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ABSTRACT: 

The study aims to compare land use land cover (LULC) change between Bangladesh and Indian Sundarbans from 1975 to 2020 

using Landsat Satellite images. We performed supervised maximum likelihood (ML) to classify the study area at four time periods 

over 45 years (1975, 1990, 2005, and 2020). The classification was assigned to five classes: dense forest, moderate forest, sparse 

forest, barren land, and water body. Accuracy assessment of the classified images was completed with 250 control points for each 

year. The findings of our study revealed that the dense forest cover of Bangladesh and Indian parts was 54% and 31%, respectively, 

whereas, for the whole Sundarbans, it was 45% in 1975. However, the dense forest of Bangladesh and Indian Sundarbans decreased 

by an annual rate of 1.20% and 1.60%, respectively, from 1975 to 2020. From 1990 to 2005, Bangladesh Sundarbans slightly 

increased the dense forest cover by an annual rate of 0.68%, while the Indian Sundarbans decreased by an annual rate of 0.63%. The 

moderate dense forest of Bangladesh and Indian Sundarbans increased by giving almost the same annual rate of 3.62% and 3.59% 

from 1975 to 2020, whereas the increasing rate of the sparse forest was much higher for Bangladesh (8.36%) Sundarbans than Indian 

(3.36%) parts. The water bodies of Bangladesh and Indian Sundarbans increased by giving an annual rate of 0.48% and 0.71%, 

respectively, from 1975 to 2020. Our study found that most of the barren lands were located near the boundary between forest and 

human settlement of Indian Sundarbans compared to Bangladesh. The findings of the comparative assessment between these two 

countries can support sustainable forest management and planning by considering the best policy options. 

* Corresponding author

1. INTRODUCTION

Mangroves are salt-tolerant trees and shrubs (Awty-Carroll et 

al., 2019; Long and Giri, 2011), forming forests in the intertidal 

zone between sea and land (Islam et al., 2019; Datta and Deb, 

2012). The spatial distribution of the mangrove forests is in the 

tropical and subtropical regions of the world (FAO, 2010). The 

most significant extent of mangroves is found in South and 

Southeast Asia (41%), with the rest distributed across various 

regions (59%) (Malik et al., 2017; Giri et al., 2011). 

Sundarbans is the world's largest contiguous mangrove forest, 

accounting for 3% of the global mangrove forest area (Chanda 

et al., 2016). It spans 10,000 km2, with 62 % (6,200 km2) in 

Bangladesh and the remaining 38% (3800 km2) in India (Ghosh 

et al., 2015). 

Sundarbans offer numerous ecosystem goods and services to 

coastal populations (Payo et al., 2016; FAO, 2010). 

Approximately 3.5 million Bangladeshis and 4 million Indians 

are dependent on these ecosystem goods and services. 

Sundarbans act as a natural barrier to protect storms, cyclones, 

tsunamis and coastal soil erosion for coastal settlements (Hasan 

et al., 2020; Islam et al., 2019). In addition, Sundarbans is 

considered a biological supermarket and hotspot for 

biodiversity conservation (Payo et al., 2016). For instance, 

Sundarbans provide a habitat for many threatened and 

endangered species like the Royal Bengal tiger (Ortolano et al., 

2016).  

The ecological and socioeconomic aspects of the Sundarbans 

are a single unit (Ortolano et al., 2016). But, the Sundarbans are 

managed separately by Bangladesh and India, prioritizing their 

management policies after the partition of India in 1947. For 

instance, to protect Sundarbans and its wildlife, Bangladesh 

Sundarbans were divided into three wildlife sanctuaries (1977): 

Sundarbans east, west, and south. Latter, Ecologically Critical 

Area (ECA) and Sundarbans Impact Zone (SIZ) were declared 

to protect the forest from human disturbances (Nishat et al., 

2019). However, the areas and density of Bangladesh and 

Indian Sundarbans are decreasing significantly due to both 

human-induced – e.g., over exploitation of resources, 

agricultural expansion, industrialization, etc. – and natural 

factors -e.g., cyclonic storms, sea level and salinity rise, and so 

on  (Quader et al., 2017; Loucks, et al., 2010; Islam, 2010; 

Gopal and Chauhan, 2006). According to  Das and Datta 

(2016), anthropogenic activities are one of the key drivers of 

Sundarbans ecological degradation. In addition, the Sundarbans 

ecosystems are highly susceptible to climate change-related 
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hazards. For instance, the sea-level in Sundarbans regions is 

much higher (+3.90±0.46 mm/year) (Nishat et al., 2019) than 

the global rate (1.0–2.0 mm/year) (Deb and Ferreira, 2017; 

Karim and Mimura, 2008). Giri et al. (2007) reported that the 

Sundarbans mangrove forest area decreased by 1.2% from 1970 

to 2000 due to anthropogenic activities and climate change-

related factors. Therefore, the Sundarbans are one of the most 

vulnerable tropical ecosystems on the planet.  

