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ABSTRACT: 

Eelgrass (Zostera marina L.) is a marine angiosperm that grows throughout coastal regions in Atlantic Canada. This study 

aimed to assess the capability of UAV multispectral imagery to map the presence of eelgrass beds within two estuaries 

in Atlantic Canada (Souris River and Richibucto River). The images were mosaicked using Agisoft and calibrated in 

reflectance. The corrected images were classified using a non-parametric supervised classifier (Random Forests). The 

input features of the classification were the UAV band reflectance and associated bathymetric ratios and vegetation 

indices. The resulting maps were compared with sonar data. The overall validation accuracy for presence/absence was 

91.30% with the Souris image and 86.92%% with the Richibucto images. The limitations of the study are also presented. 

1. INTRODUCTION

Eelgrass (Zostera marina L.) is an angiosperm species belonging 

to the seagrass family and growing in brackish and salt waters. 

They provide vital ecological functions, including stabilizing 

sediment, fish habitat, influencing current dynamics, and 

contributing significant amounts of biomass to food webs (Heck 

et al., 1995). As worldwide, eelgrasses have been declined in 

Atlantic Canada (DFO, 2009). It is essential to have an accurate 

method to map the eelgrass bed distribution to monitor eelgrasses 

properly. Sonar or bathymetric lidar data can be used, but their 

acquisition is challenging and expensive (Kenny et al., 2003; 

Webster et al., 2015). An alternative is to use aerial photographs 

or optical satellite imagery. Satellite imagery provides extensive 

coverage and does not require data interpolation (Forsey et al., 

2020). However, they can only be acquired under clear sky 

conditions and are costly when acquired by commercial satellites. 

Unmanned aerial vehicles (UAV) imagery is more flexible and 

cost-effective imagery that has the additional advantage of 

having a higher spatial resolution than the airborne or satellite 

imageries (Ventura et al., 2018). So far, only a few studies have 

used UAV RGB images for mapping eelgrass beds (Kobnar, 

Iken, 2018; Duffy et al., 2018; Nahirnick et al., 2019a; 2019b; 

Aarts et al., 2020; Svane et al., 2021; Krause et., 2021).  

This study tests UAV multispectral imagery for mapping eelgrass 

bed distribution in two contrasting estuaries located in Atlantic 

Canada, i.e., the Souris River and Richibucto River estuaries. It 

expands on Gallant et al. (2021), who tested UAV multispectral 

imagery for mapping eelgrass bed distribution in the Souris River 

estuary. Like in Gallant et al. (2021), images will be classified 

with Random Forests (RF), which is a non-parametric supervised 

classifier (Wask, Braun, 2009) that was shown to outperform the 

maximum likelihood classifier (MLC) in eelgrass studies (Aarts 

et al., 2020). Such as in Clyne et al. (2021), and in contrast to 

Gallant et al. (2021), the classification will be done by 

considering single band reflectance images and associated 

vegetation indices and bathymetric ratios. Such as in Gallant et 

al. (2021), the resulting classified images will be compared to 

sonar data acquired almost at the same time as the UAV imagery. 

By doing so, we will meet one of the objectives of this study 

which is to assess whether sonar data are suitable for validating 

eelgrass bed distribution maps derived from UAV imagery.  

2. MATERIAL AND METHODS

2.1 Study area 

This study used sonar and UAV data acquired over two river 

estuaries in Atlantic Canada. The first one is located just above 

the mouth of the Souris River, Prince Edward Island, Canada 

(Figure 2). The second one is inside a closed bay just at the mouth 

of the Richibucto River (Figure 2). Both watersheds are made of 

forested, agricultural, and wetland areas. Both river estuaries 

have calm water ideal for eelgrass growth because they are 

separated from the bay by a causeway and a beach. The water 

turbidity allows eelgrass beds to grow at a maximal depth of 

approximately 2.5 m. Both river estuaries have a seafloor made 

primarily of sand, with a deep navigation channel having faster 

water velocity. The sand type is very different between the two 

estuaries. In Souris, the sand is rich in ferric iron oxide leading to 

reddish colour, while in Richibucto, the sand is yellow. The 

Richibucto River estuary has oyster cages that are detectable on 

the UAV imagery and will be considered in the classification. 

