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ABSTRACT: 
 
Satellite-derived aerosol optical depth (AOD) is an indispensable parameter when conducting studies related to atmospheric 
environment, climate change, and biogeochemical cycle. However, current satellite-derived AOD products are limited in related 
applications due to the large proportion of missing data, and the existed methods mainly concentrate on recovering AOD from 
polar-orbit satellite sensors. In order to solve these issues and take full use of the preponderance of geostationary satellite sensors 
in high frequency observation, we propose a spatiotemporal AOD recovery framework integrating multi-time scale AOD products 
based on the nested Bayesian maximum entropy methodology (NBME), aimed to obtain satellite-derived AOD datasets with low 
data missing and high accuracy. The experiment results show that the spatial coverage of AOD datasets increases from 20.5% to 
70.0%, and the R2 and RMSE of the recovered AOD against ground-based AERONET AOD are approximately 0.62 and 0.19, 
respectively. Moreover, the further simulated experiments indicate that the proposed method also performs better relatively when 
comparing with other popular recovery methods. Therefore, the proposed NBME recovery method can obtain a more convincing 
product both in applicable accuracy and visual quality. 

 
 
 

1. INTRODUCTION    

Atmospheric aerosols, generally solid and liquid particles from 
natural and man-made sources, are a primary uncertainty 
associated with climate change due to their direct effects of 
scattering and absorption of solar radiation and indirect effects 
that affect the radiative properties and lifetime of clouds 
(Kaufman et al., 1997; Kaufman et al., 2002; Gu et al., 2006; 
Gu et al., 2012; Intergovernmental Panel on Climate Change, 
2013; Ramanathan et al., 2014; Zhao et al., 2019, Xia et al., 
2022). Satellite-derived aerosol optical depth (AOD) is an 
effective and efficient parameter when conducting studies 
related to atmospheric environment, climate change, and 
biogeochemical cycle. Accurate understanding of the spatial 
distribution and dynamic changes of anthropogenic aerosol 
emissions is the cornerstone of the deteriorating atmospheric 
environment (Anderson et al., 2005; Andreae and Rosenfeld, 
2008). Unfortunately, the relatively high data missing ratio of 
satellite-derived AOD due to the influence of satellite orbit 
interval, cloud occlusion and the limitations of retrieval 
algorithms, restricts the atmosphere related applications and 
researches to a certain extent (Hsu et al., 2012; Wang and Yuan 
et al., 2019). Therefore, AOD recovery in satellite-derived 
AOD is of great significance. 
 
In recent years, scholars have undertaken a great deal of study 
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into AOD recovery for different types of satellite sensors, 
which are primarily constrained to AOD products retrieved 
from polar-orbit satellites sensors. To our knowledge, the 
distribution of aerosol possesses highly spatial and temporal 
variability, even over a single day. Although polar-orbiting 
satellite sensors including but not limited to Moderate 
Resolution Imaging Spectroradiometer (MODIS), Multi-angle 
Imaging SpectroRadiometer (MISR), and Sea-viewing Wide 
Field-of-view Sensor (SeaWiFS), could obtain all-weather and 
large-scale aerosol observation information, they could only 
achieve observations at most 1-2 times per day in the same area 
(Kokhanovsky, 2007). Nevertheless, apart from having the 
same observational advantage of polar-orbiting satellites 
sensors, due to the typical characteristics of high frequency 
observation up to minute, AOD retrieved by geostationary 
satellite sensors such as the Advanced Himawari Imager (AHI), 
can preferably meet the requirements of capturing the dynamic 
changes of daily aerosols. 
 
In addition, the existing AOD recovery algorithms are 
generally divided into two categories. One type of the recovery 
approaches could only provide missing values at grids 
according to probability statistics information from the 
original satellite datasets, such as the linear or second-order 
polynomial functions (Mélin et al., 2007), the optimum 
interpolation (Xue et al., 2012; Xue et al., 2014), the empirical 
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orthogonal functions (Liu et al., 2015), the least-squares 
method (Guo et al., 2013) and the primitive machine learning 
method (Zhao et al., 2019). The other type of the AOD 
recovery method are based on geostatistical model derived 
from Tobler’s first law of geography and estimate the AOD at 
missing pixels by geostatistical information like spatial 
autocorrelation, consisting of universal kriging method 
(Chatterjee et al., 2010; Li et al., 2014), the geographically 
weighted regression (Wang et al., 2013) and their optimized 
ramification (Nguyen et al., 2012; Puttaswamy et al., 2014; 
Zhang et al., 2017). As scholars improve these methods by 
introducing temporal autocorrelation, the further methods like 
spatiotemporally interpolation (Yang et al., 2018) and 
Bayesian maximum entropy (Tang et al., 2016) evolve 
naturally, which have been proved to greatly ameliorates the 
completeness and quality of AOD products especially in cases  
where the original pixels are missing (Kang et al., 2010). 
 
