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ABSTRACT:  
The accurate detection and mapping of buildings from high-resolution remote sensing (HRRS) images have attracted extensive 
attention.  However, as an artificial target, buildings not only have various types, but also have multi-scale characteristics and complex 
context, which brings great challenges to the accurate identification of buildings. To deal with this problem, a semantic segmentation 
model based on multi-scale feature fusion and enhancement (MSFFE) is proposed for building extraction from HRRS images. 
Specifically, the proposed model uses the network structure of encoder and decoder. In the encoding stage, densely connected 
convolutional neural network is used as an encoder to extract multi-level spatial and semantic features. To effectively use the multi-
scale features of buildings, a multi-scale feature fusion (MSFF) module between encoder and decoder is designed to distinguish 
buildings of different scales in complex scenes. In the decoding stage, an attention weighted semantic enhancement (AWSE) module 
is introduced into the decoder to assist the up-sampling process. It not only makes full use of the multi-level features output by the 
encoder, but also highlights the key local semantic information of the building. To verify the effectiveness of the proposed model, 
experiments were conducted on two building segmentation data sets, WHU and INRIA. The preliminary results show that the proposed 
model can effectively identify buildings with different scales in complex scenes, and has better performance than the current 
representative networks including FCN, U-net, DeeplabV3+ and MA-FCN. 
 
 
 

1. INTRODUCTION 

At present, the wide availability of high-resolution remote 
sensing images provides the possibility for the acquisition of 
individual targets. Automatic extraction of buildings from high-
resolution remote sensing (HRRS) images has become one of the 
important research topics in remote sensing and related 
application fields. This is because the geospatial information 
related to buildings plays an important role in urban construction, 
national defense, earthquake relief and people's production and 
life. 
Buildings are man-made objects with typical geometric features 
such as shape, structure and height. They are the main basis of 
the traditional building extraction method based on handcrafted 
features (Wang et al., 2015; Turker et al., 2015; Hermosilla et al., 
2011). Although these methods have achieved good results in 
some targeted applications or specific tasks, they still have great 
limitations for complex and changeable image scenes due to the 
diversity of building types and sizes and the complexity of scenes. 
In recent years, the rise and development of deep learning has 
changed the traditional machine learning paradigm based on 
handcrafted features. The research based on deep learning has 
made a major breakthrough in visual tasks such as image 
classification, target detection and semantic segmentation. 
Building extraction is actually a semantic segmentation problem, 
which aims to label buildings at the pixel level. This is a very 
challenging task due to the complexity of remote sensing image 
scenes. Using the labelled sample data, the deep semantic 
segmentation network can establish the mapping between the 
multi-scale feature representation of the image and the pixel 
category label through end-to-end learning. The proposal of fully 
convolutional network (FCN) (Long et al., 2015) promotes the 
rapid development of semantic segmentation network. A series 
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of network models such as U-Net (Ronneberger et al., 2015), 
SegNet (Badrinarayanan et al., 2017), DeepLab series (Chen et 
al., 2014, 2017, 2018a, 2018b) have been proposed successively 
to solve the visual segmentation task of ordinary images. 
In the field of remote sensing target recognition, a variety of 
network models based on deep learning have been developed for 
building extraction. For example, Ji et al. (2019) created the 
widely used WHU aerial and satellite image dataset, and 
proposed a Siamese U-Net for building segmentation, which 
significantly improved the accuracy of building extraction. Liu et 
al. (2019) used the FCN-based method to extract buildings. The 
proposed spatial residual inception (SRI) module can obtain 
multi-scale context information, which is used to accurately 
detect large buildings. Focusing on the accuracy and integrity of 
building extraction, Shao et al. (2020) proposed a building 
residual refine network (BRRNet). This model includes a 
prediction module based on encoder-decoder structure and a 
residual refinement module, which are used to obtain global 
features and refined detection results respectively. 
Due to the diversity of building sizes and the complexity of 
scenes, how to extract multi-scale buildings and accurately locate 
their boundaries has attracted extensive attention. Liu et al. (2020) 
proposed a multi-scale U-shaped convolutional neural network 
with edge constraints (EMU-CNN) for the extraction of building 
instances from HRRS images. This model has strong robustness 
to the variation of building scale. Deng et al. (2021) introduced 
the attention gate and atrous spatial pyramid pooling module into 
the encoder-decoder network to overcome the high intraclass 
variance and complexity of building scenes. In addition, multi-
path attention networks, such as MAP-Net (2020) and MHA-Net 
(2021), are proposed to further improve the extraction accuracy 
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of multi-scale buildings (especially small buildings) and enhance 
the robustness to complex scenes. 
In short, the diversity of building scale and the complexity of 
scene are the main challenges of building extraction in HRRS 
images. To deal with this problem effectively, this paper 
proposes a semantic segmentation model based on multi-scale 
feature fusion and enhancement (MSFFE) for building extraction 
in HRRS images. Specifically, the model adopts the network 
structure of encoder and decoder. In the encoding stage, densely 
connected convolutional neural network (DenseNet) (Huang et 
al., 2017) is used as the encoder to extract multi-level spatial and 
semantic features. Through dense connection, this network 
realizes the reuse of features, which can greatly reduce the 
number of network parameters and improve the training speed. 
Further, to make effective use of the multi-scale features of 
buildings, a multi-scale feature fusion (MSFF) module between 
encoder and decoder is designed to distinguish buildings of 
different scales in complex scenes. In the decoding stage, the 
decoder introduces an attention weighted semantic enhancement 
(AWSE) module to assist the up-sampling process. It not only 
makes full use of the multi-level features of the encoder output, 
but also highlights the key local semantic information of the 
building. 

