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ABSTRACT: 
 
This study aims to introduce a semi-automatic classification workflow for the production of a land use/land cover (LULC) map of 
the island of Sardinia (Italy) following the CORINE legend schema, and a ground spatial resolution compatible with a scale of 
1:25.000. The classification is based on free high-resolution satellite imagery from Sentinel-1 and Sentinel-2 collected in 2020, 
ancillary data derived from Sardinian Geoportal, Joint Research Centre (JRC) and OpenStreetMap. The LULC map production 
includes three steps: 1) pixel-based classification, realized with two different approaches, that use i) information derived from 
existing thematic maps eventually re-coded in case of incoherencies observed between datasets and/or satellite data products, and 
ii) spectral indices and parameter thresholds defined on the basis of multitemporal analysis; 2) segmentation of Sentinel-1 and 2 
annual composites, and pre-labelling of segments with the pixel-based classified map, obtaining the preliminary map; 3) visual 
inspection procedure in order to confirm, or re-assign, classes to polygons. The accuracy of the preliminary map was tested in a 
sample area and on specific class of non-irrigated crops through ground truth data collected from a detailed photo-interpretation, 
estimating 97% of overall accuracy. The results show a great improvement from existing thematic maps in terms of detail, with 
the possibility of a yearly updating of the map via automatic processes. However, some limitations were found, due to the high 
fragmentation of Sardinian landscape and the high variety of crop types and agricultural practices, that could affect the efficiency 
of the classifier. 
 

                                                             
*  Corresponding author 
 

1. INTRODUCTION 

Earth Observation (EO) data can significantly contribute to 
improving the monitoring of land cover/land use changes.  In 
recent years, the availability of yearly land cover maps 
has increased, and a large number of global products adopted 
the approaches based on open EO data and online 
cloud computing platforms (De Simone et al., 2021). These 
existing maps are very useful at global and regional level, and 
are used mainly for the extraction of indicators to estimate, 
for instance, climate change impacts, or applying statistical 
analysis. Further applications include the monitoring of 
agricultural areas’ condition to access information related to 
crop types, their health and water state, optimizing the 
management and reduce environmental impacts. Remote 
sensed imagery and, in particular, spectral indices, like NDVI 
(Normalized Difference Vegetation Index) or EVI (Enhanced 
Vegetation Index), are commonly used to classify crop types, 
quantify the biomass and extract vegetation phenology 
(Castillo et al., 2017; Sanobe et al., 2018). Multitemporal 
analysis of spectral indices is widely applied to extract 
information about seasonality, useful for classification of crop 
types (Itzerott et al., 2006; Boschetti et al., 2014; Pageot et al., 
2020; Qu et al. 2020, D’Andrimont et al. 2021). Spectral 
indices are also adopted to classify other land cover types, 
among all, water bodies, wetlands and salt surfaces (Bansal et 
al., 2017; Wang et al., 2018, Afrasinei et al, 2017, 2018) and 
urban or/and other artificial areas (Faridatul & Wu, 2019; 
Sinha et al., 2016). 

This study aims to introduce a semi-automatic classification 
workflow for the production of a land use/land cover (LULC) 
map of the Sardinia island (Fig. 1), using free satellite high 
resolution imagery, with a ground spatial resolution 
compatible with a scale of 1:25.000. The proposed approach is 
aiming at i) identifying and mapping agricultural lands, 
according to the third and fourth level of the land cover 
classification proposed by the CORINE 
legend (https://land.copernicus.eu/user-corner/technical-
library/clc product-user-manual); ii) offering the possibility of 
a yearly updating of the map via automatic processes, rather 
than by using visual interpretation. Unfortunately, due to the 
high Sardinian landscape fragmentation and local land use, 
based on small farms, existing LULC maps do not represent 
correctly the different land cover classes. This issue is 
particularly enhanced in the identification of agricultural 
lands. This information is often available from national 
database populated by the farmers or by the regional agencies, 
but normally they are not updated and these data are not 
spatially mapped. In our study, the identification of the 
different agriculture crops has been requested mainly to 
monitor the irrigation practices to optimize the water use.     
 