Therefore, we propose a spatiotemporal AOD recovery 
framework for geostationary satellite sensors, which is based 
on day-hour nested Bayesian maximum entropy methodology, 
and aim to take full advantage of the spatio-temporal 
autocorrelation between AOD datasets at multi-time scale and 
assimilate the highest quality AOD information by a nested 
nonlinear spatiotemporal geostatistical model. Furthermore, 
the proposed algorithm is evaluated from the perspectives of 
completeness and accuracy by several sets of experimental 
data. 

 
2. DATA AND METHOD   

2.1 Study Region and Data 

The study region (106°E – 127°E, 21°N – 42°N) of this paper 
is mainly located in the East Asia. Compared to the other areas, 
the region has a relatively high population density and aerosol 
loading throughout the world, which also covers several major 
pollution-prone areas in China (Streets et al., 2009), such as 
the Beijing-Tianjin-Hebei, Yangtze River Delta, pearl River 
Delta and the Central Plains Economic Zone. Therefore, it is 
significant to generate the spatiotemporal continuous and 
precise AOD in this region. 
 
In this study, the geostationary satellite aerosol products are 
AOD datasets at 500nm derived from Himawari-8/AHI, 
including Level 3 AOD (AOD_Merged) with the temporal and 
spatial resolutions of 1 hour and 5 km (ranging from 00:00 to 
08:00 Coordinated Universal Time, UTC), and Level 3 AOD 
with the temporal and spatial resolutions of 1 day and 5 km, 
which are all obtained from JAXA 
(http://www.eorc.jaxa.jp/ptree) covering the whole year of 
2016. The AERONET Level 2 AOD observation data at 
500nm could be downloaded from http://aeronet.gsfc.nasa.gov, 
being used to construct the soft data of satellite AODs and 
validate the accuracy of experimental results. 

 
2.2 Nested AOD Recovery Methodology (NBME) 

In terms of obtaining high-precision AOD estimation, the 
classic BME model is widely known for its powerful ability to 
fill the gaps of daily satellite-derived AOD, however, it doesn’t 
perform well enough in cases when there is too much overlap 

and redundancy of spatiotemporal information between the 
original data. Hence, we applied a nested BME model with 
day-, hour-level autocorrelation to eliminate this deficiency, 
which also can help take full advantage of every Himawari-
8/AHI AOD image.  
 
First of all, based on the available matchups for each hour 
(AOD x, y, Hour), and each day (AOD x, y, Day) in the experimental 
period, the coefficients of the linear model between hourly data 
and daily data could be obtained using least squares method. 
According to the obtained linear regression model, a 
corresponding ‘hourly’ data is reconstructed from the daily 
data, which also serves as input datasets for recovery 
framework. 
 
Then the quantified global spatiotemporal trend of all pixels 
needs to be removing (Xia et al., 2022), which is a necessary 
pre-processing before analyzing the spatiotemporal 
autocovariance structure of input datasets. Meanwhile, the 
AOD residual of every pixel is further processed into soft data 
based on the equation (1): 
 
                   �������,�~�(����/�� + �, ��)                     (1)  

 
where �  and ��  is the mean and variance of random error 
between the satellite AOD data and the corresponding 
AERONET AOD, respectively. ����/�� is the AOD residual 

of satellite AOD or reconstructed hourly AOD data, and 
�������,�  is the Gaussian distribution probability soft data. 

After this, the relevant soft data of every estimation point is 
integrated by Bayesian maximum entropy on the basis of 
adjacent spatiotemporal information, expressed as equation (2). 
 
   ���� = ∫ �������������,�, ��,�, … ��,�, ���,�, ���,�, … ���,�� d����   (2) 

 
where ��,� and ���,� represent the probabilistic Gaussian soft 
data derived from the Himawari-8/AHI AOD and the 
reconstructed hourly AOD, 
respectively. ∫(����|��,�, ��,�, … ��,�, ���,�, ���,�, … ���,�)  is 

the posterior probability density function based on the 
spatiotemporal adjacent pixels, which can be expressed as 
equation (3) according to Bayesian rule (Christakos, 2002): 
 

