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ABSTRACT: 

 

This study aimed at exploring the potential of neural networks composed of convolutional and Long Short-Term Memory (LSTM) 

layers to handle dense Sentinel-1 data time series to develop a tree cover loss Early Warning System (EWS). The study area was in 

the Madre de Dios region in Peru that hosts a humid tropical forest. The second objective of this study was to investigate the 

potential of large free open-source datasets such as those from the GLAD and Geobosques alerts to calibrate and validate the models. 

The study demonstrated the capacity of the tested NN models to improve the detection of tree cover loss compared to a classical 

random forest algorithm thanks to their capacity to handle explicitly both spatial and temporal data. The accuracies of the best model 

compare reasonably well with those from similar studies. However, the observed overestimation of the Cover-loss class in the output 

map can be mainly linked to the quality of the alert datasets used as input data. Avenues to overcome the identified limits of this 

preliminary study are presented. This work provides a solid knowledge basis on the potential of a NN-based EWS and opens 

potential avenues for further improvements. 

 

1. BACKGROUND AND OBJECTIVES 

Deforestation is responsible for about 11% of the global 

greenhouse gas emissions, as estimated in 2019. The Global 

Forest Watch (GFW) initiative of the World Resources Institute 

estimated that deforestation amounted 12.2 million hectares in 

2020, of which approximately one third occurred in tropical 

forests (GFW, 2021). The Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) framework 

proposed by the Intergovernmental Panel on Climate Change 

(IPCC) to address deforestation in tropical regions can be 

complemented by early warning systems (EWS) that aim to 

track deforestation in near-real time. In the pan-tropical region, 

the demand for such EWS has been expressed by several 

national institutions. In addition to providing alerts that can be 

used by Legal authorities, EWS also foster transparency on 

ongoing forestry activities, support land empowerment 

initiatives, and other international conventions like the one on 

Biological Diversity (Mora, 2018). For example, the Peruvian 

Ministry of Environment operates the Geobosques EWS 

platform (Ministerio del Ambiente, 2022). In Brazil, DETER-B 

has been developed by the National Institute for Space Research 

(Diniz et al., 2015). Such national initiatives are complemented 

by others from Academia, Space Agencies, and non-

governmental organizations. For example, the Global Land 

Analysis & Discovery (GLAD) Forest Alerts has a pan-tropical 

monitoring coverage (Hansen et al., 2016). More recently, 

Reiche et al. (2021) proposed the RAdar for Detecting 

Deforestation (RADD) alert system, and Mermoz et al. (2021) 

proposed the TropiSCO alert system. The Japanese government 

proposes the JICA–JAXA Forest EWS in the Tropics (JJ-

FAST) system (Watanabe et al., 2021). 

 

Several EWS rely on optical data time series. The Geobosques 

EWS platform provides alerts based on Landsat-7 and -8 data. 

Sentinel-2 data is used as a second stage to estimate surface of 

change (Ministerio del Ambiente, 2022). In Brazil, DETER-B 

also relies on optical data from the Advanced Wide-Field 

Sensor (AWIFS) offering a 56m spatial resolution (Diniz et al., 

2015). The GLAD alerts are also based on Landsat data. 

However, the use of optical imagery hampers early cover 

change detection due to cloud cover that is frequently present 

over tropical areas, especially during the wet season (Hansen et 

al., 2016). At best, change detection can be shifted by several 

weeks. To overcome the limitation of optical imagery, the JJ-

FAST, RADD, TropiSCO alert system rely on SAR data time 

series. While the first system uses L-band data from the ALOS-

2 PALSAR-2, the two former systems use C-band Synthetic 

Aperture RADAR (SAR) Sentinel-1 data. The Sentinel-1A, -

1B, provide data since 2014 and 2016, respectively. This current 

constellation will be soon expanded and continued by Sentinel-

1C and -1D satellites, further facilitating the development and 

use of operational EWS based on long free dense data time 

series.  

 

In parallel with the sustained availability of free SAR datasets, 

the interest for deep learning methods has been renewed in the 

field of Earth observation thanks to more affordable processing 

resources, and technological developments like those observed 

for the Graphics Processing Units (Baji, 2018). In the field of 

remote sensing applications, Ban et al. (2020) demonstrated the 

added value of Convolutional Neural Networks (CNN) over a 

the traditional log-ratio operator to map change due to wildfires. 

The authors used Sentinel-1 data time series. Torres et al. 

(2021) compared a series of six different Fully-CNN applied to 

optical data time series (Landsat and Sentinel-2) to map 

deforestation in the Brazilian Amazon. The best neural network 

(NN) was based on a Residual U-Net architecture that 

consistently presented the best trade-off between accuracy and 

training times. (He et al., 2016). Kislov et al. (2021) 

demonstrated the potential of deep CNNs compared to classical 

machine learning methods (e.g., random forest) to map forest 

disturbances with optical imagery as input data. 