Seaweed will also be considered in the image classification for 

the Souris River estuary because they are present in that estuary. 

Figure 1.  Location and limits of the study area imaged by the 

UAV over a Sentinel-2 image for the estuary of 

Souris River.  
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Figure 2.  Location and limits of the study area imaged by the 

UAV over a Sentinel-2 image for the estuary of 

Richibucto River.  

 

2.2 Sonar data 

For both estuaries, sonar tracks were collected with a Biosonics 

MX Echosounder (BioSonics, Inc., Seattle, WA, USA) by the 

Southern St. Lawrence Coalition on Sustainability in partnership 

with Fisheries and Oceans Canada (Figure 3). The sonar data was 

acquired on August 6th, 2019, in Souris and on September 1st 

and 2nd, 2020, in Richibucto. The sonar was attached to the side 

of a small boat, approximately 30 cm below the water surface. 

The transducer was mounted with pipe and clamps. During 

acquisition, the boat speeds at a maximum of 4 knots (7.5 km/h). 

The MX Echosounder collects data using a single beam at a 

frequency of 204.8 kHz, with an 8.5° conical collection angle. 

Pulse length for data collection was 0.4 ms with a ping rate of 5 

Hz. The device has a range resolution of 1.7 cm and a general 

vertical positional accuracy of 1.7 cm +/- 0.2% of depth. The GPS 

on the device offers a positional accuracy of < 3m (95% typical) 

and a GPS update rate of 1 s. It produces “csv” files that were 

converted to shapefiles within ArcMap to be used to validate the 

classified image (see Section 2.6). The sonar data were validated 

against in-situ GoPro pictures only for the Souris River estuary.  

 
(a) Souris 

 

(b) Richibucto, Site 4 

 

(c) Richibucto Site 5 

 

(d) Richibucto Site 6 

 

Figure 3.  Sonar tracks overlaid over an RGB composite made 

with the Sentinel-2 image for a) Souris, b) site 4 of 

Richibucto, c) side 5 of Richibucto, and d) site 6 of 

Richibucto 

 

2.3 UAV imagery 

The UAV images were acquired using a MicaSense RedEdge 

narrowband camera (MicaSense Inc., Seattle, U.S.A.) mounted 

on a DJI Matrice 100 quadcopter (Dajiang Innovations Dajiang 

Baiwang Technology Co., Ltd. Shenzhen, China) in Souris. In 

Richibucto, we used a MicaSense RedEdge MX Dual Camera 

Imaging System mounted on a DJI Matrice 200 V2 quadcopter. 

The band characteristics are given in Table 1 for the MicaSense 

RedEdge narrowband camera and Table 2 for the MicaSense 

RedEdge MX Dual Camera Imaging System. The images were 

taken when the eelgrass was fully developed in both cases. The 

camera was calibrated before the image acquisition by using a 

Spectralon panel. The camera and UAV were connected to 

mission planner software to control the flight altitude given in 

Table 2 for both estuaries. There was a 70% overlap between 

adjacent images. Each UAV image has a spatial resolution close 

to 7 cm. The environmental conditions for each image acquisition 

are given in Table 3. 

 

Table 1.  Spectral characteristics of the MicaSense RedEdge 

narrowband camera (MicaSense Inc., 2017). 

Band name Band range (nm) Bandwidth (nm) 

Blue 465-485 20 

Green 550-570 20 
Red 663-673 10 

Red Edge 712-722 10 

Near-Infrared 820-860 40 

 

Table 2.  Spectral characteristics of the MicaSense RedEdge 

MX Dual Camera Imaging System (MicaSense Inc., 

2019). 

