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ABSTRACT: 
 
Urban areas are complex scenarios consisting of objects with various materials. This variety poses a challenge to single-data 
classification schemes. In this paper, we propose a feature fusion and classification network on RGB top-view point cloud and SAR 
images with swin-Transformer. In this network, the heterogeneous features are learned separately by an asymmetric encoder, and 
then they are concatenated along the channel dimension and fed into a fusing encoder. Finally, the fused features are decoded by an 
UperNet for generating the semantic labels. As data we use the subset of high-resolution 3D point cloud provided by Hessigheim 
benchmark which are complemented by TerraSAR-X images. The overall precision and the mean intersection over union (mIoU) 
achieves 87.25% and 73.56%, respectively, which outperforms the single-data swin-Transformer by 4.08% and 1.91%, respectively. 
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1. INTRODUCTION 

Thanks to their high-resolution and altitude information, large-
scale point clouds play an important role in urban planning, 
ecosystem monitoring, and land resources analysing. Urban 
areas are complex scenarios consisting of large numbers of 
objects with various materials. This variety poses a challenge to 
any single-data classification scheme, for example, solely based 
on RGB point clouds. Synthetic aperture radar (SAR) images 
reflect the backscattering intensity of objects and show strong 
contrast between artificial materials and natural objects. 
Therefore, the RGB point clouds and the SAR images provide 
complementary features which is advantageous especially in 
urban areas. Fusing such data by deep networks could 
effectively improve the performance for urban classification 
(Kahraman and Bacher, 2021). 
 
The available multi-source data fusion methods can be grouped 
into pixel-level fusion, feature-level fusion and decision-level 
fusion from low to high. Pixel-level fusion (Kulkarni and Rege, 
2020) firstly maps heterogeneous data from the natural domain 
to the high-dimensional fusion domain. After superposition or 
component substitution, the fused data are mapped back to the 
natural domain. Feature-level fusion (Zhang et al., 2021) 
extracts features from the respective data and then combines 
them by summation, splicing, etc. For decision-level fusion 
(Waske and van der Linden, 2008), a series of classifier are 
designed according to the characteristics of multi-source data, 
and the classification results are obtained by voting or filtering 
on each output of the classifier.  Among them, the pixel-level 
fusion requires to define elaborate pre-mapping functions. 
Although decision-level fusion is simpler and computationally 
efficient, the spatial information interaction between 
heterogeneous data is ignored. Therefore, in this paper, we 
explore feature-level fusion and propose a data-driven 
classification network based on swin-Transformer. 

A Transformer is a deep neural network aiming at global 
perception governed by a so-called self-attention mechanism; 
such schemes achieved state-of-the-art performance in 
computer vision (Dosovitskiy et al. 2020). The self-attention 
mechanism calculates the attention score by key-value querying 
to abstract the essential relationship among all elements. Such 
elements could be feature vectors or a time-step of the 
sequential data. Compared with traditional convolution 
networks of strong inductive bias, Transformer do not rely on 
the prior of distance-based receptive field, but focus on the 
correlation of elements. Therefore, Transformer could show 
more adaptive to multi-source data. However, the global and 
fixed perception range of Transformer requires more learnable 
parameters, especially on high-resolution images. Such 
parameters may lead to complex network and heavy 
calculational burden (Li et al., 2018). In addition, a Transformer 
is a scale-sensitive network where the variation of the object 
size is regarded as new patterns. To reduce the parameter 
redundancy, swin-Transformer (Liu et al., 2021) limits self-
attention calculation to non-overlapped windows. Such 
windows are cycling shifted among adjacent layers to trade off 
the calculation burden and perception range. Furthermore, the 
multi-scale feature extraction is realized by cascading swin-
Transformer blocks with patch-merging layers. 
 