2. STUDY AREA 

Sardinia island is an Italian region with an extension of 24,090 
km2, the second in size after Sicily among the islands of the 
western Mediterranean Sea (Figure 1). The coastline is long 
about 1,850 km, it is generally rocky with irregular shapes, 
some deep bays, and large beaches. The inner part is mostly 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-61-2022 | © Author(s) 2022. CC BY 4.0 License.

 
61



 

mountainous. The island’s highest point is Punta La Marmora, 
in the Gennargentu Range, at 1,834 m above sea level. The 
drainage is characterized by few major rivers with a 
continuous water flow, and interspersed with artificial lakes 
and dams. Several seasonal streams, originating from the 
mountainous areas, shape the morphological evolution, 
controlled on top by the geological setting. The geological 
history of this island is recorded in the variety of lithologies 
and tectonic features that outcrop: granites, basalts, 
sandstones, limestones as well as metamorphic rocks as 
schists. Consequently, landforms and landscapes are very 
heterogeneous with abrupt morphologies alternating with 
gentle slopes. The alluvial plains are distributed along the 
coast, at the river mouths, where the urban areas are 
concentrated. Moreover, the Campidano wide plain consists of 
the main intensive cultivated area.  With a population of about 
1,640,000, Sardinia is one of the regions with the lowest 
population density in Italy. 
Due to variations in both latitude and elevation and the 
presence of the sea, the climate of the island is not constant 
everywhere. In line with the Mediterranean climate, Sardinia 
receives the most part of annual rainfall during winter and fall; 
summer is often dry with almost no rain during June and July, 
and exceptional brief and heavy precipitations at the end of 
the summer with high impacts on the hydrogeological hazard.  
The temperature can rise up to 40 °C in summer. 
 

Figure 1. Location of the study area 

2.1 Land Cover in Sardinia 

The first land cover map in Sardinia was realised in 1990 in 
the framework of European CORINE Land Cover Project 
(https://land.copernicus.eu/pan-european/corine-land-cover). 
This map was produced in Sardinia, according to the European 
standards, by photointerpretation of Landsat images, and in 
the following years was updated, using orthophotos and 
partially satellite data, obtaining the last available map on 
2008 at the map scale of 1:25,000. In the last years, the 
availability of free satellite data with a global coverage and a 
high temporal resolution led to development of global land 
cover maps. Moreover, the earth dynamics monitoring became 
the base for climate changes evaluations, and the human 
impacts on the environment marked in the LULC maps has 
tremendous implications. So, an automatic LULC map 
production is felt as a necessity. Recently, the ESA 
WorldCover project (Zanaga et al., 2020) distributed a LULC 
map derived from Sentinel imagery with a 10m resolution for 
2020 based on ESA Sentinel-1 and 2 data. This map has been 
produced through an automatic methodology and a legend of 
10 classes has been applied at global scale. In Figure 2, the 
extent expressed in percent of land cover classes, extracted 
from the WorldCover map over the study region, is shown: the 

dominant class (almost 50%) is the tree cover, nearly close to 
the sum of shrubland and grassland. Built-up class is very 
small while cropland covers 10% of the island surface.  

 
Figure 2. WorldCover map of Sardinia region: the 
extent of each land cover classes expressed in percent  
 

3. MATERIALS AND METHODS 

In this study, a series of available databases and existing 
thematic maps from Sardinian Geoportal 
(https://www.sardegnageoportale.it), Open Street Map and 
Joint Research Centre (JRC) were used. Sentinel-1 and 
Sentinel-2 imagery were selected for spectral indices 
extraction and multi-temporal analysis. In addition, AGEA 
(Agenzia per le Erogazioni in Agricoltura, 
https://www.agea.gov.it/) high-resolution orthophotos (0,20 
m/pixel) were utilised for visual inspection (Table 1). 
Following data pre-processing, the land cover map was 
realised through three steps, as displayed in Figure 3: 1) pixel-
based classification, 2) image segmentation and pre-labelling 
of segments, 3) visual inspection of the resulting map. 
 
