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ABSTRACT: 
 

Optical and microwave remote sensing technologies have become key tools for local and global change detection applications. 

Generally, optical data has been the focus of remote sensing for change detection because of the varied spatial and temporal resolutions 

that allow for reliable information. However, the dependence of optical data on weather conditions prevents continuous and up-to-date 

information. On the other hand, Synthetic Aperture Radar (SAR) data can record all-weather and all-time polarization information 

which is critical for change detection in poor weather conditions; nonetheless, SAR is not precise as optical data for forestry change 

detection applications as it cannot provide the spectral features of interest. The combined processing of optical and SAR images allow 

for the retrieval of information of interest with a precision that none of them could achieve alone. In this context, Cycle-Consistent 

Generative Adversarial Networks (CycleGAN) based deep feature translation method was proposed in this study for change detection. 

The CycleGAN transfers images from one domain (optical) to another domain (SAR) into the same feature space using a cyclic 

structure. Thus, it can provide continuous and up-to-date information for change detection while keeping its spectral features. The 

accuracy of the fake images generated from CycleGAN was evaluated by correlating them with spectral indices (e.g., Normalized 

Difference Vegetation Index (NDVI), Modified Radar Vegetation Index (mRVI), and Modified Radar Forest Degradation Index 

(mRFDI)) directly obtained from optical and SAR data. As a result, the best correlation coefficients (R) were found between real NDVI 

(optical data) and fake NDVI (CycleGAN) with 0.98 and 0.97 for two different dated datasets. 

 

 

 

1. INTRODUCTION 

The optical remote sensing data has received the most attention 

for change detection applications. Optical data with varying 

spatial and temporal resolutions can not only convey spectral 

information about earth features, but also reflect their texture and 

geometric shape, ensuring that change detection is accurate. 

Some spectral indices produced by mathematical combination or 

transformation of spectral bands have been found to be quite 

useful for detecting changes, for example the Normalized 

Difference Vegetation Index (NDVI), which is used especially in 

forest areas. 

 

Synthetic aperture radar (SAR) data, on the other hand, reflect 

the scattered information of the ground surface in any weather 

condition and at any time. Thus, SAR images have an advantage 

for specific change detection applications due to their 

independence from lighting conditions. Vegetation indices (e.g. 

Modified Radar Vegetation Index (mRVI) and Modified Radar 

Forest Degradation Index (mRFDI)) similar to NDVI produced 

from SAR data, as in optical data, can be used quite successfully 

in changing forest areas. 

 

However, it is not always easy to get results as precise as NDVI 

from vegetation spectral indices produced by SAR. Since optical 

remote sensing data provides crucial spectral information in 

monitoring the phenological stages of forests, optical-based 

spectral indices can provide much precise information in forestry. 

In spite of its capabilities, a continuous time series of optical 

remote sensing data is difficult to gather due to the weather 

dependence of optical image acquisitions, and the data only 

offers information on the top layer of vegetation. SAR images are 

a reliable alternative to the limitations of optical images as 

mentioned before. Unlike optical reflectance, backscattering 

coefficients are affected by characteristics of the target such as 

roughness, moisture, biomass, vegetation structure, and height. 

Hence, the simultaneous processing of optical and radar temporal 

sequences allows for the retrieval of information of interest with 

a precision that none of them could achieve alone (Wang et al., 

2019; Li et al., 2021; Şener et al., 2021). 

 

In recent years, deep learning algorithms for feature translation 

have been used in remote sensing in order to benefit from the 

information of both optical data and radar data. A deep learning 

(DL) based method namely Cycle-Consistent Generative 

Adversarial Networks (Cycle-GAN), uses a cyclic architecture to 

transfer images from one domain (optical) to another domain 

(SAR) into the same feature space (Wang et al., 2019; Li et al., 

2021; Şener et al., 2021). 

 

The main purpose of this study is to perform a feature translation 

between Sentinel-1 SAR and Sentinel-2 optical data based on 

Cycle-GAN, when there is a missing specific feature in cloudy 

weathers. Furthermore, the Cycle-GAN based data is compared 

with other classical optical-SAR-based spectral indices NDVI, 

mRVI, and mRFDI. 

 

2. STUDY AREA 

As a study area, Sinop Nuclear Power Plant area is selected. This 

area is detailed discussed in (Çolak et al., 2019) and (Çolak et al., 

2021). The Sinop Nuclear Power Plant was a planned nuclear 
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power plant area in Turkey's far north, in the Sinop Peninsula, 

where 99% of the land is covered in forest (Figure 1). It is 

estimated that around 650000 trees have been felled in order to 

construct the nuclear power station (Çolak et al., 2019, 2021). In 

addition, for 2018, opponents of the project stated in local news 

that 130 hectares of forest area were deforested and a total of 225 

thousand trees were cut (CnnTurk, 2014).  

