align with the reference one. Since the TPs 

are directly optimized by evaluating the similarity of structural 
feature descriptors of two images, MU-Net is completely 

unsupervised. In this paper, we choose affine TPs as the form of 

the predicted mapping, and MU-Net can integrate other forms 

(e.g. homography and Deformable Vector Field (DVF) 

(Balakrishnan et al., 2019)) of TPs. The details are given in below. 
 

2.1 Problem Formulation 

Assuming there is a pair of images f & m to be aligned. One is a 

reference image f with correct geographic coordinates for each 

 
(a)                                                                          (b) 

Figure 1.  General architecture of (a) supervised methods and (b) unsupervised methods for end-to-end image registration. 
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pixel, and the other is a sensed image m with geometric 

distortions. To correct m, the aim is to find a group of TPs μ. 

In traditional image registration, μ is directly optimized by 

maximizing a certain similarity metric Sim: 
 

ˆ argmax [ ( , ( ))]Sim f T m
 

 = ,                    (1) 

 

where Tμ means a coordinate or spatial mapping parameterized 

by μ, and ̂  is the optimal value of μ. 

In the unsupervised registration method, μ is regressed by the 

designed DNN F: 
 

( , )F f m = ,                                  (2) 

 

where θ refers to the weights and bias parameters of F. 
Therefore, μ is optimized indirectly, since it’s θ to be directly 

optimized by maximizing the Sim: 

 

ˆ argmax [Sim( , ( ))]f T m
 

 = ,                     (3) 

 

where ̂  is the optimal value of θ. 

In MU-Net, F is defined as a stacked coarse-to-fine registration 

pipeline, and its weights and bias parameters θ is optimized 

during training process. 
 

2.2 Multiscale Workflow 

MU-Net performs a multiscale coarse-to-fine strategy. 

Specifically, three DNN models are stacked in a cascading way, 

and images of different down-sampling rate are input to MU-Net, 
as shown in Figure 2. 

 

Firstly, the DNN model in scale 1 performs an initial and global 

alignment between the input images f & m. Specifically, f & m 

are down-sampled by a scale factor of 1/4, then input into the first 
DNN model to evaluate the initial TPs μ1. Subsequently, μ1 is 

applied to a Spatial Transformer Network (STN) (Max et al., 

2016), and to correct the original sensed image m to produce the 

first corrected sensed image Tμ1(m).  

 
Secondly, the DNN model in scale 2 performs a residual 

alignment between f & Tμ1(m). Specifically, f & Tμ1(m) are down-

sampled by a scale factor of 1/2, then input to the second DNN 

model to evaluate the residual TPs Δμ1, which is integrated to μ1 

to yield the second TPs μ2. And μ2 is applied to a STN and to 
correct the original sensed image m to produce the second 

corrected sensed image Tμ2(m). 

 

Thirdly, the DNN model in scale 3 also performs a more detailed 

alignment between f & Tμ2(m). Specifically, f & Tμ2(m) are 
directly input to the third DNN model to evaluate the residual TPs 

Δμ2, which is integrated to μ2 to yield the final TPs μ3. And μ3 is 

applied to a STN and to correct the original sensed image m to 

produce the final corrected sensed image Tμ3(m), thereby 

achieving the image registration. 
 

2.3 DNN Architecture on Each Scale 

In this section, we describe the DNN architecture on each scale. 

In order to extract the deep semantic information and find the 

end-to-end TPs mapping, we utilize the channel attention 
mechanism (Hu et al., 2018) and the deep residual network (He 

et al., 2016) to form the DNN architectures. The former can 

adaptively adjust the weight of each channel. And the latter 

ensures that the deep semantic information will not decrease as 

the network deepening.  
 

We define a Deep Residual (DR) ConvBlock as an ordinary 

convolution block with a residual network added, and a (Squeeze 

Excitation and Deep Residual) SE-DR ConvBlock means a DR 

ConvBlock with the channel attention mechanism integrated. 
Figure 3 depicts the DNN architecture on the third scale. Input 

image pairs should have the same size, if not, zero-padding or 

cropping is generally adopted. Two images are concatenated in 

the channel direction, and then passed through a series of 7×7 

 
Figure 2.  Multiscale workflow for MU-Net. 
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ConvBlocks and a series of 5×5 ones, respectively. The two 

routes are concatenated by up-sampling and stride connection, 

followed by several 3×3 ConvBlocks. During the forward 
propagation, the image size is reduced while the channel deepens, 

which is conducive to extract the deep semantics information. 