���������,�, ��,�, … ��,�, ���,�, ���,�, … ���,�� 

=
����,�, ��,�, … ��,�, ���,�, ���,�, … ���,�, �����

����,�, ��,�, … ��,�, ���,�, ���,�, … ���,��
 

=
��������

����,�,��,�,…��,�,���,�,���,�,…���,��
                          (3) 

 
where ����  is a vector of pixels 

��,�, ��,�, … ��,�, ���,�, ���,�, … ���,�  and ���� ; ��(����)  is 

the joint probability density function, which can be deduced 
by maximizing the entropy E and introducing the constrain G 
when variables are assumed to be continuous (Shannon, 1948; 
Jaynes, 1957). And E is expressed as equation (4): 
 

E =  − ∫ �������(����)��� ��������                 (4) 

 
According to Lagrange multipliers ��, we can resolve the joint 
pdf ��(����): 
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�

���

G�������� 

(5) 

where G�(����)  is a vector of spatiotemporal covariance 

functions (Christakos, 2000). Therefore, the nonlinear mean 
estimation ���� can be resolved by jointing the Equations (2) 
to (5). In the final output of the framework, ����  will be 
merging with the spatiotemporal trend component of every 
pixel as the final AOD recovery values. 
 

3. EXPERIMENT RESULT AND ANALYSIS 

3.1 AOD Spatial Distribution and Temporal Variation 

Figure 1 shows the AOD spatial distribution of the original 
satellite AOD data and the recovered AOD datasets in DOYs 
43, 156, 212, 310, respectively. The selection principle of 
cases is that these four days are in different seasons, and the 
spatial absence of original satellite AOD in these days is 
distinct.  The cases not only show that compared with the 
original AOD, the gaps of the recovered AOD datasets are 
significantly reduced, but also indicate that the recovered AOD 
datasets restore the real haze situation to a certain extent. To 
demonstrate the improvement in spatial coverage of AOD 
datasets after NBME, we quantitatively assessed the coverage 
by using the percentage of the valid AOD pixels over the 
whole study region.  
 

 

Figure 1. The AOD spatial distributions of (a) the original 

Himawari/AHI hourly AOD datasets and (b) AOD datasets 

after NBME in the study in DOYs 43, 156, 212, 310, 

respectively. 

 
Figure 2 and figure 3 show the spatial distributions and 
temporal variation of the yearly averaged completeness of the 
original satellite AOD datasets and AOD datasets after NBME 
in 2016 (ranging from 03:00 to 05:00 UTC), respectively. 
Figure 2(a) shows that the yearly mean averaged coverage 
ratio of the original AOD datasets ranges from 0 to 44.4% 
(median: 21.4%), and Figure 2(b) shows that the yearly mean 
averaged coverage ratio of the recovered AOD datasets ranges 
from 21.6% to 89.6% (median: 59.7%), which both display the 
analogous spatial distribution characteristics. It indicates that 
the lowest coverage ratio always appears in inland of Western 
China, adjacent to the high-altitude areas like Yunnan-guizhou 
plateau. As shown in figure 3, we can conclude that the spatial 
coverage of AOD datasets after NBME is apparently higher 

than that of the original satellite AOD datasets, increasing 
from 20.5% to 70.1%. Moreover, over a quarter of days during 
the study period, the spatial completeness of the recovered 
AOD datasets is up to 80% and even 90% generally in March, 
whereas the relatively low completeness of the recovered 
AOD mainly occurs in winter, just a little over 40%. According 
to the figure 2(b), we can speculate that the lower coverage 
derives from the large-area snow/ice cover in high-altitude 
areas, especially in winter, where the missing AOD can’t be 
recovered when spatiotemporally adjacent AOD pixels lack. 

 

 

Figure 2. Spatial distributions of the yearly averaged 

completeness of (a) the original Himawari/AHI hourly AOD 

datasets and (b) AOD datasets after NBME 

 

 

Figure 3. Temporal variation of the yearly averaged 

completeness of the original Himawari/AHI hourly AOD 

datasets (green line) and AOD datasets after NBME (red line)  

 
3.2 Assessment of the Accuracy of Recovered AOD 

In order to validate the quality and accuracy of the recovered 
AODs, we collocate the original satellite AOD and the 
recovered AOD with AERONET AOD measurements. To 
ensure the comparability of matchups,  we average AERONET 
AOD values within 3×3 pixels centered on the pixel where the 
AERONET site is located and within ± 15 min of each satellite 

observation time. As shown as the following three equations 
(6), (7) and (8), the principals of correlation coefficient (R2) of 
the linear regression, root mean square error (RMSE) and 
expected error (EE) are chosen to represent the validation 
results, where ��������� is the original satellite AOD or AOD 

after NBME, and ����������  is the corresponding 
AERONET AOD data. 
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(6) 