Camera Band name Band range (nm) Bandwidth (nm) 

Blue Blue1 460 - 458 28 
Red Blue2 459 - 491 32 

Blue Green1 524 - 538 14 

Red Green2 546.5 - 573.5 27 
Blue Red1 642 - 658 16 

Red Red2 661 - 675 14 

Blue RedEdge1 700 - 710 10 
Red RedEdge2 711 - 723 12 

Blue RedEdge3 731 - 749 18 

Red NIR 813.5 - 870.5 57 

 

Table 3.  Characteristics of the UAV images and related 

environmental conditions during image acquisition.  

Characteristics Souris 
Richibucto 

Site 4 Site 5 Site 6 

Number of images 1495 20280 11530 9750 

Date of acquisition 2019/08/06 2020/09/24 2020/09/24 2020/09/24 

Local time of acquisition 9h56 - 

10h05 

12h00 - 

13h03 

13h47 - 

14h18 

14h40- 

15h07 

Solar elevation angle (°) 48.64 41.65 41.29 36.82 

Solar zenith angle (°) 41.36 48.35 48.71 53.18 

Solar azimuth angle with 

respect to the North (°) 

161.97 166.16 196.34 214.82 

Tide (m) (1) 1.0 0.4 0.5 0.6 

Wind speed (km/h) (2) 10 9 11 13 

Wind direction (°) (2) 320 280 270 310 

Air temperature (° C) (2) 20.0 19.9 19.3 19.1 

Relative humidity (%) (2) 60 53 - 50 49 47 

Acquisition length (min) 13 63 31 27 

Mean flight altitude (m) 104.1 104.9  107.6  107.1  

Minimum flight  

altitude (m) 

100.3 101.1  94.5  95.5  

Maximum flight 

 altitude (m) 

107.1 109.6  111.2  110.4  

(1) For Souris (Souris tidal station, Lat. 46° 20’ 58” N, Long. 62° 

15’ 06” W) and Richibucto (Richibucto Bar tidal station, Lat. 46° 

42’ 59” N, Long. 64° 47’ 32” W).  

(2) For Souris (East Point weather station, Lat 46°27’36” N, 

Long. 61°59’18” W) and Richibucto (Kouchibouguac weather 

station, Lat. 46° 47’ 21” N, Long. 65° 00’ 47” W). 
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2.4 Pre-Classification Image Processing 

Figure 4 presents a flowchart describing the method used to 

process the UAV images. The individual UAV images 

corresponding to the same band and site were first mosaicked 

with Agisoft Metashape (Agisoft LLC, St. Petersburg, Russia). 

The resulting mosaics were calibrated in reflectance for each 

band, using the Spectralon reflectance panel images taken on 

acquisition day. Following Clyne et al. (2021), additional layers 

were added to the band reflectance images in the classification to 

bolster the potential separability between the classes. They 

included the vegetation indices and bathymetric ratios listed in 

Table 4 for the Souris image. For the Richibucto image, we 

computed the vegetation indices and bathymetric ratios listed in 

Table 5. The bathymetric ratios are based on a ratio decay 

algorithm that evaluates satellite-derived bathymetry (Stumpf et 

al., 2003) 

 
Figure 4. Flowchart presenting the methodology used for 

producing and validating all classified images. 

 

2.5 Image classification 

All the imageries were classified with RF, a supervised non-

parametric classifier that requires delineating training areas for 

each class over each image [30]. The training areas were 

delineated by photointerpretation over various RGB composites 

made with the image. Table 6 lists the number of training 

polygons per class for each image. For the Souris image, 572 

polygons were delineated for the five following classes: Eelgrass, 

Seaweed in Shallow Water, Seaweed in Deep Water, Sand Floor, 

and Deep Water (Table 6). For the Richibucto image, the number 

of polygons varies as a function of the site and we considered the 

four following classes were considered: Eelgrass, Sand Floor, 

Oyster Cages, and Deep Water (Table 6). For both images, each 

training polygon has a size of 5 by 5 pixels. The training data 

were only used to train the classifier but not to validate the 

classification, given that the classified images were validated 

against sonar data. 