After through the last ConvBlock, the deep semantic information 

is directly mapped to the TPs through two fully connection layers.  

 
The DNN architectures on the first and second scales are similar 

to the one on the third scale. Where as the difference is that, the 

input image has undergone a down-sampling, so the initial size 

of the image has become 128×128 pixels or 256×256 pixels  

instead of 512×512 pixels. Therefore, we reduce two SE-DR 
ConvBlocks for each route, while maintaining the maximum 

number of channels at 32, which forms the DNN architecture on 

the first scale. Similarly, we reduce a SE-DR ConvBlock for each 

route and maintain the maximum number of channels at 64, 

which forms the DNN architecture on the second scale. 
 

2.4 Unsupervised Training 

In MU-Net, three DNN models are stacked in a cascading way to 

form a coarse-to-fine registration pipeline. Therefore, the training 

procedure includes two parts, initialization and joint training. 
 

In the first stage, to initialize the network weights, each DNN 

model was individually and successively trained, to minimize the 

corresponding loss based on image structural similarity: 

1
( , , )

sim
Loss f m  , 

2
( , , )

sim
Loss f m   and 

3
( , , )

sim
Loss f m  . The first 

model was trained for a rough alignment. With weights fixed for 

the first model, the second model was successively trained to 

fine-tune the alignment. Finally, the third model e was trained to 

further correct the alignment, while freezing the weights of the 
first and second models. 

 

In the second stage, the weights of all the stacked DNN models 

are unfrozen to be updatable. And each DNN model in MU-Net 

is jointly trained to collaboratively minimize the overall loss at 
multiple scales, which is defined as: 

 

1 1

2 2 3 3

( , , )

( , , ) ( , , )

sim

sim sim

Loss Loss f m

Loss f m Loss f m

 

   

= +

+
,        (4) 

 

where λ1, λ2 and λ3 are weighting factors of the loss function. 

 

The reference image is supported to achieve the best similarity 
with the sensed image corrected by the TPs and its spatial 

transformation. Similarly, the sensed image is supported to 

achieve the best similarity  with the reference image wrapped by 

the inverse spatial transformation. To improve the reliability of 

the TPs μ, we invert the matrix of the coordinate mapping Tμ: 
 

1 1( )T TT T T T   
− −= ,                              (5) 

 

where Tμ
-1 denotes the inversed matrix of the coordinate mapping. 

Therefore, the similarity loss function is defined as:  

 
1

[ ( , ( )) ( ( ), )] / 2

( , , )
Sim f T m Sim T f m

sim
Loss f m e  

−

− +

= ,               (6) 

 

where e is the natural constant, and Sim is a certain similarity 

metric. A higher Sim denotes a better similarity and a lower 
Losssim.  

 

For multi-modal RSIR, such as optical-SAR images, their pixel 

intensity cannot be directly used for similarity evaluation due to 

radiometric differences. Considering that structure features are 
preserved between multi-modal images, we use the structural 

descriptor instead of intensity to calculate the value of similarity 

metric. To convergence loss function, we mainly adopted a fast 

and robust structural descriptor named the channel features of 

orientated gradients (CFOG) (Ye et al., 2019). As Fig.6 shown, 
CFOG first extracts multi-oriented gradients and then construct 

the oriented histogram. Based on oriented histogram, the 

convolution operation is performed by a 3-D Gaussian-like 

kernel which collects the orientated gradients of neighbouring 

pixels. Thus, a 3-D structural feature map is generated.  