 

The diversity of NN architectures is high as reported by 

Alzubaidi et al. (2021). Among such architectures, Hamedianfar 
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et al. (2022) identified the potential of recurrent neural networks 

(RNN) for forest inventory applications among other 

architectures. RNNs have the capacity to establish patterns from 

input datasets in both time and space dimensions (Hochreiter 

and Schmidhuber, 1997). Chang et al. (2019) showed that 

RNN-based architecture could outperform classical methods 

such as random forest and support vector machine algorithms to 

map forest cover classes. Aerial photography, Landsat imagery 

and elevation data were used as input data. Ye et al. (2019) used 

a specific RNN model architecture called Long Short-Term 

Memory (LSTM) to project Australia’s forest cover change. 

The projection performance of the LSTM model significantly 

outperformed the one from a spatial econometric model. Time 

series of biophysical variables were used as input datasets. 

Parente et al. (2019) obtained better results with U-Net and 

LSTM NN architectures compared to a random forest model 

mapping pasture lands in Central Brazil. The authors used 

optical PlanetScope data to train the models. 

 

We excluded mountainous areas from this preliminary study as 

such areas are known to pose challenges due to geometric 

distortions in SAR data to map forest cover (Wu et al., 2021). 

Our study did not discriminate tree cover change resulting from 

anthropogenic activities from natural ones such as landslides, 

windthrows, fire or flooding. To mitigate false alerts, the 

minimum mapping unit considered for tree cover change was 

equivalent to 10 Sentinel-1 pixels, i.e., 0.1 ha. Detected small-

scale change events represented by a small number of Sentinel-

1 pixels can result from local moisture fluctuations or remaining 

speckle noise (Bouvet et al., 2018; Reiche et al., 2018). The two 

thematic classes considered in this tree cover change study 

were: Stable cover and Cover loss. 

 

The objectives of this study were first, to investigate the 

capacity of a deep learning approach compared to a classical 

machine learning method, to improve tree cover change 

detection in tropical regions using dense radar data time series 

and second, assess the capacity of free open-source alerts to 

serve as calibration and validation data. 

 

2. MATERIALS AND METHODS 

 

2.1 Study region 

The study was performed in the Madre de Dios region located 

in the southeast of Peru. The region belongs to the Amazon 

basin and is characterised by a hot and humid climate. The 

average temperature is 26 °C and annual precipitation can be as 

high as 3 meters. The region hosts a tropical rain forest. 

Population density is 1.7 hab./km2. Gold mining and illegal 

logging are among the most important ongoing human activities 

impacting the region. Such activities are the main cause of the 

deforestation and forest degradation observed in the region. 

Caballero Espejo et al., (2018) estimated that artisanal-scale 

gold mining was responsible for nearly 100,000 hectares of 

forest loss in the Madre de Dios region between 1984 and 2017. 

 

2.2 Data 

2.2.1 Sentinel-2 imagery: We used Sentinel-2 L1C images 

to generate forest masks. Sentinel-2A and -B satellites provide 

optical data with a spatial resolution of 10m in the visible range 

and first near-infrared band. For year 2018, the mask was 

generated with a cloud-free image from Autumn 2017, while for 

year 2019, the mask was generated with a cloud-free image 

acquired during Autumn 2018. 

 

2.2.2 Sentinel-1 imagery: We built Sentinel-1 data time 

series considering dual-polarized (VV and VH) Ground Range 

Detected (GRD) products acquired in interferometric wide 

mode. The GRD images have a spatial resolution of 20 by 22 m 

registered in a 10 by 10 m pixel spacing (ESA, 2020). The 

period considered in this study spanned from the end of 2017 to 

year 2019, amounting a total of 170 images corresponding to 

tile #19LCF within the Sentinel-2 tiling grid. 

 

2.2.3 GLAD and Geobosques datasets: We crossed the 

GLAD and Geobosques alerts for year 2018 and 2019 to 

calibrate, validate and test the models. Although GLAD alerts 

are considered conservative by design (Hansen et al., 2016), we 

aimed at further strengthening the quality of our datasets 

crossing these two data sources. We only kept alerts present in 

both datasets. While Geobosques alerts provided spatial 

locations of change, GLAD alerts provided both spatial 

information and dates of detected change. 

 

2.2.4 Dove dataset: We used optical very high spatial 

resolution (VHSR) imagery from the Dove constellation to 

visually check samples of the test datasets. The Dove satellites 

acquire optical imagery at 3-to-5-meter spatial resolution. In 

this study we used mosaics and daily acquisitions made freely 

accessible by the Norway’s International Climate and Forest 

Initiative (NICFI) for research purposes.  