 

Table 4.  Vegetation indices and bathymetric ratios computed 

for the UAV image of Souris.  
Variable Formula(*) Reference 

DVI NIR – R Tucker (1979) 

GDVI NIR – G Sripada et al. (2006) 

GNDVI (NIR – G) / (NIR + G) Buschmann, Nagel (1993). 

NDVI (NIR – R) / (NIR + R) Rouse et al. (1974) 

NDRE (NIR − RE)/ (NIR + RE) Barnes et al. (2000) 

NG G / (NIR + R + G) Sripada et al. (2006) 

NR R / (NIR + R + G) Sripada et al. (2006) 

NNIR NIR / (NIR + R + G) Sripada et al. (2006) 

RVI NIR / R Birth, McVey (1968) 

REVI NIR / RE Cao et al. (2016) 

GRVI NIR / G Sripada et al. (2006) 

NDAVI (NIR - B) / (NIR + B) Villa et al. (2014) 

WAVI 1.5 * (NIR - B) / (NIR + B + 0.5) Villa et al. (2014) 

Blue/Red Ln(B/R) Stumpf et al., 2003 

Blue/Green  Ln(B/G) Stumpf et al., 2003 

(*) NIR = Near-infrared band reflectance, R = Red band 

reflectance, G = Green band reflectance, B = Blue band 

reflectance, RE = Red-Edge band reflectance 

Table 5.  Vegetation indices and bathymetric ratios computed 

for the UAV images of Richibucto (adapted from the 

formula of Table 4).  

Variable Formula (*) 

DVI-1 NIR – Red1  

DVI-2 NIR – Red2  
GDVI-1 NIR – Green1  

GDVI-2 NIR – Green2  

GNDVI-1 (NIR – Green1) / (NIR + Green1)  
GNDVI-2 (NIR – Green2) / (NIR + Green2)  

NDVI-1 (NIR – Red1) / (NIR + Red1)  

NDVI-2 (NIR – Red2) / (NIR + Red2)  
NDRE-1 (NIR – RE705) / (NIR + RE705)  

NDRE-2 (NIR – RE717) / (NIR + RE717)  
NDRE-3 (NIR – RE720) / (NIR + RE720)  

NG-1 Green1 / (NIR + Red1 + Green1)  

NG-2 Green2 / (NIR + Red2 + Green2)  
NR-1 Red1 / (NIR + Red1 + Green1)  

NR-2 Red2 / (NIR + Red2 + Green2)  

NNIR-1 NIR / (NIR + Red1 + Green1)  
NNIR-2 NIR / (NIR + Red2 + Green2)  

RVI-1 NIR / Red1  

RVI-2 NIR / Red2  
REVI-1 NIR / RE705  

REVI-2 NIR / RE717  

REVI-3 NIR / RE720  
GRVI-1 NIR / Green1  

GRVI-2 NIR / Green2  

NDAVI-1 (NIR – Blue1) / (NIR + Blue1)  
NDAVI-2 (NIR – Blue2) / (NIR + Blue2)  

WAVI-1 (1.5 * (NIR – Blue1)) / ((NIR + Blue1 + 0.5)) 

WAVI-2 (1.5 * (NIR – Blue2)) / ((NIR + Blue2 + 0.5)) 
Blue1/Red1  Ln (Blue1) / Ln (Red1)  

Blue1/Red2  Ln (Blue1) / Ln (Red2)  

Blue2/Red1 Ln (Blue2) / Ln (Red1) 
Blue2/Red2 Ln (Blue2) / Ln (Red2) 

Blue1/Green1  Ln (Blue1) / Ln (Green1)  

Blue1/Green2  Ln (Blue1) / Ln (Green2)  
Blue2/Green2  Ln (Blue2) / Ln (Green2)  

Blue2/Green1 Ln (Blue2) / Ln (Green1) 

(*) The variables are described in Table 4 

Table 6.  Number of training polygons per class for the UAV 

image classification.  