We adopt the similarity metric NCC for Sim(A, B) on the 

structural feature maps A and B. NCC determines the 

correspondences between two structural feature maps by 
searching the location of maximum value, which can be 

computed as: 

 

( ( ) )( ( ) )
( , )

( ( ) ) ( ( ) )

p N

p N p N

A p A B p B
NCC A B

A p A B p B



 

− −
=

− −



 
,      (7) 

 

where A  and B  denotes the mean intensity of the reference and 
the sensed feature maps, respectively. The value of NCC is in the 

interval [-1, 1], and a higher value of denotes a higher similarity. 

 

3. EXPERIEMENT 

3.1 Datasets and Comparison Methods 

3.1.1 Generation of Image Pairs 

To evaluate MU-Net by a large number of experimental data, we 

introduce the generation process of image pairs, which are used 

to augment the training and testing data. As an example shown in 

Figure 5, I1 and I2 are two precisely aligned images with a size of 

 
Figure 3.  Architecture of DNN architecture in scale 3. 

 

 
Input image Multi-orientated gradients

3D Gaussian-like kernel
CFOG
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larger than 512×512 pixels. I2 is randomly performed affine 

transformation to generate wrapped image 
2I  . Then, the same 

positions of I1 and 
2I   are cropped, which obtain reference 

image T1 and sensed image T2 as the image pair with a same size 
of 512×512 pixels. The ground truth corner displacement 

[ , ]i ix y   between the four corner points in I1 and their 

corresponding position in 
2I  can be calculated by the affine TPs: 

 

0 1 2

3 4 5

1 0 0 1 1

i i

i i

x x

y E y

  

  



 = −

      
      
      
            

,                 (8) 

 

where [ , ]i ix y  represents the position of the i-th corner point, 

and E represents the identity matrix. The four ground truth corner 

displacements are used to subsequently evaluate the registration 

accuracy. A large number of image pairs are generated in this 

way, which can increase the datasets for subsequent experiments. 
The specific experimental datasets will be introduced in detail in 

the following subsection. 

 

3.1.2 Datasets 

MU-Net has been extensively evaluated on the Optical-Optical, 
Optical-Infrared, Optical-SAR and Optical-Map datasets. These 

datasets are composed of image pairs generated according to 

Section 3.1.1, and they are adopted for two purposes. In particular, 

since SAR images contain obvious speckle noise and raster maps 

contain text labels, the registration tasks on the Optical-SAR and 
Optical-Map datasets are more challenging than other cases. 

 

Optical-Optical. WHU Building Dataset is a set of multi-

temporal aerial images with a resolution of 0.075m in 

Christchurch, New Zealand, in 2012 and 2016. We crop these 
areas into about 500 image pairs with a size of 600×600 pixels. 

For each pair of images, we perform 10 random affine 

transformations and centre crops on them. The Optical-Optical 

dataset includes about 5000 image pairs with a size of 512×512 

pixels. Approximately 4,500 pairs are used for training, and 500 
for testing. 

 

Optical-Infrared. The Optical-Infrared dataset includes the 

Chengdu Plain with a resolution of 30m. The optical images were 
acquired by Landsat-8 band 2 in July 2020, and the 

corresponding infrared images were acquired by Landsat-8 band 

5 in February 2021. Similar to the above operation, 

approximately 4,500 pairs are used for training, and 500 for 

testing. 
 

Optical-SAR. The coverage of Optical-SAR dataset includes 

difference scenes such as cities, farmland, rivers and forests. The 

image pair are acquired by Sentinel-1 and Sentinel-2 in May 2021 

with a resolution of 10m. Around 5,000 pairs are used for training, 

and 800 for testing. 
 

Optical-Map. We obtained the optical images and the 

corresponding Google maps with a resolution of 1m from the 

Google map service. The image area is located is in Tokyo, and 

the ground objects are mainly dense buildings and streets. The 
maps of these scenes and the corresponding optical images look 

structural similar. Around 5,000 pairs are used for training, and 

800 for testing. 

 

3.1.3 Comparison Methods 
As the registration difficulty of the four datasets is gradually  

increasing, we could observe the trend of the performance of 

MU-Net compared with state-of-the-arts methods [i.e. SIFT, 

RIFT, CFOG, DLKFM and DLIR], and evaluate their flexibility  

on different types of datasets. Among them, SIFT and RIFT are 
traditional handicraft methods with feature matching, CFOG is a 

traditional handicraft method with template matching, DLKFM 

is a DL method with supervised end-to-end mapping, and DLIR 

and MU-Net are DL methods with unsupervised end-to-end 

mapping. 
 

