
 

* Corresponding author 

 

 

DIGITAL ELEVATION MODELS FOR VEGETATION MONITORING: 

A CASE STUDY OF A FOREST DISTRICT IN POLAND 
 

 

Kazimierz Becek* and Paulina Waclawik 

 
 Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology 

Na Grobli 15, 50-421 Wroclaw, Poland; kazimierz.becek@pwr.edu.pl, 253478@student.pwr.edu.pl 

 

Commission Remote Sensing, WG III/7 

 

 

KEY WORDS: DEM difference, Forest, InSAR, SRTM, Copernicus, Inpenetrability, Monitoring, Poland. 

 

 

ABSTRACT: 

 

Monitoring vegetation cover is one of the prime aims of remote sensing. Spatio-temporal trajectories of the vegetation state are key 

findings used by various branches of sciences for research and planning of human activities purposes. Among available vegetation 

monitoring methods, including forests, are multispectral and microwave indices. However, there are other ways to monitor 

vegetation/forest cover using surveys performed from satellite orbit. These approaches, including LiDAR and InSAR-derived digital 

elevation data products (further DEMs), are relatively less discussed in the literature on forest monitoring. Here, we present the results 

of a study of forest monitoring using the difference between two DEMs captured approximately 15 years apart. DEMs involved are 

the Shuttle RadarTopography Mission (SRTM) and Copernicus. The study area is located in a forestry district in the southwestern part 

of Poland. Spatial constraints and forest stand age, and dominant species were available from a forest stand map of the district. The 

study concludes that DEMs difference can be used for preliminary forest change assessment. 

 

 

1. INTRODUCTION 

The last two decades witnessed the introduction of global/quasi-

global digital elevation data products, commonly referred to as 

the digital elevation model (DEM). Although photogrammetry 

can be considered a mature method for delivering global DEMs, 

the Synthetic Aperture Radar Interferometry (InSAR) technology 

should be considered a "gamechanger" for global topography 

measurements. This is because of the SAR instrument's all-

weather/time operation capabilities. Therefore, it can be 

anticipated that the InSAR-derived DEMs with ever-rising 

accuracy and spatial resolution will be prevalent in the coming 

years and decades. 

 

For the bare earth's topography survey, the SAR data possess a 

drawback associated with the microwaves' impenetrability of 

vegetation (Dall, 2007; Becek, 2011, Schlund et al., 2019), 

resulting in pixels having overestimated elevation. As it was 

found, the magnitude of the overestimation depends on two 

vegetation parameters, i.e., vegetation height and vegetation 

density (Becek, 2011). It was demonstrated that the InSAR 

elevation is overestimated by 60% to 90% of forest height for C-

band and X-band derived DEM, respectively. Because of this 

phenomenon, a note on terminology used in this paper is 

required. First, DEM is a generic term used to describe any 

elevation dataset. Second, Digital Terrain Model (DTM) is a term 

used to describe a data set representing the bare earth's 

topography without any objects above the surface. Third, Digital 

Surface Model (DSM) is a term used to describe an elevation 

dataset representing a vertical outline of topography, including 

all objects above the surface (Maune, 2007). Since an InSAR-

derived DEMs over a forest do not represent its canopy, it cannot 

be described as a DSM. Hence, to avoid potential confusion in 

this paper, we use the generic term DEM, meaning the elevation 

of the phase centre of microwaves reflected from the vertical 

vegetation profile. 

 

The mentioned drawback of InSAR-derived DEMs for modelling 

the bare earth topography may be used for forest aboveground 

biomass assessment (Becek, 2011). However, the InSAR-based 

forest aboveground biomass estimation method possesses a few 

features that make it superior to any multi- or hyperspectral-

based method. The major problem with the spectral methods is 

that the spectral indices, such as Normalised Difference 

Vegetation Index (NDVI), saturate at low biomass levels. 

Because of this fact, in the biomass-reach tropical forest, the 

aboveground biomass cannot be effectively studied. An 

additional adverse factor is a persistent cloud cover over tropical 

regions, making cloud-free optical images acquisition nearly 

impossible. 