3.1 Pixel-based classification 

Pixel-based classification of land cover types according to 
CORINE legend (third or fourth level), was based on existing 
thematic maps and satellite data products derived from 
Sentinel-1 and 2, that will be described in section 4.1.  
The classification schema (Figure 3) involves multi-classifiers 
organised in a cascade system, in which the output of the 
previous classifier is the input of the next classifier. Each 
classifier is based on a) information derived from existing 
thematic maps, subjected to error of omission and/or 
commission detecting and re-coding through observed 
incoherence between different thematic maps and/or satellite 
data products, b) spectral indices and parameter thresholds 
defined on the basis of multitemporal analysis of the different 
crops, agricultural phenology and known agronomic 
techniques adopted in the study area. 
  
3.2 Segmentation and pre-labelling of segments 

Segmentation process involves image partition into multiple 
groups of pixels, called segments or objects, with similar 
spectral characteristics. This process was carried out on 
satellite data collected in 2020 (section 4.1), potentially 
representing different land cover classes. In particular, 
segmentation was performed in IMPACT Toolbox on an 
image composed by three band: the GREEN and NIR band (B3 
and B8 respectively) of Sentinel-2 annual composite of 2020 
(section 4.1.2.1), and a band derived from the computed mean 
value of VV and VH polarisation bands of the Sentinel-1  
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Table 1. Description and source of the datasets and thematic maps 

 

 

Dataset/thematic map Source Description 

Sentinel-1, VV and VH 
polarizations (Level-1 
GRD) 

Google Earth 
Engine 

Sentinel-1 radar data from Level-1 Ground Range Detected (GRD) 
Interferometric Wide Swath (IW) product. Sentinel-1 operates at C-band 
(central frequency of 5.404 GHz) containing VH and VV polarizations, with 
spatial resolution of 10, 25 or 40 m/px and a revisit cycle of 12 days.  

Sentinel-2 Level-2A Google Earth 
Engine 

Sentinel-2 satellites provide optical images with surface coverage every 10 
days at the equator with one satellite, and 5 days with two satellites under 
cloud-free conditions, which results in 2-3 days at mid-latitudes. Sentinel-2 
images have a spatial resolution of 10 to 60 m/px, and 13 spectral bands range 
from the Visible (VNIR) and Near Infra-Red (NIR) to the Short Wave Infra-
Red (SWIR). Level-2A product consists of orthorectified Bottom of 
Atmosphere (BOA) reflectance data. 

Water features, roads, 
infrastructures, built-up 

Open Street 
Map OpenStreetMap features available in January 2021. 

Global Human Settlement 
Layer 

Joint Research 
Centre (JRC) 

Multi-temporal classification map of built-up presence derived from Landsat 
image collections (GLS1975, GLS1990, GLS2000, and ad-hoc Landsat 8 
collection 2013/2014). 

Copernicus CORINE Land 
Cover (2018) 

Google Earth 
Engine 

Corine Land Cover (CLC) dataset of Europe with the resolution of 100m/px, 
produced within the Copernicus Land Monitoring Service coordinated by the 
European Environment Agency (EEA), on the basis of satellite image 
classification. 

Land Use Map (2008) Sardinian 
Geoportal 

Land use map of Sardinia, at a scale of 1:25 000. Land use features are 
identified with Corine Land Cover classes. 

DBGT 10k (2020): 
- level ST01 (viability) 
- level ST02 (construction) 
- level ST04 (hydrography) 
- level ST06 (vegetation) 

Sardinian 
Geoportal 

Geo-Topographic database at a scale of 1:10 000 containing geographic 
features related to administrative boundaries, viability, construction, 
hydrography, orography and vegetation, derived from aero-photogrammetric 
restitution on the basis of the aerial photos taken in 2013, from the Regional 
Technical Map and from Land Use Map of 2008.  