RMSE =  �
�

�
∑ ���������� − �����������

��
���

        (7) 

 
              EE = (1 ± 0.05) × ���������� ± 0.05                 (8) 
 

 

Figure 4. Validation of the Himawari/AHI AOD and AOD 

after NBME against AERONET AOD. (a) Validation of the 

original Himawari/AHI L3 hourly AOD. (b) Validation of the 

original Himawari/AHI L3 daily AOD. (c) Validation of the 

overall AOD after recovering. (d) Validation of the recovered 

AOD where original Himawari/AHI AODs are missing. The 

purple dotted lines represent the EE envelope; the black line 

is the 1:1 reference line. 

 

Figure 4(a) and 4(b) demonstrate the validation results of the 
original satellite AOD datasets, respectively. Figure 4(c) shows 

the overall validation results (R2: 0.62, RMSE: 0.19) of AOD 
after NBME, which display a similar accuracy with those (R2: 
0.62, RMSE: 0.20) of the original AOD datasets. Moreover, 
nearly 61% AOD matchups fall within EE envelops, increasing 
by 6% compared with the original hourly AOD datasets. As 
shown as figure 4(d), correlation coefficient (R2) is up to 0.60, 
and RMSE lays around 0.2, and approximately 60% of the 
matchups fall into the EE envelope, which prove that the 
recovered AODs performs well. By comparing the validation 
results of figure 4(a)/4(b) and 4(d), it indicates that the 
recovered AODs where the original AODs are missing are 
consistent with the AODs where the original AOD are 
available. Therefore, it could be concluded that the NBME 
recovery process by integrating the contribution of satellite-
derived hourly and daily AOD products is practicable to 
achieve valid AOD products in not only completeness but also 
accuracy.    

 
In addition, in order to obtain an adequate evaluation for the 
proposed recovery algorithm, the further simulated 
experiments are also implemented. The process of the 
simulated tests is as follows: at first, to obtain the target data, 
in the study area, suitable size area where adequately valid 
pixels exist of original data is randomly removed by masking; 
secondly, the target data serves as input data into the recovery 
process; finally, the recovery results of the artificially masked 
areas would be compared with the actual data. In our study, 
these simulated experiments are performed to validate the 
proposed recovery method by comparing with three other 
effective recovery methods: maximum likelihood method 
(MLE), universal kriging (UK), and geographically weighted 
regression (GWR). As shown as figure 5, two rows of panels 
show the AOD distributions of the groups of simulated 
experiments dated 27 April 2016 and 26 November 2016, 
respectively. Referring to the actual data, the results recovered 
by MLE are distorted where the valid original pixels are 
missing, and the results recovered by UK present an apparent 
spatial discontinuity effect for that only spatial autocorrelation 
is introduced. For the GWR algorithm, the results also exist 
partial spatial discontinuity and plenty of noise, thus it can be 
clearly seen that the results for NBME method are the closest 
to the actual data. From the above comparison, it indicates that 
the NBME recovery framework can obtain a more convincing 
product both in applicable accuracy and visual quality.

 

 

Figure 5.  Comparison of the actual AOD data and the recovered results of two detailed regions. 
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4. CONCLUSION 

Current satellite-derived AOD products are mostly limited by 
spatial coverage in further atmospheric application, while the 
existing recovery algorithms mainly aim to the polar-orbit 
satellite-derived AOD products. In order to exert the function 
of geostationary satellite-derived AOD products in capturing 
aerosol dynamic changes, we propose the NBME recovery 
framework based on Bayesian maximum entropy 
methodology, and implement the framework in Himawari/AHI 
AOD datasets by itegrating multi-time scale AOD products. 
Through the proposed recovery method, the spatial coverage 
of AOD dataset increases from 20.5% to 70.1%, and the 
overall accuracy of the recovered AOD datasets is basically 
consistent with the original datasets. Besides, through two 
groups of simulated experiments and by comparing with other 
popular recovery methods synchronously, we find that the 
proposed method performs better relatively, which indicates 
that the NBME recovery method can obtain high-accuracy 
products with applicable coverage and visual quality. Along 
with more joint observations of high temporal and spatial 
resolution satellites, the AOD sequence datasets recovered by 
NBME will provide more details of spatiotemporal variability 
of aerosol. In brief, this study not only yields possibilities for 
further application of high-resolution satellite AOD data in 
serving as a reliable reference for prevention and control of 
atmospheric pollution, but also strengthens the foundation for 
monitoring pollution in Southeast Asian region by remote 
sensing. 
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