 

The InSAR-based approach for forest biomass or forest 

monitoring, in the more general case, has largely been 

overshadowed by the Light Detection and Ranging (Lidar) 

method, including aerial laser scanning (ALS) (e.g., Liu et al., 

2018), terrestrial laser scanning (TLS) (e.g., Sheridan et al., 2015; 

Chen et al., 2019), space-borne missions such as ICESat (e.g., 

Tulski & Becek, 2021), and follow-on ICESat-2  mission (e.g., 

Sun et al., 2020). However, the ALS survey is not always a viable 

option because of prohibitive costs for many forest inventory 

projects. In addition, the space-borne lidar does not provide 

sufficient spatial resolution of the samples for local-scale 

projects. 

 

This study explores the difference between two InSAR- derived 

DEMs to study vegetation change that occurred during the time 

lapse between DEMs' acquisition.  

 

Specific objectives of the study include calculating the difference 

between two DEMs, i.e., the Shuttle Radar Topography Mission 

(SRTM) and the Copernicus. These DEMs were captured some 

15 years apart. Hence, the difference must contain a signal related 
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to an increase/decrease in forest height or density. Subsequently, 

the calculated difference is analysed using basic statistical 

techniques to identify relationships between variations of the 

difference and forest age or fraction of the dominant species. 

 

A forestry district located in southern Poland has been selected 

as a test site. Some 80% of forest stands in the district are Spruce 

as a dominant (coniferous) species. 

The study's results indicate the potential applicability of this 

approach for the preliminary assessment of vegetation cover 

change under various climatic conditions. It might be speculated 

that the method can be used as a stand-alone or in combination 

with other methods of vegetation monitoring, including SAR data 

(Bouvet et al., 2018; Collins & Mitchard, 2015; Dubayah et al., 

2017; Ruiz-Ramos et al., 2020; Verhelst et al., 2021; Watanabe 

et al., 2018; Ygorra et al., 2021). 

 

2. DATA AND METHOD 

2.1 Area of Interest (AOI) 

The study area is located in southwestern Poland, in the Sudety 

mountains. The elevation of AOI varies between 289 m and 982 

m a.m.s.l. The topography is steep, occasionally mild. The area 

size of the district is 13,011 ha. Figure 1 shows the location of 

the forestry district Bystrzyca Klodzka. The Lat/Lon coordinates 

of the AOI are (Bottom Left; Top Right): 50°12'47", 16°26'04"; 

50°25'20", 16°47'13". 

 

Figure 1. Location of the study area and forest stands (black 

outline). 

The area size of AOI is 335.1 km2, out of which approximately 

76.15 km2 is covered by forest. The forested area is divided into 

forest stands characterised by the type of dominant species, age 

and percentage of the dominant species. There are 1800 stands in 

the district. The forest stand is the minimum/maximum area size 

is 1 ha and 33.5 ha, respectively. Figure 1 also shows forest 

stands boundaries. The types of dominant species and their 

participation in the district are shown in Table 1. 

 

Figure 2 shows two Landsat images of a part of AOI taken in 

2000 (left image) and 2020. In the left image, patches free of trees 

are visible. A careful photointerpretation of the images allows us 

to conclude that the patches resulted from timber harvesting, 

followed by reforestation. 

 

 

Figure 2. Landsat image of a part of AOI acquired in 2000 (left 

panel) and 2020 (right panel). Several forest-free 

areas are visible in the left image. However, in the 

2020 image, almost all forest-free patches 

disappeared. 

 

Dominant 

species 

No 

of 

stands 

Area 

(ha) 

Fraction 

of total 

area (%) 

Spruce 

Beech 

Birch 

Pine 

Oak 

Larch 

Ash 

Syc. maple 

Alder 

Fir 

Linden 

Douglas fir 

Elm 

Maple 

1391 

127 

53 

45 

56 

43 

29 

24 

16 

6 

6 

2 

1 

1 

6250 

509 

165 

162 

158 

152 

70 

57 

42 

32 

11 

4 

1 

1 

82.1 

6.7 

2.2 

2.1 

2.1 

2.0 

<1.0 

<1.0 

<1.0 

<1.0 

<1.0 

<1.0 

<1.0 

<1.0 

Total 1800 7614 100.0 

Table 1. Forest stands structured by dominant species. 