 

Most of the areas of Sundarbans are inaccessible due to forest 

geophysical features and other adverse environmental 

conditions (Datta and Deb, 2012; Emch and Peterson, 2006). 

Moreover, the legal borderline between Bangladesh and India 

makes it difficult to present an overview about the evolution 

and current state of the whole Sundarbans (Ishtiaque and 

Chhetri, 2016; Giri et al., 2014; Gopal and Chauhan, 2006). In 

this situations the application of remote sensing is useful for 

detecting and monitoring Sundarbans LULC changes overtime 

(Quader et al., 2017). However, the study on entire Sundarbans 

is scanty (Hasan et al., 2020; Islam et al., 2019), and most 

studies have been done separately in Bangladesh or Indian 

Sundarbans. Furthermore, different time frames, seasons, 

sensors, classifications techniques have been used 

independently for mapping LULC of Bangladesh and Indian 

Sundarbans, which is not comparable to tracking and discussing 

the numerous causes of LULC change between two countries. 

For example, Quader et al. (2017) studied LULC of entire 

Sundarbans by highlighting some limitations and absence of 

comparison between Bangladesh and Indian Sundarbans. In the 

case of Sundarbans (a single forest unit separately managed by 

Bangladesh and India), the comparative assessment of LULC is 

important to recognize the effectiveness of forest management 

policies are applied independently by these countries against 

human impacts and climatic change hazards. Giri  et al. (2007) 

classified the entire Sundarbans with mangrove and non-

mangrove categories. However, the detailed classification of 

mangrove vegetations (e.g., dense, moderate dense, and sparse 

forest) is essential to understand the forest structure and density, 

which Bangladesh and India follow for forest management 

perspective. Our study tries to overcome these limitations to 

find out the LULC changes of Sundarbans over time.  

The study aims to find and comparative assessment LULC 

classes (e.g., dense, moderate dense, sparse forest, barren land, 

and water body) of Bangladesh and Indian Sundarbans using 

Landsat data from 1975 to 2020.   

 

2. METHODOLOGY 

2.1 Description of the study area  

The present study considered the entire Sundarbans areas 

(covering Bangladesh and Indian part), which lies between 

21°32′ and 22°40′ N and 88°05′ and 89°51′ E. (Figure 1). The 

Sundarbans are formed on the estuary created by the Hooghly, 

Ganges, Brahmaputra, and Meghna rivers in the Bay of Bengal 

(Deb and Ferreira, 2017). These rivers are the key source of 

freshwater and sediment to Sundarbans. The elevation of forest 

floor ranges from 1.5 to 3 m mean sea level, and it is interlinked 

by a complex network of tidal rivers, mudflats, and small 

islands (Karim and Mimura, 2008). The forest is inundated 

twice daily by the tide (Barlow et al., 2011). The climate is 

tropical, with a dry season from December to February and a 

monsoonal rainy season from March to November (Quader et 

al., 2017). The tropical cyclones and storms hit Sundarbans 

regularly during the monsoon, causing severe flooding and 

wind damage (Ghosh et al., 2015).  

 

 

Figure 1. Sundarbans mangrove forest, including Bangladesh 

and Indian parts. The red line on the map indicates the 

international boundary between the two countries.    