 
2.  METHOD 

The proposed model adopts the encoder-decoder structure, which 
is a relatively stable structure in the field of image semantic 
segmentation. The encoder is used to learn the feature maps of 
different scales of the input image through a series of operations 
such as convolution and pooling. The role of the decoder is to 
restore the feature maps output by the encoder to the size of the 
original image through up-sampling or deconvolution.  
 

 
Figure 1. Overview of the proposed model architecture. 

 
Specifically, the overall structure of the model is shown in Figure 
1. In the encoding part of the network, we use the densely 
connected network (i.e. DenseNet) for multi-scale representation 
of features. It includes four dense blocks. Between the adjacent 
dense blocks is the transition layer, which is composed of a 1 × 
1 convolution layer and a 2 × 2 average pooling layer. At the end 

of the encoder is a multi-scale feature fusion (MSFF) module, 
which is used to integrate building features of different scales. In 
the decoder, in order to make full use of the guiding role of the 
shallow features output by the encoder in each stage, the attention 
weighted semantic enhancement (AWSE) module is designed to 
realize the semantic enhancement of the key information related 
to buildings in the process of recovering the size of the feature 
maps through step-by-step up-sampling, so as to improve the 
accuracy of building segmentation. 

 
2.1 Dense block  

The core part of DenseNet is the dense block. By establishing the 
connection relationship between different layers (the input of 
each layer comes from the output of all previous layers), the 
dense block strengthens the transmission of gradient, realizes the 
reuse of features, and reduces the number of parameters of the 
model to a certain extent. In this paper, we use a simpler dense 
block, which contains only four composite functions. The growth 
rate of feature maps is set to 24, that is, 24 feature maps will be 
generated after each composite function. The simplified dense 
block can not only effectively extract the multi-scale features of 
buildings, but also greatly reduce the amount of parameters in the 
encoding stage. 
 