Orthophoto (2019) AGEA AGEA orthophoto with spatial resolution of 0,20 m/pixel, containing 4 bands 
(BLUE, GREEN, RED and NIR) acquired in 2019. 

 
Figure 3. Workflow adopted in this study, composed by three steps: pixel-based classification, segmentation and pre-labelling 
and visual inspection (top), and classification schema for pixel-based classification (bottom). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-61-2022 | © Author(s) 2022. CC BY 4.0 License.

 
63



 

annual composite of 2020 (4.1.1). The segmentation algorithm 
implemented in IMPACT Toolbox is based on Baatz and 
Schape (2000) method, with the definition of four parameters: 
1) scale factor, correlated with minimum mapping unit, 2) 
color (0-1), Baatz spectral component, 3) compactness (0-1), 
Baatz morphological component, 4) similarity (0-1), related to 
the minimum grade of homogeneity within objects during 
segments merging (Joint Research Centre et al., 2015). In this 
study a scale factor of 4 pixels, a color of 0.9, a compactness 
of 0.7 and a similarity of 0.82 were used in this study. 
 
3.3 Visual inspection 

The classified product derived from segmentation has been 
subjected to a detailed visual inspection in a sample area in 
the northern part of the Campidano Plain, a sub region of 
Sardinia very devoted to agriculture. The visual inspection 
could check the goodness of the work of the classifier, 
proceeding with an assessment and a modification of attribute 
polygons in case of discrepancies. This totally manual, on-
screen, control procedure confirms or re-assigns the legend 
codes of various polygons coming from the classification 
activities, also introducing spatial aggregation operations 
(merging) aimed to blend adjacent polygons with the same 
attribute. This method allows to, on the one hand, update the 
information extracted from existing maps and databases, and, 
on the other hand, detect and differentiate also the CORINE  
classes that cannot be extracted through automatic 
classifications, due to the similar spectral characteristics.  The 
size of 1000 m2 has been chosen as the minimum cartographic 
unit. 

4. RESULTS AND DISCUSSION 

4.1 Satellite data products  

Satellite data products used for classification and 
segmentation, and the maps realised in this study are described 
and discussed below.  
4.1.1 Sentinel-1  
Sentinel-1 data acquired from 2019 to 2020 were selected and 
processed in Google Earth Engine platform using the 
methodology proposed by Mullissa et al. (2021), that includes 
speckle filtering, border noise correction and radiometric 
terrain normalisation. From this dataset, a biannual composite 
(2019-2020, annual and monthly composites of 2020 were 
extracted by calculating the mean value of both VV and VH 
polarizations. On  
Sentinel-1 time series composed by the monthly composites 
minimum values were computed.  
4.1.2 Sentinel-2  
Sentinel-2 optical data acquired in a temporal window from 
2017 to 2020 have been processed in Google Earth Engine 
platform to produce annual and monthly composites, PBS 
(Phenological Based Synthesis) classification and spectral 
indices time series.  
Annual composite of 2020 
From Sentinel-2 BOA (Bottom Of Reflectance) images 
collected during 2020, an annual composite was produced, 
computing the median value for each band, after cloud and 
relative shadows masking performed through the algorithm 
developed by Simonetti et al. (2021). 
Monthly composites of 2020 
Monthly composites of 2020 were processed by calculating, 
for each month, the median values of cloudless images from 
level-2A product, obtained with two different cloud masking 
methods. For summer months, characterized mainly by cloud-