2.2 Image selection 

We collected nine Level-1 Terrain (L1T) Landsat scenes from 

the United States Geological Survey (USGS). These scenes 

were used for quantifying LULC change for four-time periods 

(1975, 1990, 2005, and 2020) (Table 1). With the exception of 

1975, the radiometrically and geometrically calibrated Landsat 

 
 

Year Date and time of image 

acquisition  

Used 

satellite/sensor 

Path/Row Used 

brand 

Spatial 

resolution 

Cloud 

cover 

Sun 

angle 

Covered 

area*   

1975 Feb 19, 1975 / 9:45 am L 2 / MSS 147 / 045 4-7 60 m 0% 40.86 BS  

 
Jan 10, 1976 / 9:47 am L 2 / MSS 148 / 045 4-7 60 m 0% 33.95 IS, BS 

Jan 10, 1976 / 9:48 am L 2 / MSS 148 / 044 4-7 60 m 0% 33.02 BS 

1990 Feb 24, 1990 / 9:46 am L 5 / TM 137 / 045 1-7 30 m 0% 42.26 BS 

 Jan 14, 1990 / 9:54 am L 5 / TM 138 / 045 1-7 30 m 0% 34.86 IS, BS 

2005 Jan 16, 2005 / 10:11 am L 5 / TM 137 / 045 1-8 30 m 0% 38.55 BS 

 Jan 07, 2005 / 10:17 am L 5 / TM 138 / 045 1-8 30 m 0% 37.82 IS, BS 

2020 Jan 26, 2020 / 10:25 am L 8 / OLI-TIRS 137 / 045 1-7 30 m 0% 41.79 BS 

 Jan 17, 2020 / 10:32 am L 8 / OLI-TIRS 138 / 045 1-7 30 m 0.62% 40.46 IS, BS 

Table 1. Source and specification of satellite images used in the study. Covered area*: BS=Bangladesh Sundarbans, IS=Indian 

Sundarbans 
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scenes were retrieved from Earth Explorer (https:// 

earthexplorer.usgs.gov/). Except for one scene (2020), the other 

cloud-free scenes were collected between January to February, 

which fells in the cold-dry season (November-March). The 

mangroves are evergreen forests, and leaves have a longer 

lifespan; leaves are not off during the leaf-fall season 

(December to February) in the study area. Therefore, there is no 

significant variation in vegetation phenology and spectral 

signature between January and February (Islam et al., 2019; 

Bera and Chatterjee, 2019). The mangrove forest floor is 

inundated twice a day by the tide, and LULC mapping using 

satellite data is influenced by the tidal range (e.g., high, low, 

and mid-tide) (Zhang et al., 2015). However, Landsat satellites 

fly and capture the images of Sundarbans regions when it is in 

mid-tide level; and is the best condition for LULC mapping of 

Sundarbans mangroves.  

Landsat Multi-Spectral Scanner (MSS) for 1975, Thematic 

Mapper (TM) for 1990 and 2005, and Operational Land 

Imager-Thermal Infrared Sensor (OLI-TIRS) for 2020 were 

used to classify LULC of Sundarbans. In the case of 1975, three 

adjacent Landsat-2 (MSS) scenes are needed to cover the entire 

Sundarbans. The source and other specifications of the used 

satellite images (e.g., brand, spatial resolution, and so on) of 

Sundarbans are given in Table 1. 

 

2.3 Image pre-processing  

The satellite image pre-processing is a crucial part that includes 

radiometric calibration, atmospheric correction, cloud masking, 

image mosaicking, study area extraction, and image rectification 

(Banskot et al., 2014; Gao et al., 2009). Except for Landsat-2 

(MSS) images of 1975, the others were radiometrically and 

geometrically calibrated and thoroughly been used for 

subsequent analyses (Sannigrahi et al., 2019). In this study, the 

Landsat-2 (MSS) images were processed by standard 

procedures such as image calibration to at-sensor radiance, then 

radiometric correction was completed using an atmospheric 

correction model to get surface reflectance images. These 

correction steps were applied to the images using the Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) tools based on a MODTRAN radiative transfer 

module of ENVI 5.3 software (Hasan et al., 2020). FLAASH is 

a well-known and advanced atmospheric correction algorithm 

used in remote sensing platforms (Serrano et al., 2016), and it 

produces more accurate results than other methods (Smith, 

2015). The FLAASH model includes a method for reducing the 

inconsistency of radiometric and atmospheric (i.e., water vapor, 

haze, smoke, fog, dust, aerosol) effect in images (Matthew et 

al., 2020; Kaufman et al., 1997).  