The primary contribution of this paper is on data fusion and 
classification of RGB top-view point clouds and SAR images. 
We propose a data-driven swin-Transformer network, which 
firstly registers the SAR image to the RGB top-view point 
cloud of the same scene manually. Then several swin-
Transformer blocks are connected as an asymmetric encoder 
and a fusing encoder to realize individual feature extraction and 
feature fusion, respectively. Finally, the features of each block 
are fed into a unified perceptual parsing network (UperNet) to 
obtain semantic labels. The proposed network only requires that 
the input images belong to the same region, and has high 
adaption to the sensor and image resolution. In the experiments 
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of urban classification on a subset of the Hessigheim high-
resolution 3D point cloud (H3D) benchmark data and a 
TerraSAR-X image dataset, the proposed network has better 
accuracy and mean intersection over union (mIoU) than fully 
convolutional network (FCN) and a data-level fusion method.  
 

2. THE PROPOSED NETWORK 

The structure of proposed network is shown in Figure 1, which 
can be separated to 4 stages: data pre-processing, feature 
extraction, feature fusion and classification. Firstly, the pre-
processing on point cloud and SAR image data generates two 
images with the same size corresponding to one region. 
Secondly, the top-view image together with the SAR 
registration image is fed into an asymmetric encoder for 
individual feature extraction. Thirdly, the features extracted 
from top-view image and SAR image are concatenated along 
the channel dimension and fed into a fusing encoder. The 
asymmetric encoder and the fusing encoder are both realized by 
a 2-block swin-Transformer. Finally, the fused features are 
decoded by an UperNet for generating semantic labels. The 
detailed process of the network is given below. 
 
2.1 Data Pre-processing 

As a dual-input network, the input 3D point cloud and SAR 
image need to be regulated as two images corresponding to the 
same site and size, i.e. a 3-channel RGB Top-view point cloud 
image, and a single-channel SAR intensity image. For the 3D 
point cloud data, it is firstly projected to a horizontal plane, and 
the whole scene is divided to grids with 0.05m×0.05m. Then the 
RGB value corresponding to the top point in each grid is 
regarded as the RGB value of a pixel. If there is no point in the 
grid, we set the pixel value to (0,0,0). The prepossessed RGB 
top-view image is shown in Figure 2(a). 
 
For the SAR image, routine transformations including filtering, 
radiation correction and geocoding (Roth et al., 2004) are 
performed on a large-scale SAR image. Then a sub-image 
corresponding to the region of point cloud data is captured. 

Although the RGB top-view image and the SAR image have 
different resolutions, imaging planes and visual characteristics, 
we can still identify some homologous points belong to the 
specific targets, for example, the docks, bridges, and 
intersections (Yamamoto et al., 2015). Picking these points 
from the RGB top-view image and the SAR image, the two 
images could be registered by affine transformation. Finally, the 
SAR image with identity size of the RGB top-view image is 
obtained by bilinear interpolation, which is shown in Figure 2 
(b). It can be observed that because of the hand selected key 
points, there are some misplacements on image registration. 
Whereas, the swin-Transformer blocks could tolerance such 
registration errors within the confines of a window, which is 
realized by the position-insensitive of key-value query 
calculation.  

 

 
(a) 

 

 
(b) 

Figure 2. Data obtained by pre-processing for (a) top-view 
image, and (b) SAR image. 

 
 Figure 1. Structure of the proposed network. 
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2.2 Swin-Transformer Block 

As part and parcel of the proposed network, the swin-
Transformer block acquires the correlation among feature 
elements by self-attention. Single-layer swin-Transformer block 
can be divided into 4 steps: window division, scaled dot-
product attention calculation, window shifting and residual 
connection, as shown in Figure 3. 
 
Compared with the classic Transformer, the swin-Transformer 
block divides the input feature maps to non-overlapped 
windows along image length and height. The self-attention 
calculation within these windows can effectively reduce the 
difficulty of relation estimation, so that make the network 
training easier to converge. Considering a feature map with the 
size of X Y and the window size of D D , we can get local 

windows with the number of 2/XY D  for each channel. The 
standard multi-head scaled dot-product attention is applied in 

each window. For the l th layer, the features
2Dl dz  are 

mapped to the value ,l hv , key ,l hk , and query ,l hq  with the size 

of 2
hD d  as 
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where h
vW , h

kW , hd dh
qW �  are the conversion matrix, d  is the 

feature dimension, hd  is the head dimension, h  is the head 

index, and LN( )  denotes the layer normalization. Then the 

attention score ,l ha  is calculated by scaled dot-product as   
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The attention scores of all heads can be concatenated and obtain 

the attention output 
2l D dm   satisfies 

 

 ,1 , 1Concat ,...,l l Hl
t

e lm a a W z   ,               (3) 

 
where ( )Concat   denotes the concatenation along feature 

dimension, h H dd e
tW   is the conversion matrix, He  is the 

total number of the attention heads, and -1lz  is added as a 

residual to accelerate training.   
 