3.2 Evaluation Criteria and Implementation Details 

3.2.1 Evaluation Criteria 

Between the ground truth affine TPs and the predicted ones, it is 
difficult to digitally balance the translation, rotation, scaling or 

shearing components by directly calculating the differences. 

Therefore, equation (8) is adopted to transform the affine TPs 

into the four corner displacements, then calculate the differences  

between the ground truth four corner displacements and the 
predicted ones. Similar to the recent literatures of end-to-end 

learning for image registration (DeTone et al, 2016; Le et al.,  

2020; Zhao et al., 2021), we use the average corner error (ACE) 

as the evaluation criteria of the registration accuracy, which is 

defined as the root-mean-square error (RMSE) between the 

ground truth four corner displacements [ , ]gt gt

i ix y   and the 

predicted ones [ , ]pre pre

i ix y  . Note that these ground truth TPs 

are merely used for accuracy evaluation, and are not utilized 

during the training process. 
 

3.2.2 Implementation Details 

Our experiments adopted the following settings. The NCC on the 

CFOG feature maps is adopted as the similarity metric of MU-

Net. Random affine transformations on sensed images consist of 
rotation, translation, scale and shear transformations, where the 

scale parameter is limited in a range of [0.5, 2] with a precision 

of 0.1, the translation value is limited in a range of [-0.1, 0.1] with 

a precision of 0.002 (about 1 pixel in an image with size of 

512×512 pixels), the rotation angle is limited in a range of [-π, π] 
with a precision of 1 degree and the shear angle is limited in a 

range of [-π/6, π/6] with a precision of 1 degree. The training 

takes 500 iterations, the initial learning rate is set as 0.002 and 

the weight decay is set as 0.005. The weighting factors of the loss 

function at multiscale levels are set to [0.05, 0.05, 0.9]. In MU-
Net, all DNN models predict 6 affine TPs. 

For compared methods, we use their settings recommended by 

the authors. In our experiments, the traditional matching methods 

(i.e. SIFT, RIFT and CFOG) adopt Random Sample Consensus 

(RANSAC) (Fischler, Bolles, 1981) to fit the affine TPs.  
 

 
Figure 5.  An example for generation of an image pairs. 
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3.3 Accuracy Analysis 

In this section, we use the test datasets to compare MU-Net with 

the other methods. Between the image pair of these datasets, the 

sensed image has a random affine transformation distortion 

relative to the reference image. For each method tested on 
different datasets, Table 1 lists the percentage of the test images  

with an ACE smaller than 3 pixels. Figure 6 and 7 show two 

examples. Generally speaking, on the four multi-temporal or 

multi-modal datasets, MU-Net achieves the best registration 

accuracy.  
 

Dataset 
Optical-
Optical 

Optical-
Infrared 

Optical-
SAR 

Optical-
Map 

MU-Net 96% 96% 92% 89% 

SIFT 51% 39% 0% 0% 

RIFT 63% 54% 53% 17% 

CFOG 15% 14% 14% 12% 

DLKFM 92% 63% 59% 56% 

DLIR 82% 1% 0% 0% 

Table 1. The percentage of test images with the ACE smaller 

than 3 pixels for comparing mentioned methods. 

 
However, it is incomplete to compare the above methods by 

directly using image pairs that have translation, scale, and 

rotation distortions at the same time. Subsequently, we carried 

out additional experiments to gradually increase the distortion on 

the sensed image in the three types of translation, rotation and 
scale, and compare the flexibility against these distortions among 

MU-Net and the other methods.  Figure 8 show the ACE of each 

method for translation, rotation and scale deformation, 

respectively. Similarly, these experiments are performed on 

different multi-modal datasets. We can observe and evaluate the 
registration performance from simple to difficult data. 

Accordingly, further discussions about each method are given 

below. 