 

We performed cloud masking only for one Landsat-8 (OLI-

TIRS) images (MSS and TM images were cloud free). To 

mosaic each epoch Landsat image, seamless mosaicking was 

used. We also applied the modified pseudo-invariant features 

(PIF) method as part of the relative radiometric correction of the 

scenes of the Landsat sensor (Myeong et al., 2006). The PIF 

approach eliminates inconsistencies across scenes in the same 

mosaic of images (Quader et al., 2017). After mosaicking, the 

study area was extracted by considering the administrative 

boundary of Sundarbans, and then images were composited 

with near-infrared, red, and green bands for classification.   

 

We used 50 ground control points for image rectification, and 

the dispersed ground control points were generated using a root 

mean square error (RMSE). The lower RMSE stands higher the 

accuracy of LULC prediction (Talukdar et al., 2020). In this 

study, the maximum RMSE was 0.39, belonging to the 

acceptable range for LULC change detection (Knorn et al., 

2009; Tucker et al., 2004). After that, the images were 

resampled to a 30 m pixel size using the nearest neighbour 

resampling method (Ghosh et al., 2017).  

 

2.4 Training sample selection, image classification and 

accuracy assessment  

 

The training samples were selected manually by careful inquiry 

of homogenous pixels of LULC classes (e.g., dense, moderate 

dense, sparse forest, barren land, and water body). High-

resolution Google Earth images were used as a reference to 

identify the actual LULC classes. However, a sufficient number 

of training samples are prerequisites for a successful and 

superior classification (Lu and Weng, 2007). Moreover, the 

tidal range (e.g., high, low, and mid-tide) and upstream flow 

influences mangrove LULC mapping using satellite data (Zhang 

et al., 2015). For instance, the watercolor is different near the 

coastal/beach/shoreline areas than the deep river basins of 

Sundarbans due to the sedimentation, water deepness, and tidal 

effect; thus, the spectral variation is a little different. In this 

case, we considered numerous water body sites for training 

samples. Finally, 245 training samples throughout the area for 

each study year were selected to identify the LULC classes (a 

total of 980 training samples for four study years: 1975, 1990, 

2005, and 2020). The training samples were distributed among 

the LULC classes as follows: 50 samples for dense forest, 50 for 

moderate dense forest, 45 for sparse forest, 35 for barren land, 

and 65 for water bodies.   

 

A variety of image classification techniques are used for 

mapping and studying LULC change (Billah et al., 2021; Lu 

and Weng, 2007). Supervised classification using maximum 

likelihood (ML) algorithm have been used worldwide over the 

past two decades to study mangrove LULC (Kumar et al., 2021; 

Islam et al., 2019; Bera and Chatterjee, 2019; Jones et al., 2016; 

Ghosh et al., 2016; Pham and Yoshino, 2015; Chen et al., 2013; 

Giri et al., 2010; Giri and Muhlhausen 2008; Giri et al. 2007). 

Because, the ML algorithm is one of the most well-known 

parametric classifiers used for supervised classification (Li et 

al., 2014) and is easy to use, thus, an extended training process 

is not essential (Chen et al., 2013; Datta and Deb, 2012). 

Moreover, the ML algorithm reduces the data necessities and 

delivers a prospective to extract comprehensive information 

(Hassan, 2017; Jat et al., 2017) by computing the weighted 

distance or likelihood of an unknown measurement vector that 

belongs to one of the known classes, based on the Bayesian 

equation. The unknown measurement vector is assigned to the 

class based on the highest probability of fit. Furthermore, 

consideration of a variance-covariance matrix within the class 

distributions is considered one of the advantages of this 

algorithm. In addition, consideration of a variance-covariance 

matrix within the class distributions is another advantage of this 

algorithm (Ghosh et al., 2016). In this study, we performed 

supervised maximum likelihood (ML) to classify the study area 

at four time periods over 45 years (1975, 1990, 2005, and 

2020). The classification was assigned to five classes: dense 

forest, moderate forest, sparse forest, barren land, and water 

body.  

 

Validation of classified images is vital to study LULC change 

over time (Ghosh et al. 2016; Sinha et al. 2014). In this study, 

we randomly selected 250 control points for each study year 
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over the classified images to measure accuracy (a total of 1000 

control points for four study years). The points were labeled 

based on land cover within a 30 m radius; if a point fell too 

close to two different land cover classes, it was slightly adjusted 

to ensure that it was representative of a full Landsat pixel. 