 

 
Figure 1. The map of (a) Turkey, and satellite images of (b) 

construction area of Sinop nuclear power plant, (c) construction 

area in 2016, and (d) construction area in 2019 (©Google 

Earth). 

 

3. DATA COLLECTION 

In the analysis, Sentinel-1 and Sentinel-2 were used as data sets 

and their properties are given in Table 1. 

 

Mission Sensors 

Temporal 

resolution 

(day) 

Spatial 

resolution  

(m) 

Sentinel 1 
C - Band  

SAR 
12  

(SM) & (IW) 

10 x 10,  

(EW) 25 x 25 

Sentinel 2 

Multispectral 

Instrument 

(MSI) 

10 10, 20 & 60 

 

Table 1. The characteristics of Sentinel-1 and -2 data         

(Soille et al., 2016). 

 

The feature translation based on Cycle-GAN was carried out by 

determining the most appropriate data set between the start date 

of the construction of the nuclear power plant (April 2017) and 

the date when the construction was temporarily stopped (July 

2019). The most appropriate dataset was chosen with attention to 

whether the Sentinel-2 data was successively completely 

cloudless.  Accordingly, as can be seen in the Figure 2, two 

different time periods (i.e. March - May 2017 and June - August 

2019) for Sentinel-2 data were examined. More specifically, the 

most appropriate dates were chosen as 28 and 29 March for 

Sentinel-2 and -1, respectively before logging, 28 and 29 June 

2019 for Sentinel-2 and -1, respectively after logging. 

 

 

4. METDOLOGY 

Various image-processing steps and analysis such as pre-

processing, vegetation indices, deep feature translation, statistical 

analysis, and change detection were applied. First, NDVI results 

were compared statistically; and then two methods used to detect 

changes in vegetation areas were compared and evaluated (Figure 

3). 

 
Figure 2. Cloudiness of available Sentinel 2 data over two 

different time scales in Sinop Nuclear Power Plant Construction 

Area. 

 

 
Figure 3. Flowchart of the study. 

 

4.1 Vegetation Indices 

The highly known NDVI, which varies between -1 to 1, is often 

used to characterize annual changes in forest areas and state the 

vegetation phenology. Besides the optical data, SAR based 

vegetation indices Modified Radar Vegetation Index (mRVI) and 

Modified Radar Forest Degradation Index (mRFDI) are very 

useful in forestry observations as they take into account the key 

parameters like biomass, structure, and moisture (Flores et al., 

2019; Çolak et al., 2019, 2021) (Table 2). 

 

4.2 Cycle-Consistent Generative Adversarial Networks 

(Cycle-GAN) 

As classic models of probability generation, Generative 

Adversarial Networks (GANs) can figure out the internal data 

distribution by learning a large amount of data. GANs generate 

data in an unsupervised deep learning method for image 

generation. In other words, GANs are models that use two 

networks — a generator and a discriminator — to generate new 

images. The Cycle-GAN, a GAN model, was created with a cycle 

constraints framework for image-to-image translations (Şener et 

al., 2021).  
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Index Formula   & Interpretation Application 

NDVI 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 
Range (-1 - +1): Negative values 

indicates most probably water 

body. Values close to +1 indicates 
dense green vegetation. Values 

close to zero indicate low 

vegetation cover. 

Monitoring 
vegetation 

phenology. It 

assess direct 
effects of climatic 

conditions on 

biomass and 
phenological 

patterns of 

vegetation. 

mRVI 

 

𝑚𝑅𝑉𝐼 = (
𝛾𝑉𝑉

0

𝛾𝑉𝑉
0 +𝛾𝑉𝐻

0 )
0.5

(
4𝛾𝑉𝐻

0

𝛾𝑉𝑉
0 +𝛾𝑉𝐻

0 )  

 

Range (0 - 1): Low values refer 

low vegetation cover and water 
content. The low threshold can be 

used to separate forest and non-

forest. 

Monitoring 
vegetation cover, 

water content, 

and aboveground 
biomass with 

quad-pol or 

quasi-quad-pol 
data. 

mRFDI 

 

𝑚𝑅𝐹𝐷𝐼 =
𝛾𝑉𝑉

0 − 𝛾𝑉𝐻
0

𝛾𝑉𝑉
0 + 𝛾𝑉𝐻

0  

 
Range (0 - 1): Low values refer to 

high biomass and intact forests. 