The prevailing number of stands (over 82%) is spruce-

dominated. Therefore, only those are further analysed. 

 

The age groups and the percentage of the dominant species 

(Spruce) stands are shown in Table 2. The age range of the 

dominant species in 2005 was 3 years to 179 years, with two 

dominant age groups, 40 - 60 years and 80 - 100 years, each 

taking 27% of Spruce stands. The structure of the Spruce 

dominant stands is shown in Table 3. 

 

Species in the Spruce stands might be of conifer and deciduous 

types. Comparing InSAR-derived DEMs over mixed forests 

should consider this fact because the impenetrability of the 

deciduous forest during the off-leave period (Winter) is lower 

than during the on-leave stage. Since the SRTM mission was 

carried out in the off-leave period (February – Winter in the 
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northern hemisphere), and data for Copernicus were collected 

over different months/years, these concerns will be investigated 

in the course of the paper. 

 

Age group 

(years) 

No of 

stands 

Fraction 

(%) 

< 20 35 2 

20 - 40 265 18 

40-60 439 27 

60 - 80 224 14 

80 - 100 289 27 

>100 138 13 

Total 1391 100 

Table 2. Spruce stands as a dominant species by age. 

 

Fraction of 

Spruce (%) 

No of 

stands 

Area 

(ha) 

100 369 1554 

90 119 592 

80 157 732 

70 171 759 

60 164 696 

50 173 825 

40 136 561 

30 88 462 

20 13 65 

Total 1391 6250 

Table 3. The fraction of the Spruce as dominant species in 

investigated forest stands. 

  

2.2 Data 

In this study, SRTM and Copernicus DEMs were used. Both 

DEMs were developed using the InSAR method. However, the 

SRTM instrument used C (5.6 cm) microwave band, while 

Copernicus was developed from data collected by the X-band 

(3.1 cm) instrument. Table 4 shows some characteristics of 

DEMs used. 

 

Feature 
DEM 

SRTM Copernicus 

Reference year Feb. 2000 ~2015 

Band C (5.5cm) X (3.1cm) 

Pixel size 1” (~30m) 1” (~30m) 

Instrument-

induced error  

2.0 m 0.8 m 

Agency NASA/USGS Airbus/DLR 

Table 4. Basic summary of the DEMs used in this project. 

 

2.3 Method 

The InSAR-derived DEM elevation over the forest is 

overestimated by 60% to 90% of forest height, depending on the 

microwave band used. The overestimation also is linearly 

dependent on the forest density. Selective logging of a forest 

stand decreases the overestimation to zero when all trees are 

removed from the stand. Figure 3 shows the relationship between 

different elevation readings over the area covered by forest. In 

the case of the InSAR-derived DEMs, available is the phase 

centre elevation only. The phase center elevation is located 

always above the terrain and below the forest canopy. Note also 

that the X-band elevation is always higher, but still below the 

lidar (not shown here) and DSM elevation. 

 

 

Figure 3. Different DEM evation types available over forested 

area: DTM represents bare terrain elevation; DEM1 

represents the C-band phase centre or SRTM 

elevation; DEM2 represents the X-band phase centre 

or Copernicus elevation; DSM (or Digital Surface 

Model) is the elevation of the forest canopy. The 

DTM/DSM are not available from the InSAR-derived 

elevation data products over forested areas. 

  

The elevation difference of DEMs captured at various times over 

a forest contains signals related to forest height and density 

changes, species type, and difference in penetration depth due to 

the wavelength used to create DEMs (e.g., Becek, 2011; Schlund 

et al., 2019). Hence, the difference between DEMs over the 

forested area can be expressed as per  Equation (1): 

 

 𝑑 = 𝐷𝐸𝑀2 − 𝐷𝐸𝑀1 = 𝑒 + 𝑔 + 𝜀,    (1) 

 

where  DEM1/2 = older/never DEM, respectively 

 e = forest height difference  

 g = microwave’s penetration depth difference 

 ε = random error. 