free images, Sentinel-2 quality assessment band (QA60) was 
used for the detection and masking of cloudy pixels. For the 
other months of the year, influenced by a higher cloud 
coverage, cloud masking was performed using Sentinel Hub’s 
Cloud Probability map, that provides a probability measure in 
percentage of cloud or snow presence in Sentinel-2 images.  
Pixels with a probability higher than 30% were masked, and 
potential data gaps resulting from masking, were filled with 
the same dataset filtered with QA60 masking method. For 
each monthly composites, a series of spectral indices and 
parameters were extracted (Table 2), including NDVI 
(Normalised Difference Vegetation Index), NDSI (Normalised 
Difference Soil Index), NGRDI (Normalised Green-Red 
Index), Red, Green and Blue brightness. Over the NDVI time 
series determined from monthly composites, the median, 
maximum, minimum, and amplitude values were calculated, 
along with the time when maximum and minimum were found. 
Maximum NDVI map (2017-2020)  
A maximum NDVI map (Greenest pixel) was extracted over a 
period from 2017 to 2020, from Sentinel-2 level-2A images 
after the cloud masking procedure proposed by Simonetti et al. 
(2021). 
Minimum NDVI map (2019-2020) 
Reflectance data from Sentinel-2 level-2A product acquired 
from 2019 to 2020, and filtered through the cloud masking 
procedure by Simonetti et al. (2021), were processed to extract 
a minimum NDVI map. 
Phenological Based Synthesis (PBS) Classification  
The PBS classifier algorithm proposed by Simonetti et al. 
(2015), originally developed for Landsat imagery, has been 
adapted to ingest, classify and mask clouds and shadows from 
Sentinel-2 multispectral images using Simonetti et al. (2021). 
The thematic land cover classification has been obtained 
processing all images (295) acquired in 2019 and 2020 and 
provides information about vegetation and water seasonality 
as well as more stable classes such as bare soil or artificial 
built-up. 
NDVI and NDFI time series 
In order to investigate the seasonality of agricultural crops, 
multitemporal analysis was carried out on a detailed NDVI 
and NDFI time series, produced from a dataset composed by 
all BOA reflectance data (Sentinel-2 level-2A product) 
acquired in a temporal window between 04-01-2020 and 10-
31-2020, subsequently to the same cloud masking procedure 
adopted for monthly composites. The resulting NDVI time 
series of each pixel was smoothed using a linear regression 
algorithm with a moving window of 22 days (Figure 4), to 
reduce noise derived from residual cloud cover (Boschetti et 
al., 2017). On the other hand, multitemporal analysis on NDFI 
time series was performed on the raw series, because the 
smoothing algorithm could mask isolated flood signals. 
 

Figure 4. Raw and related smoothed curve of NDVI time 
series resulting from smoothing process. 
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Table 2. Spectral indices and parameters computed in this study 

 
4.2 Pixel-based classification map 

Pixel-based classification of artificial surfaces, agricultural 
permanent crops (vineyards, olive groves and fruit trees), 
forest and semi-natural areas, wetlands and water bodies, was 
based on existing maps and databases, recoded through 
observed incoherence between these maps and satellite data 
products, and thus, represents an updated product of existing 
thematic maps (Figure 5). In agricultural areas, spectral 
indices and parameter thresholds approach was adopted in 
order to distinguish irrigated areas, rice fields, additional 
vineyards and greenhouse crops. Three more classes were 
integrated in the legend: arboreal crops  
(fruit trees, olive groves, forest trees, etc.), false arboreal 
(surfaces incorrectly classified as arboreal crops) and bare 
soils. These crop types embrace different CORINE classes 
with similar spectral characteristics and thus not easily 
distinguishable from each other. For this reason, the correct 
assignment of the CORINE class for these crop types will 
occur through visual interpretation in the visual inspection 
phase.  Pastures and heterogeneous agricultural areas have not 
been classified, as a consequence of the relevant variability 
that characterises these classes. The classification criteria for 
the agricultural lands are shown in Table 3.m. The 
classification on agricultural areas imported from DBGT 
(2020) has introduced new water bodies, wetlands and 
vineyards not classified in the existing maps. Moreover, the 
classification of arboreal crops has led to detection of new 
olive groves, fruit trees and forest areas classified as 
agricultural land in previous thematic maps. Classification 
issues related to water bodies, wetlands, greenhouse crops and 
bare soils concern mainly a confusion with new artificial 
surfaces (industrial or commercial units, urban, mineral 
extraction sites etc.) absent in previous thematic maps. Some 
confusion is also observed between arboreal crops, vineyards 
and irrigated areas that show a stable trend of NDVI during 
the year and a consistent photosynthetic activity in summer 