 

2.3 Pre-processing 

2.3.1 Sentinel-1 imagery: We used the free open-source 

toolbox S1Tiling (CNES, 2019) to perform a gamma 

radiometric calibration of the images, as performed by Ballère 

et al. (2021), followed by a terrain correction and the projection 

of the images in the Sentinel-2 tiling grid reference. Then we 

used the free open-source Orfeo Toolbox to apply a multi-

temporal speckle filtering Quegan et al. (2000). Four images 

were used for this purpose, with a 3-by-3-pixel spatial window. 

 

2.3.2 GLAD, Geobosques datasets: The GLAD and 

Geobosques patch alerts were downloaded from their respective 

online repositories. Follow up analysis in a geographic 

information system consisted in selecting the intersection of the 

spatially agreeing patches between the two datasets for years 

2018 and 2019. 

 

2.3.3 Sentinel-2 and Dove datasets: No pre-processing step 

was performed on the two the Sentinel-2 images used separately 

to generate the two forest masks, nor on the Dove images used 

for the photo interpretation of the test samples. 
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2.4 Processing 

2.4.1 Forest masks: The forest masks were generated using 

images close and prior to the beginning of the periods of interest 

to set the forest baseline. The first forest mask was made for 

year 2018 (model calibration and validation period) and year 

2019 (model test period). Both forest masks were computed 

using a random forest algorithm (Breiman, 2001) applied to 

each Sentinel-2 image using the SNAP software. We considered 

the following classes: tree-covered areas, grass, urban areas, 

roads, rivers, bare soil, and clouds, to train and validate the 

models. Samples were generated via photointerpretation using 

the Sentinel-2 images.  

 

2.4.2 Mountain mask: We excluded the mountainous areas 

applying a maximum altitude threshold adapted to the study 

region. Forested areas below 400m were selected using the 

Advanced Spaceborne Thermal Emission and Reflection 

(ASTER) Global Digital Elevation Model (GDEM). 

 

2.4.3 Calibration, validation, and test datasets 

development: Calibration and validation datasets were built 

using patches corresponding to year 2018, while the test 

datasets, used solely for the best NN models, were built with 

patches from year 2019.  

 

Patches of the validation and test datasets were selected within a 

series of geographical boxes scattered across the study region. 

The calibration dataset was generated in the remaining area of 

the forest mask. We randomly generated 20 boxes using a 

Poisson-Disc approach (Bridson, 2007) within the Sentinel-2 

tile area. The centres of the boxes were spatially away from 

each other by a minimal distance of 8 km. Then we randomly 

split the set of boxes in two equal subsets. One subset was used 

for the selection of the validation patches while the second one 

was used for the selection of the test patches. Each box had a 

size of 5 by 5 km and was surrounded by a 1-km buffer to limit 

spatial autocorrelation between the three datasets. The 

establishment of the box set followed two additional 

constraints.: First, mountainous areas should represent less than 

40% of each box area and second, the forested area should 

represent at least 40% of each box area. The values and 

thresholds for the establishment of the box set were chosen to 

obtain at least 10,000 patches for the Cover-loss class in both 

the validation and test datasets. 

 

Stable-cover patches of the calibration and validation datasets 

were split in two separate sub-classes to facilitate NN learning 

process. The first sub-class was composed of central Stable-

cover pixels only surrounded by Stable-cover pixels while the 

second class was composed of central Stable-cover pixels 

surrounded by at least one Cover-loss pixel.  

 

The stratified random patch selection approach within the boxes 

for the validation and test datasets was performed to obtain 45% 

of the pixels labelled as Cover-loss, 25% labelled as Stable-

cover with at least one Cover-loss neighbour, and 30% labelled 

as Stable-cover without Cover-loss neighbour. Pixels of the 

calibration datasets were randomly selected within the forest 

mask outside the boxes and their buffer zones. Class 

proportions were identical as those used for the validation and 

test datasets. 

 

The building of the test datasets was made using the output map 

of each of the best NN models identified with the validation 

dataset. Each time, we photo interpreted 400 samples of which, 

150 for the Stable-cover class. 

 

2.4.4 Neural network modelling: The tested models 

combined convolutional and Long Short-Term Memory 

(LSTM) layers. We chose the LSTM among RNNs approaches 

for its ability to address the sensitivity decay issue that can 

appear over time with other RNN-based architectures 

(Alzubaidi et al., 2021). The free open-source Pytorch library 

was used for the modelling. 

 

We built separate Sentinel-1 data time series as inputs to the 

models considering the ascending and descending orbits, the 

pre- and post-change detection date, and the VV/ VH 

polarizations. Different input image patch sizes were tested (5 

by 5, 7 by 7, 9 by 9 pixels). We chose the widely used Rectified 

Linear Unit (ReLU) as activation function for the models. We 

tested different sizes of the pre-change data time series with 

either 4, 8, 12, or 16 images. For the pre-change Sentinel-1 time 

series, we also tested the influence of a safety time buffer 

applied between the date of the first change detection and the 

date of the latest image of the Sentinel-1 pre-change time series 

to account for potential time discrepancy between the true date 

of change and the detection date reported in the calibration and 

validation datasets. Time buffers of 30 and 60 days were tested. 