 

SIFT. This is one of the classic feature matching methods. From 
Table 1, SIFT achieve certain accuracy on the Optical-Optical 

dataset, but its performance on the Optical-Infrared dataset is 

greatly declined. In addition, SIFT completely fails on the 

Optical-SAR and Optical-Map datasets. From Figure 8, SIFT is 

robust to translation, scale, and rotation differences between 
single-modal images (e.g. Optical-Optical), but it is vulnerable to 

multi-modal image matching (e.g. Optical-SAR). 

 

RIFT. This is a feature matching method for multi-modal remote 

sensing images. From Table 1, there is no significant change in 

the registration performance on different datasets. As can be seen 

from Figure 8, RIFT has a good invariance for translation and 
rotation, but it cannot handle images with scale changes. 

 

CFOG. This is a template matching method with fast 

computational efficiency and robust matching performance. 

From Figure 8 (a), in the case of only translation distortions, the 
registration performance of CFOG achieves the best, and it is 

robust to radiometric differences for multi-modal images with 

inconsistent translations. Whereas Figure 8 (b) and (c) show that 

CFOG is sensitive to rotation and scale differences. 

 
DLKFM. This method adopts supervised end-to-end learning, 

which trains its network with the L2 distance between the 

predicted TPs and the ground truth TPs as the loss function. From 

Table 1, DLKFM aligns 92% of test image pairs on Optical-

Optical images within a 3-pixel ACE. Nevertheless, its 
performance on the three other multi-modal datasets has dropped 

significantly. On these datasets, the percentage of ACE within 3 

pixels are drastically reduced, indicating that the radiometric 

resistance learned by DLKFM has a certain limitation. From 

Figure 8, DLKFM is robust to translation and rotation differences, 
but easily influenced by radiometric changes. 

 

DLIR. This is a pioneering method of unsupervised learning in 

medical imaging. Since this method is to firstly predict affine TPs 
and finally predict a DVF for a dense matching, we only adopted 

the first network introduced in the author’s literature for 

predicting affine TPs. From Table 1, DLIR aligns 82% of test 

image pairs on Optical-Optical datasets within a 3-pixel ACE, 

but it achieves poor performance for the other three multi-modal 
datasets. From Figure 8, DLIR is not suitable for the image 

registration with significant geometric distortions, even the 

simplest distorted image cannot be corrected accurately. 

 

MU-Net. From Table 1, MU-Net obtains the best accuracy, and 
the accuracy is almost not affected by different image modals. 

For example, on the Optical-Optical dataset that are the easiest to 

be aligned, MU-Net aligns 96% of test image pairs within a 3-

pixel ACE, and aligns 89% ones even on the Optical-Map dataset 

that are the most difficult for image registration. From Figure 8 
(a), on the test images of all modalities, the accuracy of MU-Net 

        
(a)                      (b)                      (c)                      (d)                      (e)                      (f)                      (g)                     (h) 

Figure 6.  Registration Result of an image pair in Optical-Optical dataset. (a) Randomly affine transformed and cropped sensed 
image. (b) Reference image. (c) MU-Net. (d) SIFT. (e) RIFT. (f) CFOG. (g) DLKFM. (h) DLIR. The green line represents the 

ground truth registration result, and the red line represents the experimental registration result for each method. 

 

        
(a)                      (b)                      (c)                      (d)                      (e)                      (f)                      (g)                     (h) 

Figure 7.  Registration Result of an image pair in Optical-SAR dataset. (a) Randomly affine transformed and cropped sensed 

image. (b) Reference image. (c) MU-Net. (d) SIFT. (e) RIFT. (f) CFOG. (g) DLKFM. (h) DLIR. The green line represents the 

ground truth registration result, and the red line represents the experimental registration result for each method. 
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within the translation difference of 30 pixels is equivalent to that 

of CFOG. When the translation differences are larger than 30 

pixels, the performance is slightly degraded. A general 

disadvantage of end-to-end learning is that, the larger the initial 
distortion is, the larger the error of the prediction result is. 