Values change gradually to higher 
values for degraded and non-forest 

areas. The values remain 

independent of topography. 

Detecting forest 
degradation and 

deforestation, 

biomass loss and 
gain with dual-

pol or quad-pol 

data. 

NIR: Near Infrared band, Red: Red band. 

𝛾0: Radiometrically and geometrically corrected SAR backscattering 
coefficient for each polarization combination in linear units (m2/m2). 

 

Table 2. Optical - SAR vegetation indices                         

(Flores et al., 2019; Tucker, 1979). 

 

Cycle-GANs were proven to improve performance mainly in 

areas such as crop type mapping and identification, change 

detection, and wildfire detection (Liu and Lei, 2018; Soto et al., 

2020; Şener et al., 2021; Li et al., 2021; Park et al., 2020). 

 

A Cycle-GAN is mathematically defined by Eq.1 below. 

 

𝐿(𝐹, 𝐺, 𝐷𝑋, 𝐷𝑌) = 𝐿𝐺𝐴𝑁(𝐹, 𝐷𝑌) + 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑋) +  𝜆𝐿𝐶(𝐹, 𝐺) (1) 

 

Where LGAN(G, D) denotes the classical GAN loss function 

involving a generator G and a discriminator D, whereas LC(F,G) 

stands for the cycle loss which is given by Eq.2 below. 

 

𝐿𝐶(𝐹, 𝐺) = 𝔼𝑥~𝑋 [‖𝐺(𝐹(𝑋)) − 𝑥‖
1

] + 𝔼𝑦~𝑌 [‖𝐹(𝐺(𝑌)) − 𝑦‖
1

]  (2) 

 

and λ is a hyper-parameter (Wang et al., 2019). 

 

The purpose of Cycle-GAN image-to-image translation is to 

learn the mapping between an input image and an output image 

using a training set of aligned image pairs, which is a class of 

vision and graphics challenges (Zhu et al., 2017). 

 

One of the most significant advances made possible by GANs in 

the image-to-image translation challenge is the learning of a 

structured loss that penalizes the overall configuration of the 

output rather than one in which each output pixel is treated 

independently of the rest in the input image (Ren et al., 2020). 

Without depending on paired images, CycleGAN is a technique 

for image-to-image translation from the reference image domain 

(X) to the target image domain (Y) (Park et al., 2020; Ren et al. 

2020). Where X and Y are optical (i.e. NDVI band calculated 

from Sentinel-2 NIR and Red bands as a feature) and radar (i.e. 

Sentinel-1's VV (vertical transmit and vertical receive 

polarisation) and VH (vertical transmit and horizontal receive 

polarisation) polarised bands as features) domains, respectively 

in this study. 

 

Figure 4 shows the basic structure of the CycleGAN used. 

 

 
 

Figure 4. The basic structure of CycleGAN. 

 

In this study, the images were split to small patches to create 

image pairs. While 100 image pairs were created for training, 25 

image pairs were created for the test. The scarcity of data used is 

due to the small study area (10.1 square kilometres). 

 

4.3 Statistical Analysis & Evaluation 

 

Correlation analysis is the simplest way for examining the 

relationship between two variables. The Pearson's correlation 

coefficient, abbreviated R, is a fundamental statistical approach 

for quantifying the degree of relation between linearly related 

variables in remote sensing applications. It is determined by 

dividing the covariance of the two variables by the product of 

their standard deviations (Chen et al., 2018). 

 

In the statistical analysis, the Pearson's correlation coefficient 

method was performed between the CycleGAN output fake 

image and optical – SAR vegetation indices. 

 

For evaluating the results, difference maps were generated, and 

all results were given spatially and quantitatively. 

 

5. RESULTS  

5.1. Vegetation Indices 

 

Firstly, the vegetation indices NDVI, mRVI, and mRFDI were 

generated from Sentinel -2 and -1 data for both 2017 and 2019 

datasets (Figure 5). 
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Figure 5. Vegetation indices for both 2017 and 2019 datasets. 

 

As can be seen in Figure 5, the difference in the 2017 and 2019 

NDVI images is clearly visible. However, the change in mRVI 

and mRFDI indexes produced from SAR data is not clearly 

visible as in NDVI, but a difference can still be observed. Hence, 

these results support that these indices are not as precise as 

NDVI. 