The attention output lm  successively can be further fused by a 

feedforward network (FFN), which is 
 

  =LN FFNl l lz m m    ,                              (4) 

 
where the FFN is comprised of linear connections and rectified 
linear unit (ReLU). 
 
The window-based self-attention limits the receptive field to the 
range of D D , but it pays the price of global perception 

ability. The local information cannot be shared among different 
windows. To introduce the correlation learning among non-
overlapping windows, the window shifting technique is adopted, 
which re-divides the windows between two self-attention 
calculations.  The centre coordinate of each window is added an 
offset of half window size from ( , )x y  to ( / 2, / 2)x D y D  , 
so that the inter-window information is obtained. However, 
such window shifting will lead to the different window size at 
the edge of feature maps. The cycle-shift technique is applied to 
pad the upper left edge windows to the lower right edge, then 
the number and size of windows are consistent with the original 
window. Repeating the self-attention calculation of (1)-(4), and 
reversing the cycle-shift of the windows, the output of a single-
layer swin-Transformer block is obtained. For a swin-
Transformer block with L  layers, we stack 2L  times of self-
attention calculations to ensure that the window is shifted at 
least once. 
 

 
Figure 3. Structure of a single-layer swin-Transformer block. 

 
2.3 Feature Extraction and Feature Fusion 

In the proposed network, feature extraction and feature fusion 
are fulfilled by asymmetric encoder and fusing encoder, 
respectively. The asymmetric encoder has two individual flows 
for RGB top-view image and SAR image. Considering the 
object properties and resolution of the original data, such flows 
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share similar structure but have different number of parameters. 
Consider a top-view image 3 H W

RGB
 X   , where the size of 

each image is H W . Firstly, each input image is decomposed 
into patches without overlapping, each of size 2×2, so the 
patches totalled 3 / 4HW . Then the 2×2 patches are projected 

to 3C , where C  is called embedding dimension.  
 
In Transformer, a learnable position encoding is essential for 
relation learning, because the self-attention calculation is 
position independent. Hence, we add the position encoding to 

the patches and get the embedding 2 2 3WH C Ζ  . For the top-
view image flow, the embedding Ζ  is fed into two stacked 
swin-Transformer blocks, where each block learns the 
relationship among patches. To realize multi-scale feature 
extraction, each swin-Transformer block is connected by a 
patch-merging layer except the output layer, where the feature 
dimension is doubled while the patch number is halved along 
height and width.  The size of output feature map of the top-
view image flow is 8 8 12WH C   as shown in Figure 1. The 
SAR image flow has the similar procedure with 1/3 of the 
embedding dimension, so that the size of output feature map of 
the SAR image flow is 8 8 4WH C  .  
 
After obtaining the feature maps corresponding to the two flows, 
the feature fusion is performed by a fusing encoder. Firstly, the 
two feature maps are concatenated along the feature dimension, 
i.e., a larger feature map sized 8 8 16WH C  is obtained. The 
fusing encoder is stacked by two swin-Transformer blocks with 
a patch-merging layer. Afterwards, the feature maps of such 
blocks have the size of 16 16 32WH C  . 
 
2.4 Classification  

As a backbone network, swin-Transformer cannot realize pixel-
level semantic outputs without a feature decoder. Here we 
perform UperNet as a feature decoder to classify each pixel and 
generate the semantic labels (Xiao et al. 2018). UperNet is a 
general scene, semantic and texture classification pipeline, 
which is realized based on the feature pyramid. For urban 
classification, only the semantic segmentation head is utilized 
for learning and evaluating.  
 