Google Earth historical images were used to verify these check-

points. However, there is no information in Google Earth's 

historical images for 1975. In this case, we verified the images 

through previous literature, expert-based information (Quader et 

al., 2017), and historical toposheet maps (sheet NF 45-8, series 

U 502) from the survey of India. Classification accuracy for the 

classified images was assessed by computing error metrics 

(producer, user, and overall accuracy) and kappa coefficients 

(K) (Kanniah et al., 2015; Stehman, 1996). The value of K 

equal to one indicates perfect agreement, whereas a value close 

to zero indicates agreement that is no better than would be 

expected by chance. (Rwanga and Ndambuki, 2017).  
Therefore, the higher value of K indicates the higher the 

accuracy of LULC expectation. 

 2.5 Mapping and analysis LULC 

 

After the accuracy assessment, the final map was carried out for 

Bangladesh and Indian Sundarbans for four different study 

years (1975, 1990, 2005, and 2020). Then, we calculated 

periodic LULC change from one year to another. The 

calculation corresponds to equations (1) and (2). Finally, the 

causes of periodic change patterns were discussed in terms of 

human-induced (i.e., agricultural, industrial activities, and 

encroachment) and climate change-related factors (i.e., sea level 

and salinity rise, cyclonic storms, and soil erosions):      

 

 

where  = LULC change between two periods 

               = starting period 

              = ending period 

               = LULC rate between  two periods 

               = total number of years between two periods  

 

3. RESULTS 

The geospatial maps exposed that the dense forest was 

Sundarbans' dominant land cover type in 1975. Most of the 

dense forest areas are located in the Bangladesh part of 

Sundarbans compared to Indian ones from 1975 to 2020. On the 

other hand, the sparse forest and barren land areas were highest 

in the Indian part of Sundarbans than in Bangladesh. However, 

the maximum barren land areas are located near to borderline 

between forest and human habitat (Figure 2). 

The findings of our study revealed that the dense forest cover of 

Bangladesh and Indian parts was 54% and 31%, respectively, 

whereas, for the whole Sundarbans, it was 45% in 1975. 

However, the Indian Sundarbans decreased dense forest cover 

continuously from 1975 to 2020. Similarly, the Bangladesh 

Sundarbans decreased dense forest, except in 2005. In 1975, the 

second main class cover for Bangladesh Sundarbans was water, 

followed by moderate dense, barren land and sparse forest. 

However, the second main class cover for Indian Sundarbans 

was dense forest, followed by barren land, sparse forest, and 

moderate dense forest (Table 2). The sequence of different land 

cover classes for both countries was changed by increasing and 

decreasing the engaged areas from 1975 to 2020. Consequently, 

in 2020, most of the dense forest of Bangladesh and Indian 

Sundarbans was reduced by water and moderate dense forest. 

As a result, the water body covered maximum areas for both 

countries, and the dense forest cover of Bangladesh (25%) and 

Indian (9%) Sundarbans placed with the second and fourth 

position in 2020 (Table 2). 

The dense forest of Bangladesh and Indian Sundarbans 

decreased by an annual rate of 1.20% and 1.60%, respectively, 

from 1975 to 2020. However, the annual decreasing rate for the 

whole Sundarbans was 1.30%. From 1990 to 2005, Bangladesh 

Sundarbans slightly increased the dense forest cover class by an 

annual rate of 0.68%, while the Indian Sundarbans decreased by 

an annual rate of 0.63%. The moderate dense forest of 

Bangladesh and Indian Sundarbans increased by giving almost 

the same annual rate of 3.62% and 3.59% from 1975 to 2020, 

whereas the increasing rate of the sparse forest was higher for 

Bangladesh (8.36%) Sundarbans than Indian (3.36%) parts. The 

water bodies of Bangladesh and Indian Sundarbans increased by 

giving an annual rate of 0.48% and 0.71%, respectively, from  

1975 to 2020.  