 

The random error – ε, is noise due to imperfection of instrument 

and measurement procedure and environmental factors. These 

errors are random, and their statistical properties, e.g., mean 

value and standard deviation, can only be estimated based on 

many measurements in similar conditions. This is the classic 

Gaussian error model. However, besides random errors, errors 

due to the slope of the terrain and pixel size impact the accuracy 

of the DEMs difference. According to (Becek, 2008), the 

variance of these error sources can be estimated using Equation 

(2) as follows: 

 

 𝜎2 =
1

12
𝑝2𝑡𝑎𝑛2(𝑠),    (2) 

 

where  p = pixel size 

 s = slope at a given pixel.  

 

Consequently, the variance of the error of the DEMs difference 

can be expressed as follows using Equation (3): 

 

 𝜎𝜀
2 =

1

6
𝑝2𝑡𝑎𝑛2(𝑠) + 𝜎𝑆𝑅𝑇𝑀

2 + 𝜎𝐶
2,    (3) 

 

where  𝜎𝑆𝑅𝑇𝑀/𝐶
2  = instrument-induced error of SRTM and 

Copernicus modell, respectively  

 p = pixel size  

 s = slope at a given pixel. 

 

Equation (3) proves that the accuracy of the DEMs difference, 

and any DEM, is not constant. Instead, it varies from pixel to 

pixel according to the slope at each pixel. It further means that 

DEMs difference is less accurate (or less sensitive), the larger 

pixel or steeper terrain (larger slope). 
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The DEM difference is a random process because of the ε term 

in Equation (1). As demonstrated (e.g., Becek et al., 2021), the 

DEMs' probability density function (pdf) follows the Laplace 

pdf, which for random variable d is expressed by Equation (4) 

(Norton, 1984): 

 

 𝑓(𝑑,𝑚, 𝑙) =
𝑙

2
exp (−

|𝑑−𝑚|

𝑙
),    (4) 

 

where  m = location parameter 

 l = scale parameter.  

 

According to (Norton 1984), the maximum likelihood estimator 

of m is the sample median. Note that m corresponds to the mean 

value in the case of the normal distribution. The estimator of l is 

the mean absolute deviation from m as expressed by Equation (5) 

(Norton, 1984): 

 

 𝑙 =
1

𝑛
∑ |𝑑 − 𝑚|,     (5) 

 

where  n = number of pixels in DEM 

 m = location parameter.  

 

The variance of the DEM difference can be calculated from 

Equation (6) 

 

 𝜎2 = 2𝑙2,     (6) 

 

where  l = scale parameter. 

 

The parameters m and σ were used instead of the mean and 

standard deviation. 

 

The following data processing workflow has been adopted in this 

study: 

 

 For the Spruce dominant stands, mean DEMs 

difference and its standard deviation vs a fraction of 

dominant species have been calculated to assess the 

impact of the leaf-on/off status of deciduous species. 

 A histogram of DEMs difference has been prepared, 

and Laplace's probability density function (pdf) has 

been fitted. 

 The histogram has been analysed to identify timber 

extraction activities or some natural causes. 

 Identified stands have been assessed using 

photointerpretation of high-resolution aerial images 

(acquired in 2010) and recent Sentinel-2 imagery. 

 

3. RESULTS 

An initial step of evaluating the suitability of the DEMs 

difference for forest change assessment was to identify the 

impact that leaf-on/off status of trees and microwaves penetration 

depth (C- vs X band) has on the DEMs difference. Figure 4 shows 

the median DEMs difference for each dominant class vs the 

fraction of dominant species. As it can be seen, a downward trend 

is present, suggesting the data used for the Copernicus model 

were predominantly collected during the leaf-on period. This 

situation is due to the large number of scatterers (leaves) in the 

canopy cover that move the phase centre of SAR pixels upward 

during the leaf-on period. 

 

 

Figure 4. Copernicus minus SRTM difference vs a fraction of 

dominant species (Spruce). A linear trend line is also 

shown. 