2.2 Multi-scale feature fusion module 

Our proposed multi-scale feature fusion module adopts the 
structure of multi-branch parallel and then fusion. The feature 
maps finally output by the encoder is used as the input of the 
module. The first branch contains three atrous convolution layers 
with dilation rates of 1, 2 and 3 respectively. The second branch 
also uses three groups of such convolution layers, but their 
dilation rates are 1, 3 and 9 respectively. The third branch first 
passes through an average pooling layer, and then restores the 
size of the feature map through an upper sampling layer. 
Similarly, the fourth branch first passes through a maximum 
pooling layer, and then the upper sampling layer. Further, after 
the convolution or pooling layer, all the above four branches pass 
through a BN layer and a ReLU activation layer to adjust the 
distribution of the previously output feature maps and accelerate 
the convergence speed of the network. Finally, the feature maps 
obtained from the four branches are concatenated, and then a 1× 
1 convolution layer is used to realize the fusion of multi-scale 
features 
 
2.3 Attention weighted semantic enhancement module 

In the decoding stage, four attention weighted semantic 
enhancement（AWSE） modules are used to restore the feature 
maps output by MSFF module to the size of the original image 
step by step. In this process, attention mechanism is introduced 
to guide the up-sampling process of feature maps, which can 
effectively fuse the shallow features output by each stage of the 
encoder. The AWSE module we constructed includes two 
branches: channel attention and spatial attention, which are 
respectively used to highlight the feature channels or feature 
locations useful for building discrimination. 
The overall structure of the module is shown in Figure 3. The 
upper branch is a channel attention structure based on SE-Net (Jie 
et al., 2017). This branch first passes through a global average 
pooling layer, and then learns the importance of the 
characteristics of each channel through two full connection layers 
and nonlinear activation layers, that is, obtains the weight vector 
representing the importance of the features of each channel; The 
spatial attention branch first passes through a parallel structure 
composed of average pooling and maximum pooling layers. 
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After the output results are concatenated, they pass through a 1 × 
1 convolution layer and a sigmoid function to learn the 
importance of each position in the feature map, that is, to obtain 
the weight matrix representing the feature importance of each 
pixel position. Further, the generated weight vector and weight 
matrix are used to perform channel weighting and spatial 
weighting operations on the up-sampled input feature map 
respectively. The output of the former first passes through a 1 × 
1 convolution layer to adjust the number of channels, and then is 
concatenated with the output of the latter. Finally, a 1 × 1 

convolution layer is used to realize their fusion. In this way, the 
feature channels or pixel positions related to building 
discrimination can be selectively highlighted, and the semantics 
of buildings in key channels or positions in the feature map can 
be enhanced. 
 

 
 
 

 
  

Figure 2. Structure of the MSFF module. 

 . 
 

 
Figure 3. Structure of the AWSE module.

 
3. EXPERIMENT AND ANALYSIS 

To evaluate the effectiveness of the proposed model, two public 
aerial image datasets, WHU and Inria (Maggiori et al., 2017), 
were used to perform building extraction experiments. On each 
dataset, we first train and test the proposed model, and then 
compare it with the current representative network models 
including FCN, U-Net, SegNet, DeeplabV3+ (Chen et al., 2018b) 
and MA-FCN (Wei et al., 2020) in terms of accuracy to evaluate 
its overall performance. Further, ablation experiments were 
performed on the WHU dataset to prove the effectiveness of each 
module in our network model. 

 
3.1 Dataset description and preprocessing 

The WHU dataset used contains 8189 sample images with a 
spatial resolution of 0.3 m (obtained by downsampling). The size 

of each sample image is 512 × 512. The sample set is divided 
into three parts, including 4736 training samples, 1036 
verification samples and 2416 test samples, with a ratio of 
approximately 4:1:2. 
The Inria data set consists of two parts, a training set and a test 
set, both of which cover five different regions. The five regions 
we selected include Austin, Chicago, Kitsap, Tyrol-W and 
Vienna. There are 36 images in each region, with a size of 5000 
×5000 pixels and a spatial resolution of 0.3m. Due to the large 
amount of data, we only use 36 images in the training set and cut 
them into 512×512 sample images to form our training set, 
verification set and test set, with a ratio of 3:1:1. For each region, 
this provides us with 1750 training set images, 583 verification 
set images and 583 test set images.  
Before training the network, several data preprocessing strategies 
are implemented to avoid over fitting and improve the 
generalization ability of the model. The data preprocessing used 
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includes random rotation at different angles (90°, 180◦, 270◦, and 
360◦), random vertical or horizontal mirror flipping, and spectral 
enhancement of low brightness and low contrast images. 