period, like, for example, irrigated permanent grassland, dense 
vegetation nearby water bodies and particularly dense 
vineyards. Classification of rice fields doesn’t exhibit 
significant issues, except for some undetected rice fields, 
probably due to a different agricultural practice (dry-direct 
seeded rice, upland rice etc.).  
 
4.3 Preliminary map 

The segmentation process has generated approximately 5x106 
segments over 2,4x104 km2 Sardinia total area. High 
fragmentation is observed in urban fabric, whereas forest areas 
have been segmented into larger polygons, demonstrating the 
validity of selected segmentation parameters.  
Land cover classes of the pixel-based classification were 
assigned to the objects resulting from segmentation process 
according to the majority occurrence rule, through which the 
assigned class is the one most frequently observed within each 
object. 

 
Figure 5. An example of commission error in a coniferous 
plantation harvested and re-planted (white area on the right), 
detected as an error, considering that the area was classified 
as coniferous forest (dark green on the left, code 312) from 
existing thematic maps. 

Spectral 
index/parameter Formula Description 

VVmin - Minimum value of VV time series of Sentinel-1 monthly composites. 

NDVI  
Normalised Difference Vegetation Index, measures density and health of 
vegetation. 

NDVImedian - Median value of NDVI time series of Sentinel-2 monthly composites. 
NDVImax - Maximum value of NDVI time series of Sentinel-2 monthly composites. 
NDVImin - Minimum value of NDVI time series of Sentinel-2 monthly composites. 

Timemax - 

Time when the maximum value of NDVI was found. Timemax is expressed in 
month number (1-12) for the NDVI time series of monthly composites (Chapter 
3.2.2), and in Day of the Year (DoY) for the detailed NDVI time series (Chapter 
3.2.5). 

Timemin - Time, expressed in month number (1-12), when the minimum value of NDVI was 
found. 

Amplitude NDVImax- NDVImin Difference between maximum and minimum value of NDVI. 

RB  Red brightness percentage in VIS spectral range. 

GB  Green brightness percentage in VIS spectral range. 

BB  Blue brightness percentage in VIS spectral range. 

NDSI  Normalised Difference Soil Index, sensitive to bare soils and artificial surfaces. 
NGRDI  Normalised Green-Red Difference Index, sensitive to vegetation density. 

NDFI  
Normalised Difference Flood Index, sensitive to soil submergence typical of 
flooded rice fields (Boschetti et al., 2014). 
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Table 3. Classification criteria for agricultural lands with the threshold of spectral indices and parameters computed in this study. 
 

Class Criteria or spectral 
indices/parameter threshold Description 

Permanent 
crops 

Imported from DBGT 10K 
(2020) 

As permanent crops, vineyards, olive groves and fruit trees were imported 
from the geo-topographic database of 2020, assuming that these types of crop 
remain stable for several years. 

Water 
bodies NDVImedian < 0 

In order to detect additional water bodies and wetlands classified as 
agricultural areas in previous classification steps, negative values of NDVI 
and very low values of minimum NDVI registered over NDVI time series of 
monthly composites were selected. For wetlands VVmin was used for 
discrimination between water surfaces and bare soils. Wetlands NDVImin < 0.10 

VVmin < -19 

Greenhous
e crops 

0 < NDVImedian < 0.35 
NDVImax < 0.55 
NDVImin < 0.15 
VVmin < -18 
ρBLUEAugust > 1000 
12 % < (RB -  BB)Aug  < 20% 

Greenhouse crops are characterised by dark or very bright surfaces, with a 
higher reflectance in blue spectral range than natural surfaces (vegetation, 
soils etc.). For these reasons, low values of NDVI, minimum VV polarisation 
and spectral characteristics in blue and red spectral ranges were selected to 
detect this type of land cover. 