The UperNet is connected to each output of the swin-
Transformer blocks, where the last block is passed through a 
pyramid pooling module (Zhao et al. 2017)) to obtain multi-
scale features. The other blocks are up-sampled and added to 
the multi-scale features, and finally obtaining a feature map 
with the same size of input image. The semantic labels are 
evaluated by a convolutional layer with kernel 1×1 on that 
feature map. 
 

3. EXPERIMENTS 

3.1 Experimental Configuration 

The proposed network is evaluated on a subset of the H3D data 
set and a TerraSAR-X image. Such data combinations can be 
obtained from any labelled LiDAR point clouds and SAR 
images in the same region. Obviously, urban areas with rich 
ground objects will provide more complementary information 
for data fusing. The original H3D dataset is a high-precision 
point cloud segmentation benchmark based on the unmanned 
aerial vehicle platform (Kölle et al. 2021). The point could data 

with 800pts/m2 is obtained by Riegl VUX-1LR LiDAR scanner 
at the region of Hessigheim, Germany. Besides, two oblique 
Sony Alpha 6000 cameras are applied to colorize the point 
cloud, and then manually mark the point cloud to 11 categories 
of semantic labels. Since the semantic labels of the original 
H3D dataset include mobile targets such as the vehicle, the 
small target chimney, and the targets are only valid in 3D 
processing such as façade and vertical surface, we remove some 
semantic labels to obtain a subset of H3D dataset with 4 labels, 
including low vegetation, impervious surface, roof and tree. The 
validation set is merged into the training set to get as complete 
an image of the city area as possible. 
 
TerraSAR-X is a remote sensing satellite project led by the 
German aerospace center (DLR) (Roth et al. 2005), which could 
implement multiple SAR imaging modes based on active 
electronically steered array, and could obtain multi-polarization 
and multi-resolution SAR images in many areas of the world. In 
our experiments, an HH polarimetric SAR image of the 
Hessigheim region on March 21, 2018 is acquired, which is 
imaged in descending orbit with high resolution spotlight mode, 
and the spatial resolution is 1m. 
 
After data pre-processing introduced in Section 2.1, the RGB 
top-view image and registered SAR image share the label space 
from the subset of H3D dataset. In order to ensure the input 
images having a fixed size, a sampling window with the size of 
384×384 pixels slides on the training and test images with the 
step size of 192×192 pixels, and the samples without any 
objects are removed. Hence, 397 training and 254 test samples 
are obtained for both RGB top-view images and SAR images. 
In the training set, the input image is normalized, and then 
performed data augmentation such as random flipping, random 
brightness and contrast adjustment to enhance the network 
generalization. 
 
The proposed network is implemented on a NVIDIA RTX3090 
GPU with the framework of Pytorch 1.9. The image size is set 
as 384H W  , the embedding dimension 30C   and the 

window length 7D  . As for the asymmetric encoder, the 
swin-Transformer blocks of top-view image flow and SAR 

image flow both have layer number ' '
2 21 1[ , ] [ , ] [1,1]L L L L  , 

and the number of attention head ' '
2 11 2[ , ] [ , ] [3,6]He He He He  . 

For the fusing encoder, the layer number of two swin-
Transformer blocks 3 4[ , ] [3,1]L L  , and the number of attention 

head 3 4[ , ] [12,24]He He  . The network loss is mixed by cross-

entropy and DiceLoss (Milletari et al. 2016) in a ratio of 1:4, 
which improve the training bias caused by the unbalanced 
number of samples. The loss is optimized by an AdamW 
optimizer (Loshchilov et al. 2019) with the learning rate 0.0001. 
The training phase has 20000 iterations, where the mini-batch 
size is set to 2.  
 
3.2 Classification Results 

The classification result and confusion matrix of the proposed 
network are shown in Figure 4(a), where the overall accuracy 
achieves 87.25% and the mIoU achieves 73.56%. The 
visualization of the corresponding result on test set is shown in 
Figure 5(a). It can be observed that the tree and low vegetation 
have the most confusion, because they share similar plant 
textures and the sharp edges of the tree crowns are hard to be 
estimated. 
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                (a)                                          (b) 

 

   
               (c)                                          (d) 

 
Figure 4. Confusion matrices on (a) the proposed network (b) 

FCN, (c) Single-ST, and (d) PLF-ST. 
 