We tested the impact of using one or three post-change images. 

Furthermore, we tested the inclusion of such images in the NN 

itself, or as a post-processing approach to evaluate the model 

output using a simple class-output unanimity rule. In the latter 

case, the Cover-loss class was chosen if the three model outputs 

computed with each new observation following a detected 

change, were agreeing. 

 

2.4.5 Random forest modelling: We used a 16-image pre-

change Sentinel-1 time series with a post-change time series 

either made of one or three images to build the models. Either 

backscatter values or mean with standard deviation backscatter 

values of the data time series were provided as input to the 

models. Samples used to calibrate the models correspond to a 

subset of those used for the NN models to limit its size, while 

the validation dataset remained identical. The calibration 

samples were picked following a stratified random selection 

approach. We kept the same class proportions as those chosen 

for the NN modelling. A total of 15,000 patches were used for 

the calibration dataset. 

 

3. RESULTS 

1.1 Calibration and validation datasets  

Table 1 provides the sizes in number of patches of the sample 

datasets used for the NN modelling. 

 

  

Cover-loss  

class 

Stable-cover  

class 

with Cover-loss 

neighbour(s) 

with Stable 

neighbours 

Calibration  

dataset 

203,978 113,321 135,985 

Validation  

dataset 

15,255 8,475 10,170 

Table 1. Sample dataset sizes used for the NN modelling. 

 

1.2 Neural network modelling  

Tables 2a and 2b provide accuracies obtained with the 

validation dataset using different patch sizes and different sizes 

of pre-change Sentinel-1 data time series.  
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 4 images 8 images 

 Stable 

cover 

Cover 

loss 

Stable 

cover 

Cover 

loss 

5 * 5 

pixels 

94% 82% 97% 79% 

7 * 7 

pixels 

96% 84% 96% 88% 

9 * 9 

pixels 

96% 88% 96% 88% 

Table 2a. Accuracies of the models depending on patch sizes 

and pre-change data time series sizes. 

 

 

 12 images 16 images 

 Stable 

cover 

Cover 

loss 

Stable 

cover 

Cover 

loss 

7 * 7 

pixels 

97% 86% 98% 87% 

9 * 9 

pixels 

97% 89% 98% 88% 

Table 2b. Accuracies of the models depending on patch sizes 

and pre-change data time series sizes. 

 

Table 3 provides accuracies considering one or three post-

change image time series sizes integrated in the NN model as 

input data. These accuracies were obtained using the best NN 

model reported in the previous table, i.e., with a 9 by 9 input 

image patch size, and 16 pre-change Sentinel-1 images. 

Validation dataset was used. 

 

 Stable 

cover 

Cover 

loss 

One post-change image 98% 88% 

Three post-change images 99% 94% 

Table 3. Accuracies of best model with varying number of post-

change input data images. 

 

Tables 4 and 5 provide User accuracies (UA) and Producer 

accuracies (PA) obtained using the post-change images as input 

data either for the NN model, or for the post-processing step. 

The two test datasets designed specifically for each model were 

used either selecting all patch pixels or core-patch pixels only.  

 

 Stable cover Cover loss 

 All 

pixels 

Core 

pixels 

All 

pixels 

Core 

pixels 

User’s 

Accuracy 

99% 99% 57% 78% 

Producer’s 

Accuracy 

61% 85% 98% 98% 

Table 4. Accuracies of best model with three post-change 

images integrated as model input data. 

 

 Stable cover Cover loss 

 All 

pixels 

Core 

pixels 

All 

pixels 

Core 

pixels 

User’s 

Accuracy 

99% 99% 84% 94% 

Producer’s 

Accuracy 

80% 95% 99% 99% 

Table 5. Accuracies of best model with three post-change 

images used post-processing input data. 

 

For conciseness purposes, we do not provide results for the 

varying time buffers as observed accuracy differences were not 

significant between the tested cases. 

 

Figure 1 provides the NN architecture that led to the best results 

provided in Table 5. 

 

1.3 Random forest modelling 

Table 6 provides the best results obtained with a random 

classifier considering mean and standard deviation values of the 

time series (pre and post change, ascending or descending, VV 

or VH polarizations), also with either one or three post-change 

images as input data. Accuracies were obtained with the 

validation dataset. 

 

 Stable 

cover 

Cover 

loss 

One post-change image 92% 56% 

Three post-change images 94% 63% 

Table 6. Accuracies of the random forest classifier considering 

one or three post-change images. 

 

 
Figure 1. Best NN architecture. 