Bare soils 0 < NDVImedian < 10 Surfaces not covered by any vegetation and not classified as water bodies, 
wetlands or greenhouse crops, were classified as bare soils. 

Arboreal 
crops 

NDVImin > 0.20 
Amplitude < 0.42 
ρNIRAugust  < 3400 
NDSIAugust < 0.10 
NGRDIAugust  < 0.15 

Arboreal crops include any surfaces covered by arboreal vegetation (forest, 
olive groves, fruit trees etc.). This type of crop is characterised by a stable 
trend of NDVI during the year compared to arable lands, and a NIR 
reflectance lower than grasslands due to the shadows produced in tree crowns 
(Qian et. Al, 2020). NDSI index was used for soil or artificial surfaces 
exclusion, whereas NGRDI helped for the differentiation of arboreal crops 
from low vegetation. 

Arboreal 
false 

VV-VH mean (2019-2020) < -
15 
PBS ≥ 30 (no vegetation) 

In order to remove errors occurring in arboreal crops classification, PBS map 
and Sentinel-1 biannual composite were used. 

Vineyards 

NDVIApr < NDVIMay < NDVIJun 
NDVINov < NDVIOct 
NDVIAug  < 0.50 
NDVImax < 0.80 
NDVImin > 0.10 
ρNIRNDVImax  > 4100 

Vineyard classification was based on vine phenological cycle, characterized 
by a growing season in spring and summer and a dormancy in autumn and 
winter. NDVI time series (Figure 6) was used for the recognition of these 
phenological stages. In addition, it was observed that the NIR reflectance of 
vineyards registered in the month in which the highest photosynthetic activity 
is recorded (NDVImax), is always lower compered to arable lands, thus this 
characteristic was used for better discrimination between these two types of 
crops. 

Irrigated 
arable 
lands 

NDVImax > 0.50 
4 < Timemax < 10 Irrigated arable lands were classified on the basis of the assumption that i) 

Sardinian agricultural techniques involve a typical irrigation season between 
April and October, with a strong photosynthetic activity during this period 
(Figure 6), ii) an increasing trend during the first months of the season (May, 
April and July). 

NDVIMay > 0.50 
NDVIJun > 0.50 
NDVIJul > 0.50 
NDVIMay < NDVIJun < NDVIJul 

Rice fields 

NDVImax > 0.40 
150 < Timemax < 250 (DoY) 
NDFIflood > 0 
Timeflood < Timemax 
Probabilityflood < 10 % 
CPflood  < 80 % 
Timeflood

1 ≠ Timeflood
2 

Rice cultivation may involve the distinctive practice of flooding of the fields 
(usually during spring) before the establishment of the crop and successive 
rapid growth of rice plants, with the maximum photosynthetic activity 
reached in summer and the maturation in October, before the harvest. The 
detection of rice fields from satellite data is usually achieved through the 
recognition of the flooding signal (Boschetti et al., 2014). This signal can be 
identified by positive values of the NDFI index, registered before the growth 
of rice plants (Boschetti et al., 2017). 
For rice fields classification the detailed NDVI and NDFI time series were 
used to detect the flooding condition and phenological stages of rice (Figure 
6). However, residual cloud contamination may cause positive values of 
NDFI. To reduce this issue, pixels presenting isolated positive values of 
NDFI, occurred with a cloud probability higher than 10% and a cloudy pixel 
percentage (CP) of the source image higher than 80% were excluded. 