 
3.3 Model Comparations 

In order to verify the effectiveness of the swin-Transformer 
blocks and feature-level fusing methodology, we compare the 
proposed network with some available models: fully 
convolutional network (FCN), swin-Transformer with single 
image features (Single-ST), and pixel-level fusion swin-
Transformer (PLF-ST). FCN is a classic framework for 
semantic segmentation of image data (Shelhamer et al. 2016), 
which utilizes ResNet50 as a backbone and generates the high-
resolution semantic labels by deconvolutions. The input of FCN 
is a single-source data, i.e. the RGB top-view image. Single-ST 
is based on the proposed network but the flow of SAR image is 
removed. It has 4 swin-Transformer blocks and only extracts 
the features from RGB top-view image. PLF-ST is a pixel-level 
fusion method. It has the same network structure as Single-ST, 
but PLF-ST regards the SAR image as an accessory channel of 
the RGB top-view image.  
 
The overall accuracy and mIoU of the proposed network and 
other models are shown in Table 1. The detailed confusion 
matrixes are shown in Figure 4(b)-(d) and the comparisons of 
the test visualizations are shown in Figure 5(b)-(d). For models 
with single data, the Single-ST performs better than the classic 
FCN model because of the global perception of self-attention 
calculation.  For data-fusion models, however, the PLF-ST do 
not demonstrate obvious advantages of data fusion, which has 
approximate performance as the Single-ST. Although acquiring 
more information, the naïve pixel-level fusion method without 
feature extraction is still difficult to handle heterogeneous data.  
 

    
(a)                          (b) 

 

    
  (c)                                             (d) 

             
Figure 5. Visualization of the test results on (a) the proposed 

network, (b) FCN, (c) Single-ST, and (d) PLF-ST. 
 

Models Accuracy mIoU 

FCN 83.94% 66.83% 

Single-ST 85.34% 69.48% 

PLF-ST 85.13% 69.14% 

Proposed network 87.25% 73.56% 

Table 1. Performance comparison between proposed network 
and other models. 

 
The proposed network is equipped with asymmetric encoder to 
extract features of two different data individually, and then 
fuses the extracted features rather than the raw data. The 
asymmetric encoder is equivalent to a feature selector, which 
can adaptively adjust the middle-layer features according to the 
propagated errors. Through this adaptive data fusion processing, 
the respective characteristics of SAR image and RGB point 
cloud can be implicitly learned, so as to complement each other 
and improve classification accuracy and mIoU. It is observed 
that the mIoU has boosted for 4.08% than Single-ST, especially 
on the tree and roof classes, which is consistent with the 
intuitive estimates on the SAR image, i.e. the stronger contrast 
between artificial and natural objects.  
 

4.  CONCLUSION AND OUTLOOK 

To fully exploit the information of RGB top-view point clouds 
and SAR images, a feature-level fusion network based on swin-
Transformer is proposed for urban classification. Firstly, the 
point cloud is projected to a horizontal plane, and the RGB 
value of each point is interpolated to a pixel in the grid to obtain 
an RGB top-view image. Afterwards, some homologous points 
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in the RGB top-view image and the SAR image are extracted 
for registration.  The feature extraction on the top-view image 
flow and SAR image flow is performed separately in the 
asymmetric encoder. These extracted features are fused by the 
fusing encoder and decoded by a standard UperNet. Compared 
with the classic models, the proposed network achieves higher 
accuracy and mIoU on the subset of H3D data set and the 
TerraSAR-X data set. The experiments also verify the 
effectiveness of both the swin-Transformer blocks and the 
feature-fusion methodology.   
 
However, the proposed network still has the limitation of 
unpredictable error from manual image registration. Moreover, 
during horizontal projection of the point cloud data, all points 
are squeezed into the horizontal plane and the overlapped points 
are ignored. The future work will be focused on fusing raw 
point cloud data and other remote sensing data in 3D space, 
such as generating 3D point clouds of scattering centres by 
tomography SAR. 
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