 

LULC 

Area (ha)  

(% of total area) 

 1975 1990 2005 2020 

BS IS WS BS IS WS BS IS WS BS IS WS 

Dense forest 335444 

(54) 

117253 

(31) 

452697 

(45) 

209144 

(33) 

56533 

(15) 

265677 

(27) 

230596 

(37) 

51208 

(14) 

281805 

(28) 

153087 

(25) 

33279 

(9) 

186366 

(19) 

Moderate - 

dense forest 

55300 

(9) 

25509 

(7) 

80810 

(8) 

146403 

(23) 

35312 

(10) 

181715 

(18) 

118601 

(19) 

54809 

(15) 

173411 

(17) 

145391 

(23) 

66641 

(18) 

212032 

(21) 

Sparse forest 21492 

(3) 

31516 

(9) 

53007 

(5) 

63878 

(10) 

109628 

(29) 

173506 

(17) 

61287 

(10) 

75019 

(20) 

136306 

(14) 

102298 

(16) 

79231 

(21) 

181530 

(18) 

Barren land 35922 

(6) 

64091 

(17) 

100013 

(10) 

11677 

(2) 

29899 

(8) 

41576 

(4) 

20472 

(3) 

31693 

(8) 

52164 

(5) 

8883 

(1) 

15780 

(4) 

24664 

(2) 

Water bodies 178699 

(28) 

135336 

(36) 

314035 

(32) 

196866 

(32) 

143862 

(38) 

340728 

(34) 

197045 

(31) 

162495 

(43) 

359540 

(36) 

217311 

(35) 

178859 

(48) 

396170 

(40) 

Table 2. LULC of Sundarbans from 1975 - 2020. Here, BS=Bangladesh Sundarbans, IS=Indian Sundarbans, WS=Whole Sundarbans  
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Figure 2. LULC of Bangladesh and Indian Sundarbans from 1975 to 2020 (red line is the boundary between Bangladesh and India) 

 

4. DISCUSSION 

Environmental disturbances that drive changes in forest cover 

can be monitored efficiently by remote sensing means 

(Piragnolo et al., 2021; Vaglio Laurin et al., 2016). Anthropic 

interaction is a key factor globally (Mozzato et al., 2018; 

Pagliacci et al., 2020). Active remote sensing technologies like 

radar and lidar can extract detailed biomass maps (LaRocque et 

al., 2020; Pirotti et al., 2014), but are more expensive . 

 

The dense and moderate forest cover was higher in the 

Bangladesh Sundarbans compared to the Indian part (1975-

2020). Moreover, the annual decreasing rate of the dense forest 

was higher in Indian Sundarbans (1.60%) than in Bangladesh 

(1.20%). The reason might account mainly for the intensity of 

soil and water salinity of the Sundarbans. Gopal and Chauhan 

(2006) reported that the salinity decreases from west to east of 

Sundarbans and dominates by less salinity lovers Heritiera 

 

 

LULC 

Area changes (ha) 

(Annual rate of changes %) 

 1975-1990 1990-2005 2005-2020 1975-2020 

BS IS WS BS IS WS BS IS WS BS IS WS 

Dense 

forest 

-126300 

(-2.51) 

-60720 

(-3.45) 

-187020 

(-2.75) 

+21452 

(+0.68) 

-5325 

(-0.63) 

+16128 

(+0.40) 

-77509 

(-2.24) 

-17929 

(-2.33) 

-95439 

(-2.25) 

-182357 

(-1.20) 

-83974 

(-1.60) 

-266331 

(-1.30) 

Moderate - 

dense 

forest 

+91103 

(+10.98) 

+9803 

(+2.56) 

+100905 

(+8.31) 

-27802 

(-1.27) 

+19497 

(+3.68) 

-8304 

(-0.30) 

+26790 

(+1.50) 

+11832 

(+1.44) 

+38621 

(+1.48) 

+90091 

(+3.62) 

+41132 

(+3.59) 

+131222 

(+3.61) 

Sparse 

forest 

+42386 

(+13.14) 

+78112 

(+16.52) 

+120499 

(+15.15) 

-2591 

(-0.27) 

-34609 

(-2.10) 

-37200 

(-1.43) 

+41011 

(+4.46) 

+4212 

(+0.37) 

+45224 

(+2.21) 

+80806 

(+8.36) 

+47715 

(+3.36) 

+128523 

(+5.39) 

Barren land -24245 

(+4.50) 

-34192 

(+3.55) 

-58437 

(+3.90) 

+8795 

(+5.02) 

+1794 

(+0.40) 

+10588 

(+1.70) 

-11589 

(-3.77) 

-15913 

(-3.35) 

-27500 

(-3.51) 

-27039 

(-1.67) 

-48311 

(-1.68) 

-75349 

(-1.67) 