 

4. DISCUSSION 

Deep NN modelling requires large calibration datasets to be 

trained accurately (Cholet, 2017). We used large data sources 

openly available to build the calibration and validation datasets 

to meet this requirement. Following the defined protocol, we 

were able to obtain calibration and validation dataset sizes of 

200K+ and 10K+ samples, respectively (Table 1). Each of the 

two test datasets were composed of 400 samples only. Though, 

the photointerpretation procedure allowed us reaching a higher 

degree of confidence on the quality of these samples. 

 

Tables 2a and 2b demonstrate that NN model accuracies 

increased with the size of the image patches and the number of 

pre-change Sentinel-1 time series. The combined effect of the 

two parameters led to a slow and steady increase of the 

accuracies for the two classes. The 9-by-9-pixel patch size 

combined with a 16-image pre-change Sentinel-1 time series 

provided the best accuracies. The higher impact of the increase 

of the patch size observed on the Cover-loss class can be 

explained by the improved ability of larger patches to depict the 
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limits of the areas of change and their surroundings in the 

context of this study. This observation is coherent with previous 

studies that demonstrated for a given application, that larger 

patch sizes tend to lead to an increase of the accuracies thanks 

their ability to capture more contextual information (Farabet et 

al., 2013; Pinheiro, 2014). The positive effect of the increase in 

the size of the pre-change Sentinel-1 time series can be 

explained by the higher amount of information provided that 

can either confirm a positive trend for both classes or decrease 

the impact of local and temporary noise. For example, heavy 

rain showers and remaining stems after logging can increase 

soil backscatter values in C-band radar data (Woodhouse et al., 

1999, Reiche et al., 2018). 

 

Table 3 demonstrates the introduction of two additional post-

change Sentinel-1 images in the model had a significant positive 

effect on the Cover-loss class accuracy (+ 6 percentage points). 

This accuracy improvement can again be linked to the richer 

amount of information that increases the confidence in the 

output class selection. However, this increase in the accuracy 

was made at the expense of the timeliness of a potential action 

on the ground to investigate on the detected change. The 

addition of two post-change images delayed the potential 

confirmation of change by 24 days. Such an approach to 

confirm changes using post-change images has already been 

implemented in previous studies like Reiche et al. (2021). In 

this study performed in the Congo basin with Sentinel-1 data, 

the authors had a validation database of confirmed changes. A 

post-change period of 84 days was needed to confirm all 

changes of their database.  

 

Accuracies obtained with random forest algorithms demonstrate 

an increase in the accuracies when using three post-change 

images (Table 6). However, such accuracies are lower than 

those obtained with NN modelling (Table 3), especially for the 

Cover-loss class (-31 percentage points). Random forest 

algorithms have been successfully used in a wide range of Earth 

observation applications, notably in land cover mapping 

(Pelletier et al., 2016), or forest mapping (Mora et al., 2013). 

However, the capacity of random forests algorithms to handle 

dense, detailed spatial and temporal information as input data is 

limited compared to NNs designed to perform convolutions 

(spatial dimension) and handle dense data time series with 

LSTM layers (temporal dimension). 

 

Accuracies reported in Table 4 were obtained with a test dataset 

specifically designed for this analysis. As expected, this fully 

independent dataset provided lower accuracies compared to 

those reported in Table 3 with identical modelling conditions. 

More precisely, the results indicate a mapping overestimation of 

the Cover-loss class (Producer’s Accuracy of 98%) compared to 

a Producer’s Accuracy of 61% for the Stable-cover class. These 

misclassifications can be due to false alerts that remained in the 

calibration and validation datasets used during the first 

modelling tests. As indicated, these samples are model outputs. 

Furthermore, the dates of detected changes provided by the 

GLAD alerts can be shifted by several days compared to the 

true date of change. Finally, GLAD and Geobosques alerts are 

provided at a 30m spatial resolution. Sentinel-1 images have a 

20 m by 22 m spatial resolution registered in a 10 by 10 m pixel 

spacing (ESA, 2020). This discrepancy can further add noise 

during the training and validation steps. 

 

The comparison of results reported in Tables 4 and 5 

demonstrates a significant increase in the accuracies when using 

the post-change images in a post-processing step, i.e., after the 

NN modelling. Producer’s Accuracy of the Stable-cover class is 

increased by 19 percentage points. The use of post-change 

information allowed correcting output model errors. Reiche et 

al. (2021) achieved a Producer’s Accuracy of 95% for the 

disturbance class for change areas equal or larger than 0.2 ha. 