Figure 5 shows a histogram of the DEMs difference for all Spruce 

dominated stands and includes fitted Laplace pdf. The location 

and scale parameters are: m = 1.39 m and l = 3.75 m. The latter 

value corresponds to the standard deviation of 5.3 m. The 

standard deviation, in this case, is a measure of the precision of 

the DEMs difference that is influenced by the instrument-induced 

and target-induced errors; Equation (3). 

 

Annotations A through C pinpoints some discrepancies between 

the histogram and the Laplace pdf that might suggest changes in 

forest stands. In the next section, this issue will be further 

discussed. The location and scale parameters of the Laplace pdf 

are also marked in the figure. 

 

 

Figure 5. Histogram of Copernicus minus SRTM difference for 

Spruce dominated stands. The Laplace pdf was 

calculated based on the actual DEMs differences and 

not on the histogram values. 

 

Figure 6 shows a scatter plot of the DEMs difference vs age of 

dominant species. A trend line is also shown. The difference 

taking sub-zero readings for the forest stands of age groups over 

approximately 60 indicates timber extraction occurrence. 
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Figure 6. DEMs difference vs dominant species age groups, 

including trend line. 

 

4. DISCUSSION 

The DEMs difference for forests stands vs the fraction of the 

dominant species shown in Figure 4 reveals that Copernicus 

exhibits higher impenetrability than SRTM. The mean value of 

the median difference for all fractions of the dominant species is 

1.39 m. A downward trend suggests that the impenetrabilities of 

the C- and X-band are less pronounced for a higher fraction of 

coniferous species. This effect is because the impenetrability of 

the C- and X-band DEMs over coniferous forests remains 

unchanged throughout the year. Hence, one can estimate that the 

impenetrability over Spruce forest for Copernicus is 

approximately 1 m higher than that of SRTM. This conclusion is 

essential for deciding if the forest has changed. On the other 

hand, higher DEMs differences for lower fractions of the 

dominant species suggest that the Copernicus was developed 

using a mixture of data taken at various seasons (during leaf-on 

and off status). 

 

A histogram of the DEMs differences shown in Figure 3 follows 

the Laplace probability density function (pdf). The pdf was 

drawn using the location and scale parameters estimated from the 

differences. This is proof that the DEMs difference follows the 

Laplace pdf instead of the Gauss one, which some authors 

attempt to use to model the histogram of DEMs differences. 

 

The discrepancies between the Laplace pdf and the histogram 

marked as A in Figure 5 suggest some numbers of clear cuts 

among the investigated forest stands. However, visual inspection 

using recent satellite imagery suspected stands did not confirm 

this assertion. Therefore, the lack of visual confirmation might be 

caused by the reforestation of the harvested plots. On the other 

hand, the discrepancies between the histogram and pdf curve 

marked as B in Figure 5 are probably due to the forest height 

increase of stands dominated by younger trees. 

 

Inconsistencies marked as C are probably due to the forest stands' 

uneven age structure: older trees gain height significantly slower. 

 

Overall histogram of the DEMs difference does not provide clear 

evidence of apparent forest change between 2000 and 2015. 

Knowing, however, that timber extraction in the forest district is 

routinely carried out, it can be concluded that tree harvesting 

between 2000 and 2015 was mainly absent. 

 

A more suitable way to identify forest change using the DEMs 

difference offers a scatter plot in Figure 6. The trend line suggests 

that forest stands with younger trees increase their height 

(positive DEMs difference), while stands with older trees tend to 

exhibit negative difference, suggesting removal of trees. 

 

5. CONCLUSIONS 

This preliminary study uses the elevation difference between two 

DEMs captured some time apart, demonstrating the utility of the 

information content of freely available DEMs for monitoring 

vegetation cover at a local to global scale. 

 

One of the critical factors controlling the sensitivity of the DEMs 

difference for monitoring vegetation and changes in topography 

is the slope, which is expressed by Equation (3). This study was 

carried out in relatively steep topography, implying a low 

sensitivity of the method (lower accuracy of the DEMs 

difference). However, it could still identify some natural and 

anthropogenic changes occurring in the forest district. 

 

The presented method can provide the first evidence of change in 

vegetation cover. It is anticipated that further research in this 

direction might identify some quantitative indicators, both spatial 

and aspatial, of vegetation cover change. 
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