Nevertheless, MU-Net is still superior to the other compared 

methods. From Figure 8 (b), on the Optical-Optical and Optical-

Infrared datasets, MU-Net is comparable to the supervised 

DLKFM, and outperforms the RIFT. As the registration 
difficulty increases, MU-Net is least affected by rotation changes 

on the Optical-SAR and Optical-Map datasets, and presents the 

best registration performance. It can be clearly observed from 

Figure 8 (c) that MU-Net obtains the best performance in image 

registration with scale distortions, and its performance on the 
Optical-Optical datasets is even better than SIFT, and it is also 

competent for the other three types of multi-modal image 

registration tasks with scale changes. On the four datasets, the 

errors do not change significantly with modal changes. In general, 

MU-Net can solve the registration problem with a scale change 
in the range of [0.5, 2], and the registration error is within 5 pixels.  

 

The above experimental results prove that MU-Net can be 

applied to various types of multi-modal image registration tasks, 

and can align image pairs with translation, rotation, scale, and 
radiation changes. Comparing various traditional feature-based 

and area-based methods, supervised learning methods and other 

unsupervised learning methods, MU-Net achieves the most 

comprehensive and accurate registration results overall. 

 

3.4 Analysis of Noise Sensitivity 

This section examines the noise sensitivity of MU-Net, 

comparing it with SIFT, DLKFM and DLIR.  The percentage of 

the test images within a 3-pixel ACE is used to analyse the noise 
sensitivity. For each image pairs on the Optical-Optical test 

dataset, we add the Gaussian white noise with a mean value of 0 

and a variance in the range of [0, 1%] to the sensed image to 

generate a series of noisy sensed images. The reason to choose 

the above methods on the Optical-Optical dataset for comparison 
is, the experimental results in section 3.3 have shown that the 

above methods can handle certain affine distortions on the 

Optical-Optical dataset. On the other hand, there is no significant 

radiometric differences on the Optical-Optical dataset, which 

makes the experiment can objectively evaluate the influence of 
noise for these methods. 

 

 
(a) 

 

 

 
(b) 

 

 

   
(c) 

Figure 8.  Comparison of ACE on different datasets for (a) translation distortion, (b) rotation distortion, and (c) scale distortion. 
 

 

 
Figure 9. Percentage of images with ACE smaller than 3 

pixels versus various Gaussian noise. 
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Figure 9 shows the percentage of ACE <= 3 pixels versus various 

Gaussian noise in image registration. Under Gaussian noise, MU-

Net and DLKFM performs better than other methods, which 

indicates that MU-Net can achieve a comparable performance of 

the supervised method. Although SIFT can handle affine 
distortions between single-modal images, it is less able to resist 

Gaussian noise. As an unsupervised method, DLIR presents the 

highest noise sensitivity, whereas MU-Net overcomes this 

shortcoming 

. 

4. CONCLUSION 

In this paper, we propose a multiscale unsupervised network 

(MU-Net) for remote sensing image registration. Without the 

ground truth labels, MU-Net directly learns the end-to-end 

mapping from the image pairs to their transformation parameters. 
MU-Net stacks several DNN models on multiple scales to avoid 

being trapped in a local extremum and resist a large degree of 

image distortions (including geometry and radiation). We design 

a novel loss function paradigm based on structural similarity, 

which makes MU-Net suitable for various types of multi-modal 
images. Experiments are performed on four datasets, including 

the Optical-Optical, Optical-Infrared, Optical-SAR and Optical-

Map. Experimental results show that MU-Net is more robust to 

geometric and radiometric distortions between multi-modal 

images and achieves higher registration accuracy, compared with 
the current state-of-the-art traditional methods (such as SIFT, 

CFOG and RIFT), supervised and unsupervised deep learning 

methods (such as DLIR and DLKFM).  

 
MU-Net is flexible for remote sensing image registration. This is 

because it can regress the parameters of various transformation 

models (e.g. homography and DVF) beside the used affine model. 

Moreover, other structure feature descriptors such as the 

histogram of oriented phase congruency (HOPC) (Ye et al., 2017) 
and the histogram of oriented gradient (HOG) (Dalal et al., 2005) 

can also be integrated as similarity metrics for calculating the loss 

function in MU-Net.  
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