However, the inclusion of disturbances smaller than 0.2 ha 

lowered the accuracy of their model down to 83.5%. In our 

study, we achieved a Producers’ Accuracy of 80% for the 

Cover-loss class considering change areas equal or greater than 

0.1 ha. Mermoz et al. (2021) performed a forest loss study using 

Sentinel-1 data time series in Southeast Asia. The authors 

achieved a Producer’s Accuracy of 90% for the forest 

disturbance class with a minimum mapping unit of 0.1 ha. Their 

method based on shadow detection was adapted to local 

circumstances, i.e., small, and scattered disturbances. Such 

shadows appear at the boundary of forest loss patches. 

 

Results reported in Tables 4 and 5 demonstrate higher 

accuracies when considering only core-patch pixels of the test 

samples. This result was expected since backscatter values of 

Sentinel-1 images tend to be less ambiguous for core pixels 

compared to pixels located at the edge of the Cover-loss areas. 

We performed this analysis to evaluate the capacity of the 

model to detect each individual Cover-loss patch. Table 5 

demonstrates that when considering core pixels, Producer’s 

Accuracy remained identical for the Cover-loss class (99%) 

while Producer’s Accuracy for Stable-cover class improved 

significantly to 95% (+15 percentage points). Such results 

indicate the model keeps overestimating the Cover-loss class in 

the output map, although the trend has been significantly 

mitigated thanks to the three post-change images used in a post-

processing step. As discussed earlier, the samples used to 

calibrate and validate the models are outputs from previous 

models and hence, can include false alerts despite filtering 

efforts, and generate ambiguous samples. A further analysis of 

the misclassified Stable-cover class pixels revealed that such 

pixels tend to be nearer to Cover-loss pixels (avg. distance: 1.3 

pixels) than those that were correctly classified (avg. distance: 

24 pixels). This significant difference indicates that the spatial 

resolution combined with the pixel spacing of the Sentinel-1 

images limit the capacity of the model to discriminate the two 

classes at fine scale, and thus contributes to the observed errors. 

 

The comparison of NNs incorporating convolutional and LSTM 

layers with a random forest algorithm confirmed the superiority 

of the former thanks to capacity to handle explicitly both spatial 

and temporal data. The different tests allowed us to optimise 

both the model architecture and the parameter settings. The 

analysis of the accuracies obtained with the best architecture are 

encouraging although revealing the limits of using model 

outputs as calibration and validation dataset.  

 

The best model of this study was notably based on the use of the 

three post-changes images, delaying the confirmation of a 

potential change by 24 days. A boundary-versus-core sample 

accuracy analysis performed by Reiche et al. (2021) 

demonstrated that 74% of all core pixels could be confirmed 

within 24 days and 95% within 48 days. The number of days for 

an acceptable trade-off between delay and accuracy will vary 

from one region to another depending on local circumstances 

such as the drivers of change and the policy enforced to tackle 

deforestation. Therefore, there is no EWS system architecture 

that fits all needs and model tuning will be necessary. 

 

Building on the outcomes of this preliminary study, future work 

may consist in adapting the model to another region where 

GLAD alerts, but also national alerts could also be available. 
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Such a study could be an opportunity to test larger input image 

patch sizes (> 9 by 9 pixels).  

 

Another NN architecture also known as U-Nets could be tested 

(Ronneberger et al., 2015). Such U-Net architectures have 

proven their added value for image segmentation in different 

fields of application such as autonomous cars (Tran and Le, 

2019) or precision agriculture (Liu et al., 2020, Zhou et al., 

2021). A dedicated cost function to better handle class 

disproportions like in this study will also be an option. Another 

avenue may consist in developing calibration and validation 

datasets based on fieldwork and photo interpretation which 

limited size could be further augmented using pseudo labelling 

as proposed by Shi et al., 2022. 

 

Testing the model over mountainous areas is also another step 

envisioned by the authors of this study. Due to the complexity 

of such environments, verified cover loss occurrences will be 

necessary. Modelling could benefit from altitude, slope, and 

aspect information as input data. 

 

5. CONCLUSION 

The study demonstrated the capacity of NN composed of 

convolutional and LSTM layers to improve the detection of tree 

cover loss compared to a classical random forest algorithm 

thanks to their capacity to handle explicitly both spatial and 

temporal data. The accuracies of the best model compare 

reasonably well with those from similar studies. However, the 

analysis of the results indicates an overestimation of the Cover-

loss class in the output map. The main explanation lies in the 

use of information resulting from previous modelling efforts as 

calibration and validation datasets. We used free and open-

source datasets that led to the development of calibration and 

validation dataset sizes of 200K+ and 10K+ samples, 

respectively. The quality of such alert datasets has been 

discussed and demonstrated the need for higher quality 

calibration and validation data. In the context of NN modelling, 

the development of large datasets could be facilitated with the 

use of pseudo labelling approaches. The analysis of the results 

showed that the limits of the Sentinel-1 spatial resolution also 

contribute to the overestimation of the Cover-loss class. Other 

powerful NN approaches like U-Nets are also worth being 

considered to further improve this EWS prototype. To date, the 

model developed in this preliminary study cannot be deployed 

for operational activities. However, this work provides a solid 

knowledge basis on the potential of a NN-based EWS and opens 

potential avenues for further improvements. 