Non-
irrigated 
arable 
lands 

All the pixel not classified in 
previous steps 

All the pixels not classified as irrigated arable land were automatically 
classified as non-irrigated arable lands, because they don’t show a peak of 
photosynthetic activity from April to October, thus it was assumed that they 
are rainfed. 
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Figure 6. Examples of smoothed NDVI time series extracted from an arboreal crop (coniferous cultivation), a vineyard, a rice 
field and a non-irrigated arable land. While arboreal crops show a stable trend of NDVI during the year, vineyard and rice fields 
exhibit a marked peak of NDVI in August and November respectively, whereas non-irrigated lands don’t present a photosynthetic 
activity during dry season (from May to October). 
 
4.4 The Land cover map 

Final land cover map resulting from the visual inspection 
process has a smaller number of polygons, compared to the 
preliminary map obtained from segmentation and pre-labelling 
of segments. Given the high fragmentation of the dataset 
introduced with the satellite image segmentation procedures, it 
is possible to note that, if, on the one hand this operation is 
particularly expensive in terms of time due to the high number 
of polygons, on the other the output product possesses 
undeniable characteristics of quality with richness and detail 
of information that are unusual and unattainable with 
traditional techniques.  
 
4.5 Validation 

In order to test the accuracy of the preliminary map derived 
from segmentation and pre-labelling, the same area selected 
for visual inspection was chosen for validation tests. A first 
validation analysis has been carried out through a ground truth 
data collected from a detailed photo-interpretation, by 
integrating data coming from different platforms and from 
several observations, as follows: digital orthophotos available 
for different years; Google Earth satellite images; Google 
Street View at street level images; Sentinel spectral index 
processing; Field observations; Previous knowledge of the 
locations by the authors. From the resulting map, polygons 
representing non-irrigated crops have been chosen to achieve 
validation as described below. A first set of 115 polygons has 
been selected with a minimum surface of 50,000 m2. The 
choice of this extent has been made to better take into 
consideration pixels with no contaminations by adjacent, 
different classes. For each polygon has been considered his 
centroid and a relative square buffer sized 9x9 pixels (8,100 
m2). Due to geometric factors from the total amount only 67 
square areas have been selected as training sites. This layer 
has been faced up to the classified product by an intersection 
overlay operation in order to verify the presence of land cover 
classes and their relative abundance. Crossing the datasets, we 
obtained 97% of correspondence for non-irrigated crops. 

5. CONCLUSIONS 

The land cover map realized in this study shows a high level 
of detail especially in complex landscapes such as green urban 
areas, rural fabrics as well as in small water bodies and trees 
outside forest, indicating an important improvement compared 
to existing land cover/use maps of Sardinia and demonstrating 
the potential of Sentinel imagery in the creation of thematic 
maps. Although not fully validated at regional scale, 
preliminary statistics show an extent of agricultural areas 
(non-irrigated arable, irrigated and greenhouses, 18,3%, 6,6% 
and 0,1 respectively, corresponding to 25% of the total area of 
Sardinia. Although this amount does not include agroforestry, 
arboreal and permanent crops accounting for an extra 8,5%, it 
is much higher compared to the 10% reported by ESA 
WorldCover map (Figure 2). This discrepancy can be 
narrowed down by removing greenhouses and pastures since 
they are considered by ESA as “Build-up” and “Grassland” 
respectively. Assessing the proportion of pasture and arable 
lands within the proposed map will be subject of further 
investigation. However, ISTAT 
(http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVA
ZIONI) estimates that in 2020 pastures account for 68.1% of 
the total non-irrigated arable lands in the region, and thus, 
cutting out 5,7% from the abovementioned non-irrigated 
arable areas (18.3%), the final estimate can be reduced to 
12,6%. This result is higher compared to the 11% reported by 
ISTATS in 2020, but not remarkably, considering the potential 
confusion between pastures and natural grassland, even in the 
existing thematic maps used as starting point in the 
classification. The results are encouraging even if some 
limitations have been found namely the confusion between 
natural tree cover and olive trees or fruit plants. The high 
variety of crop types and the different agricultural practices 
adopted by the farmers can negatively affect the accuracy of 
the automatic classification based on spectral and temporal 
indices thresholding. For these reasons, further studies are 
foreseen in order to overcome these issues. 
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