 
3.2 Experimental setup 

The proposed model is constructed and implemented using 
tensorflow framework with CUDA10.0 and cuDNN7.6. The 
version of tensorflow is 1.14. The graphics card we use is 
GeForceRTX1080Ti, and the GPU memory size is 11G. In the 
training process of the model, the batchsize is set to 4 to fit the 
video memory size. The binary cross entropy loss is selected as 
the loss function, Adam is used as the optimizer, and the learning 
rate is fixed at 0.0001. 

 
3.3 Evaluation metrics 

In the evaluation part, the evaluation metrics used include 
Precision, Recall, F1-Score (F1) and Intersection over Union 
(IoU). These metrics are widely used as evaluation criteria for 
semantic segmentation and building extraction. They can be 
calculated as follows: 

Precision=TP/ (TP+FP)                                (1) 
 

Recall=TP/ (TP+FN)                                   (2) 
 

IoU=TP/ (TP+FP+FN)                                (3) 
 

F1-Score=2×Precision×Recall/ (Precision×Recall)       (4) 
 

In the above formula, TP and FP respectively represent the 
number of pixels correctly and incorrectly classified as buildings 
in all test images, while FN and TN refer to the number of pixels 
incorrectly and correctly classified as background, respectively. 

 
3.4 Experimental results and comparison 

The experiment was first conducted on the WHU data set, and 
the accuracy evaluation statistics of the results are shown in Table 
1. The highest value of each metric is highlighted in bold. 
Compared with other models, our proposed model obtains the 
highest IoU value and F1-Score, which are 0.8824 and 0.9462 
respectively, indicating that our model shows better performance 
on the whole. In addition, the multi-scale aggregation FCN (MA-
FCN) also achieved good performance, indicating that multi-
scale features play a very important role in building 
discrimination. The good performance of the proposed model 
implies that it has good multi-scale feature representation ability. 
Figure 4 shows several representative examples of building 
extraction results. The results obtained by using the proposed 
model are closer to the ground truth, and the extracted buildings 
have better shape integrity and boundary accuracy. 
 

Model IoU Recall Precision 𝐹ଵ 

FCN-8s 0.8421 0.9250 0.9135 0.9192 

U-net 0.8663 0.9387 0.9298 0.9342 

SegNet 0.8572 0.9308 0.9196 0.9252 

DeeplabV3+ 0.8613 0.9388 0.9291 0.9339 

MA-FCN 0.8749 0.9451 0.9464 0.9457 

Proposed 0.8824 0.9432 0.9492 0.9462 

Table 1. Accuracy evaluation results of different models on the 
WUH dataset. 

 

Compared with the WHU aerial building dataset, the Inria dataset 
covers five different areas, and its building types and sizes are 
more diverse. In addition, the contrast between buildings and 
their background in the image is lower, which adds difficulties to 
the discrimination of buildings. We conducted experiments on 
each data set in these five different regions, and calculated the 
average value of these metrics. The results are shown in Table 2 
It can be found that for each metric, the proposed method obtains 
the highest value, its Precision, Recall and F1-Scores are 0.9465, 
0.9480 and 0.9472 respectively, and its IoU value is 0.7103. This 
shows that our model is still the best. The building extraction 
results of several example images are shown in Figure 5 By 
comparing the buildings extracted by different models, it can be 
found that the proposed model not only preserves a complete 
shape boundary for large buildings, but also has stronger 
robustness for small and dark buildings. 

 

Method IOU Recall Precision 𝐹ଵ 

FCN-8s 0.4837  0.8829  0.9015  0.8920  

U-net 0.6417  0.9139  0.9304  0.9219  

SegNet 0.5920  0.9070  0.9200  0.9133  

DeeplabV3+ 0.6756  0.9211  0.9346  0.9277  

MA-FCN 0.6895  0.9286  0.9446  0.9364  

Proposed 0.7103  0.9465  0.9480  0.9472  

Table 2. Accuracy evaluation results of different models on the 
Inria dataset. 