 

5.1 References 

Alzubaidi, L., Zhang, J., Humaidi, A.J., Al‑Dujaili, A., Duan, 

Y., Al‑Shamma, O., Santamaría, J., Fadhel, M.A., Al‑Amidie, 

M., Farhan, L., 2021: Review of deep learning: concepts, CNN 

architectures, challenges, applications, future directions. 

Journal of Big Data, 8, 53: (2021). 

 

Baji, T., 2018: Evolution of the GPU Device widely used in AI 

and Massive Parallel Processing. IEEE 2nd Electron Devices 

Technology and Manufacturing Conference (EDTM), pp. 7-9. 

 

Ballère, M., Bouvet, A., Mermoz, S., Le Toan, T., Koleck, T., 

Bedeau, C., André, M., Forestier, E., Frison, P.L., Lardeux, C., 

2021: Sar data for tropical forest disturbance alerts in French 

Guiana: Benefit over optical imagery. Remote Sensing of 

Environment, 252: 112159. 

 

Ban, Y., Zhang, P., Nascetti, A., Bevington, A.R., Wulder. 

M.A., 2020: Near real-time wildfire progression monitoring 

with sentinel-1 sar time series and deep learning. Scientific 

Reports, 10(1):1–15.  

 

Bouvet, A., Mermoz, S., Ballère, M., Koleck, T., Le Toan T., 

2018: Use of the SAR shadowing effect for deforestation 

detection with Sentinel-1 time series. Remote Sensing, 10:1250. 

 

Breiman, L., 2001: Random forests. Machine learning, 45(1):5–

32. 

 

Bridson, R., 2007: Fast poisson disk sampling in arbitrary 

dimensions. ACM SIGGRAPH, 08. 

 

Caballero Espejo, J., Messinger, M., Román-Dañobeytia, F., 

Ascorra, C., Fernandez, L.E., Silman, M., 2018: Deforestation 

and Forest Degradation Due to Gold Mining in the Peruvian 

Amazon: A 34-Year Perspective. Remote Sensing, 10: 1903. 

 

Chang, T., Rasmussen, B.P., Dickson, B.G., Zachmann, L.J., 

2019: Chimera:amulti-task recurrent convolutional neural 

network for forest classification and structural estimation. 

Remote Sensing, 11(7): 768. 

 

Chollet, F., 2017: Deep learning with python. Manning 

Publications Co. 

 

CNES, 2019: S1Tiling: Building Analysis Ready Data of 

Sentinel-1 time series.https://github.com/CNES/S1Tiling (8 

March, 2022). 

 

Diniz, C.G., Souza, A.A.D.A., Santos, D.C., Dias, M.C., Luz, 

N., de Moraes, D.R.V., Maia, J.S.A., Gomes, A.R., Narvaes, 

I.D.S., Valeriano, D.M., et al., 2015: DETER-B: The New 

Amazon Near Real-Time Deforestation Detection System. IEEE 

Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 8(7), 3619-3628. 

 

European Space Agency, 2020: Sentinel-1 SAR user guide. 

https://sentinels.copernicus.eu/web/sentinel/user-

guides/sentinel-1-sar (7 March, 2022). 

 

Farabet C., Couprie C., Najman L., Lecun Y., 2013: Learning 

hierarchical features for scene labelling. IEEE Trans. Pattern 

Anal. Mach. Intell. 35(8): 1915-1929. 

 

Hansen, M.C., Krylov1, A., Tyukavina, A., Potapov, P.V., 

Turubanova1, S., Zutta, B., Ifo, S., Margono, B., Stolle, F., 

Moore, R., 2016, Humid tropical forest disturbance alerts using 

Landsat data. Environmental Research Letters, 11(3):034008. 

 

He, K., Zhang, X., Ren, S., Sun, J., 2016: Deep residual 

learning for image recognition. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, Las 

Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. 

 

Hochreiter, S., Schmidhuber, J., 1997: Long Short-term 

Memory. Neural Computation, 9(8): 1735–1780. 

 

Kislov, D.E., Korznikov, K.A.., Altman, J., Vozmishcheva, 

A.S., Krestov, P.V., 2021: Extending deep learning approaches 

for forest disturbance segmentation on very high-resolution 

satellite images. Remote Sensing in Ecology and Conservation, 

7(3): 355-368. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-603-2022 | © Author(s) 2022. CC BY 4.0 License.

 
608

https://github.com/CNES/S1Tiling
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar


 

Liu, Y., Zhang, S., Yu, H., Wang, Y., Feng, Y., Sun, J., Zhou, 

X., 2020: Straw segmentation algorithm based on modified unet 

in complex farmland environment. Computers, Materials 

Continua, 66: 247-262. 