Water 

bodies 

+18167 

(+0.68) 

+8526 

(+0.42) 

+26693 

(+0.57) 

+179 

(+0.01) 

+18633 

(+0.86) 

+18812 

(+0.37) 

+20266 

(+0.69) 

+16364 

(+0.67) 

+36630 

(+0.68) 

+38612 

(+0.48) 

+43523 

(+0.71) 

+82135 

(+0.58) 

Table 3. Analysis LULC changes of Sundarbans from 1975 - 2020. The analysis was based on estimating net and annual rate changes between 

two periods.  
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fomes tree (Aziz and Paul, 2015). However, the Heritiera fomes 

dominated forest stands (Bangladesh part) are also decreasing 

due to increasing soil salinity. Mukhopadhyay et al. (2015) and 

Aziz and Paul (2015) reported that about 32% of Bangladesh 

Sundarbans were covered by only Heritiera fomes in 1959, 

which reduced to 21% in 1983 and 17% in 2015. Human-

induced activities like dam construction across the river reduce 

upstream freshwater flow to Sundarbans and increase salinity. 

For instance, the Ganges waterway decreased freshwater 

discharge from 3700 m3s-1 in 1962 to 364 m3s-1 in 2006 due to 

the construction of the Farakka Barrage in 1975, resulting in 

increasing salinity level of the Bangladesh and Indian 

Sundarbans and decreasing forest cover (Islam and Gnauck, 

2008).The sparse forest and barren land areas were highest in 

the Indian part of Sundarbans than in Bangladesh. The reasons 

are that the south-western part of the Indian Sundarbans is 

degraded mainly for extensive extraction of mangrove 

resources, fishery development, siltation, cyclonic storm effects, 

and land erosion (Paul et al., 2017). The study also found that 

most of the barren lands were near the border between forest 

and human settlements, indicating human-induced degradation. 

According to Kumar et al. (2021), settlement and agricultural 

expansion have reduced the forest-covered area adjacent to 

Sundarbans' boundary. Neogi et al. (2017) reported that 

agricultural activities had destroyed around 24,730 ha of 

Sundarbans mangroves from1975-2010, whereas only shrimp 

cultivation destroyed 7,550 ha. Sundarbans is an innocent 

victim of climate change-related hazards. The study showed that 

the water areas increased in both Bangladesh and Indian 

Sundarbans from 1975 to 2020. The reason might for the 

increase in sea level rise and soil erosion. According to Quader 

et al. (2017), the water bodies and sea levels increased gradually 

from 1977 to 2010, indicating sea levels reduced in some areas 

of Sundarbans. Nishat et al. (2019) reported that the sea level 

rise in the Sundarbans is +3.90±0.46 mm/year, and Ghosh et al. 

(2015) stated it is 3.14 mm/year. Therefore, sea-level rise 

increases both surface water and soil salinity (Bhuyian and 

Dushmanta, 2011) and reduces the forest's diversity and density. 

The tropical cyclones caused massive damage to the Sundarbans 

from 1975 to 2020. Most of the cyclonic storms were started 

landfall in the Indian part of Sundarbans. Therefore, most of the 

time, the intensity of damage was higher in Indian Sundarbans. 

According to Samanta et al. (2021), the cyclone Bulbul (2019) 

damaged 14.6% (303.6 km2) and 45.8% (950.7 km2) of Indian 

Sundarbans areas with high and low loss, respectively.  

 

5. CONCLUSION 

The percentages of dense and moderate dense forest were 

highest in Bangladesh Sundarbans compared to Indian ones. 

However, both countries decreased dense forest cover by 

altering it into moderate and sparse areas from 1975 to 2020. 

The decreasing rate of dense forest was higher for Indian 

Sundarbans. The sparse forest and barren land areas were 

highest in the Indian part of Sundarbans than in Bangladesh, 

and most of the barren lands were near the border between 

forest and human settlements. Because the areas accessible to 

human activities are significantly more affected by land cover 

changes. Along with anthropogenic activities, climate change-

related hazards are threats to the degradation of Sundarbans. 

The findings of this study can help for strategic planning to 

control human disturbances and environmental aspects (e.g., sea 

level and salinity rise, cyclonic storms, and soil erosions) to the 

achievement of some of the United Nations Sustainable 

Development Goals (UN-SDGs).  
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