 

5.2. Cycle-GAN 

 

As mentioned before, the images were split to small patches to 

create image pairs for applying the Cycle-GAN (Figure 6). 

 

 
Figure 6. A sample image pair used for training and test  

(a) NDVI (Optical) (b) SAR. 

 

Consequently, CycleGAN was applied to specified datasets by 

the indicated feature inputs (Figure 7). 

 

 
Figure 7. NDVI and image-to-image translated fake NDVI 

using Cycle-GAN. 

 

As seen in Figure 7, Cycle-GAN gave very successful results. 

Spatially, there is almost no difference between real NDVI and 

fake NDVI. 

 

5.3. Statistical Analysis & Evaluation 

 

As showed in Table 3, to evaluate the strength of the relation, a 

correlation study between the real-fake NDVI and radar 

vegetation indices was conducted using the Pearson correlation 

coefficient. 

 

Correlation Analysis 
Before logging 

(2017) 

After logging 

(2019) 

NDVI – Fake NDVI 0.98 0.97 

NDVI - mRVI 0.39 0.35 

NDVI - mRFDI 0.40 0.31 

Fake NDVI - mRVI 0.51 0.43 

Fake NDVI - mRFDI 0.53 0.41 

 

Table 3. The Pearson's correlation coefficient (R) between the 

vegetation indices. 

As a result, a very high correlation (0.98 and 0.97 between 2017 

and 2019 datasets, respectively) was observed between real 

NDVI and fake NDVI. Thus, it has been shown how successful 

the fake NDVI produced with Cycle-GAN is both spatially and 

quantitatively. On the other hand, no high correlation was 

observed between real - fake NDVI and radar vegetation indices. 

 

Furthermore, difference maps between 2017 and 2019 dataset 

were produced to evaluate the vegetation indices produced in 

terms of change detection (Figure 8). 

 

As can be seen from Figure 8, real and fake NDVI gave almost 

similar results spatially, whereas radar vegetation indices did not. 

 

 
 

Figure 8. Difference maps for all vegetation indices and        

Cycle-GAN based fake NDVI. 
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In particular, the cut forest area was calculated in both maps to 

quantitatively evaluate the similarity of the real NDVI and fake 

NDVI results (Table 4). As a result, very similar results were 

obtained here as well. While the cut forest area with real NDVI 

was calculated as 248.2 ha, this area was calculated as 247.9 ha 

with fake NDVI. 

 

Vegetation Indices 
Areal extent of  

 cut forest area (ha) 

Real NDVI 248.2 

Fake NDVI 247.9 

 

Table 4. Difference maps in cut forest area (ha) for real and 

fake NDVI. 

 

Considering that there is one tree in 10 square meters with the 

most optimistic calculation, this means that approximately 250 

thousand trees have been cut, which is very close to the amount 

of tree cut (225 thousand) stated in the local news. 

 

 

6. CONCLUSION 

Because of the diverse spatial and temporal resolutions that 

provide for accurate information, optical data has been the main 

source of remote sensing for change detection. The dependence 

of optical data on weather conditions, on the other hand, intercept 

continuous and up-to-date data. Although SAR data compensates 

for this deficiency, it cannot provide a complete solution because 

of its lack for spectral features of interest. 

 

As shown in this study, deep learning techniques can be used to 

benefit from the information (spectral feature, roughness, 

moisture, biomass, vegetation structure, and height etc.) provided 

by both data (optical and SAR), as well as to provide continuous 

and up-to-date information. Cycle-GAN, a deep learning based 

method, uses a cyclic structure to translate the image from optical 

domain to the target SAR domain. As demonstrated, the fake 

NDVI generated with Cycle-GAN gave very successful results 

both spatially and quantitatively. 

 

As a result of the correlation analysis, the relationship between 

real NDVI and fake NDVI was obtained as 98% and 97% for the 

2017 and 2019 datasets, respectively, and was considered quite 

successful. In addition, a difference map between 2017 and 2019 

was produced with both real NDVI and fake NDVI. 

Consequently, the areal extent of cut forest areas determined by 

real NDVI and fake NDVI were found to be 99.9% similar (i.e. 

248.2 ha and 247.9 ha, respectively). 

 

Finally, it is seen that machine or deep learning techniques give 

a great impetus to classical image processing techniques and 

provide a new alternative to optical-SAR data fusion. In 

particular, these techniques facilitate the use of increasing data 

diversity (multi-sensor) and redundancy (big data). In future 

studies, the performance of deep learning techniques will also be 

evaluated temporally, using time-series data from the Google 

Earth Engine (GEE) platform. 
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