 

3.5 Ablation experiments 

To verify the effectiveness of our proposed multi-scale feature 
fusion (MSFF) module and attention weighted semantic 
enhancement (AWSE) module, the ablation experiments of the 
two modules were performed on the WHU dataset. 

 
3.5.1 Ablation experiments on the MSFF module  
For the ablation experiment of MSFF module, we compared three 
models: the model obtained by removing the MSFF module from 
the proposed model (called baseline), the model we proposed 
(called baseline + MSFF), and the model obtained by replacing 
MSFF module with atrous spatial pyramid pooling (ASPP) in the 
proposed model (called baseline + ASPP). 
Table 3 shows the performance statistics of these models on the 
WHU dataset. It can be seen that the model with MSFF module 
has better segmentation performance. The addition of MSFF 
module can significantly improve the extraction accuracy of the 
baseline model, and this module has better performance than 
ASPP module. 

 

Model IoU Recall Precision 𝐹ଵ 

Baseline 0.8512 0.9302 0.9376 0.9339 

Baseline+MSFF 0.8824 0.9512 0.9478 0.9495 

Baseline+ASPP 0.8735 0.9469 0.9428 0.9448 

Table 3. Accuracy statistics of ablation experiments of MSFF 
module  

 
3.5.2 Ablation experiments on the AWSE module 
To evaluate the effectiveness of the proposed ASWE module, we 
compared the performance of the model with and without (/) 
AWSE module. Moreover, to verify the generality of this module, 
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it was also added to the U-Net model and compared with the 
original U-Net.  
As can be seen from Table 4, the ASWE module greatly improves 
the extraction accuracy of the model. The IoU value of the 
proposed model with ASWE module is 4.61% higher than that 
after removing this module, and the Precision, Recall and F1 
Score are also greatly improved. Further, for U-Net, after adding 
the AWSE module, its performance is also improved, and the IoU 
value and F1-Score increased by 0.76% and 0.96% respectively. 
These facts show the effectiveness and generalization of ASWE 
module 
 
 

Model IoU Recall Precision 𝐹ଵ 

Proposed 0.8824 0.9512 0.9478 0.9495 

Proposed / 
ASWE 

0.8363 0.9236 0.9342 0.9289 

U-Net 0.8663 0.9387 0.9298 0.9342 
U-Net + 
AWSE 

0.8739 0.9421 0.9456 0.9438 

Table 4. Accuracy statistics of ablation experiments of the 
AWSE module. 

 

 

Image         Ground Truth      Proposed         MA-FCN        DeeplabV3+       U-Net              SegNet              FCN 

Figure 4. Visualization of building extraction results by different models on the WHU dataset.  

 

 

Image         Ground Truth    Proposed        MA-FCN       DeeplabV3+        U-Net              SegNet             FCN 

Figure 5. Visualization of building extraction results by different models on the Inria dataset. 
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4. CONCLUSION 

Due to the diversity of the size and type of buildings and the 
uncertainty of their boundaries, building extraction from high-
resolution remote sensing images is still facing great challenges. 
To deal with these challenges, a semantic segmentation model 
based on multi-scale feature fusion and enhancement is proposed 
for the accurate extraction of buildings in complex scenes. 
Experiments based on WHU and Inria aerial building datasets 
show that the proposed model can obtain higher extraction 
accuracy than the current representative building extraction 
network (including FCN, U-Net, SegNet, DeeplabV3+ and MA-
FCN) and has stronger robustness to buildings of different scales 
and image scenes with low contrast. The extracted buildings 
retain better shape integrity and boundary accuracy. Further 
ablation experiments verify the effectiveness of the proposed two 
modules (including MSFF and AWSE). In the future, we will 
further optimize our model structure to better improve its 
building extraction performance in complex scenes. 
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