 

Ministerio del Ambiente, 2015. GEOBOSQUE Plataforma. 

https://geobosques.minam.gob.pe/ (25 February 2022). 

 

Mora, B., Wulder, M.A., White, J.C. Hobart, G. (2013) 

Modeling Stand Height, Volume, and Biomass from Very High 

Spatial Resolution Satellite Imagery and Samples of Airborne 

LiDAR. Remote Sensing, 5(5): 2308-2326. 

 

Mora, B., 2018: User Needs Assessment for Forest Change 

Early Warning Systems. Global Forest Observations Initiative - 

Food and Agriculture Organization of the United Nations, 

Rome, Italy, 45p. 

 

Mermoz, S., Bouvet, A., Koleck, T., Ballère, M., Le Toan, T. 

2021: Continuous Detection of Forest Loss in Vietnam, Laos, 

and Cambodia Using Sentinel-1 Data. Remote Sensing, 13, 

4877. 

 

Parente, L., Taquary, E., Silva, A.P., Souza Jr., C., Ferreira, L., 

2019: Next Generation Mapping: Combining Deep Learning, 

Cloud Computing, and Big Remote Sensing Data. Remote 

Sensing, 11(23): 2881. 

 

Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G., 

2016: Assessing the robustness of Random Forests to map land 

cover with high resolution satellite image time series over large 

areas. Remote Sensing of Environment, 187, 156-168. 

 

Pinheiro, P.H., Collobert, R., 2014: Recurrent convolutional 

neural networks for scene labelling. Proceedings of the 31st 

International Conference on Machine Learning, 32(1): 82-90. 

 

Quegan, S., Le Toan, T., Yu, J.J., Ribbes, F., Floury, N., 2000: 

Multitemporal ers sar analysis applied to forest mapping. IEEE 

Transactions on Geoscience and Remote Sensing, 38(2):741–

753. 

 

Reiche, J., Hamunyela, E., Verbesselt, J., Hoekman, D., Herold, 

M., 2018: Improving near-real time deforestation monitoring in 

tropical dry forests by combining dense Sentinel-1 time series 

with Landsat and ALOS-2 PALSAR-2. Remote Sensing of 

Environment, 204:147–61. 

 

Reiche, J., Mullissa, A., Slagter, B., Gou, Y., Tsendbazar, N.E., 

Odongo-Braun, C., Vollrath, A., Weisse, M., Stolle, F., Pickens, 

A., Donchyts, G., Clinton, N., Gorelick, N., Herold, M., 2021: 

Forest disturbance alerts for the congo basin using sentinel-1. 

Environmental Research Letters, 16(2):024005. 

 

Ronneberger, O., Fischer, P., Brox, T., 2015: U-net: 

Convolutional networks for biomedical image segmentation. 

Computing Research Repository - arXiv, abs/1505.04597. 

 

Shi, J., Wu, T., Qin, A.Q., Lei, Y., Jeon, G., 2022: 

Semisupervised adaptive ladder network for remote sensing 

image change detection. IEEE Transactions on Geoscience and 

Remote Sensing, Early Access, 1–1. 

 

Watanabe, M., Koyama, C.N., Hayashi, M., Nagatani, I., 

Tadono, T., Shimada, M., 2021: Refined algorithm for forest 

early warning system with ALOS-2/PALSAR-2 ScanSAR data 

in tropical forest regions. Remote Sensing of Environment, 265: 

112643. 

 

Tran, L.A., Le, M-H, 2019: Robust u-net-based road lane 

markings detection for autonomous driving. In 2019 

International Conference on System Science and Engineering 

(ICSSE), 62–66. 

 

Woodhouse, I., van der Sanden, J.J., Hoekman, D.H., 1999: 

Scatterometer observations of seasonal backscatter variation 

over tropical rain forest. IEEE Trans. Geosci. Remote Sens. 37: 

859–861. 

 

Wu, L., Wang, H., Li, Y., Guo, Z., Li, N., 2021: A Novel 

Method for Layover Detection in Mountainous Areas with SAR 

Images. Remote Sensing, 13(23):4882. 

 

Ye, L., Gao, L., Marcos-Martinez, R., Mallants, D., Bryan, 

B.A., 2019: Projecting Australia's forest cover dynamics and 

exploring influential factors using deep learning. Environmental 

Modelling & Software, 119, 407-417. 

 

Zou, K., Chen, X., Wang, Y., Zhang, C., Zhang, F., 2021: A 

modified u-net with a specific data argumentation method for 

semantic segmentation of weed images in the field. Computers 

and Electronics in Agriculture, 187:106242. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-603-2022 | © Author(s) 2022. CC BY 4.0 License.

 
609

https://geobosques.minam.gob.pe/