Class Souris 
Richibucto 

Site 4 Site 5 Site 6 

Eelgrass 88 237 404 470 

Shallow seaweed 95 - - - 

Dep seaweed  71 - - - 

Sand floor 229 50 221 240 

Deep water 89 103 310 61 

Oyster cages - 60 62 71 

Total 572 450 997 842 

 

The training areas were used to compute class spectral signatures 

to calculate the J-M distance between class pairs (Richards, Jia, 

2006). The closer the J-M distance to 2, the better the spectral 

separability between the two classes. The training areas were then 

used in RF, which can handle both Gaussian and non-Gaussian 

data because it does not consider the data distribution parameters 

(Breiman, 2001). The algorithm used for this study was the all-

polygon version developed in the R x64, version 4.1.0 package 

(Liaw, Wiener, 2018). The all-polygon version has the advantage 

of taking account of the actual class size and was already shown 

to outperform the sub-polygon version (Byatt et al., 2019). RF 

has the additional advantage of producing a “Mean Decrease 

Accuracy” variable importance plot that ranks the degree of 

usefulness of the input features in the classification (Byatt et al., 

2019; Wask, Braun, 2009; Liaw, Wiener, 2018; Gislason et al., 

2006; Strobl et al. 2008).  
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2.6 Accuracy assessment 

For each classification, we first computed the average and overall 

classification accuracies, Kappa coefficient, and individual class 

User’s and Producer’s accuracies derived from a confusion 

matrix (expressed in pixel numbers) that compares the training 

areas with the equivalent class in the imagery following 

(Congalton, 1991). However, the classification accuracy is based 

on training areas and does not assess the mapping accuracy. 

There is the need to compare the resulting classified image with 

an independent dataset. For such an assessment, we randomly 

selected 207 sonar points for the Souris image (Figure 7a) and 

986 points for the Richibucto image (Figure 7b). We considered 

only two classes for the validation (“Eelgrass present” and 

“Eelgrass absent”) since the study’s goal was to map the eelgrass 

bed extent. The sonar points were also classified into two 

different classes. For the Souris classified image, both the 

“Eelgrass” and “Eelgrass+Seaweed” classes were categorized as 

“Eelgrass Present”. All the other classes were classified as “Eel-

grass Absent”. At each sonar point, the class was extracted from 

the classified image using the “Extract Values to Points” tool of 

ArcMap (ESRI, 2020). A confusion matrix and associated 

accuracies were then computed in R (R Development Core Team, 

2016).  

 

3. RESULTS 

3.1 Class Spectral Separability 

The J-M distances computed with all the band reflectance 

between the class pairs are presented in Table 7 for the Souris 

image and Table 8 for the Richibucto image. For the Souris 

image, the average J-M distance was 1.96, indicating an excellent 

spectral separability between the classes. The lowest J-M 

distance (1.86) occurred between the “Seaweed in deep water” 

and “Deep Water” classes, probably because both classes are 

related to deep water. The highest J-M distance (1.99) occurred 

between the Eelgrass and Deep Water or Sand Floor class. For 

the Richibucto images, the average J-M distances are higher than 

1.932, indicating an excellent spectral separability between the 

classes. For Sites 4 and 5, the lowest J-M distance occurred 

between the “Eelgrass” and “Deep water” classes, while for Site 

6, the lowest J-M distance occurred between the “Eelgrass” and 

“Sand Floor” classes. The highest J-M distance occurred between 

the “Oyster Cages” and “Deep water” classes for Sites 5 and 6 

but between the “Sand Floor” and “Eelgrass” or “Deep Water” 

classes for Site 4.  

 

Table 7.  J–M distances computed with all the band reflectance 

of the UAV image of Souris 

Class Eelgrass 
Shallow 

seaweed 

Deep 

seaweed 

Sand 

floor 

Shallow seaweed 1.996    

Deep seaweed 1.998 1.906   

Sand floor 1.999 1.887 1.993  

Deep water 1.999 1.982 1.860 1.940 

 

Table 8.  J–M distances computed with all the band reflectance 

of the UAV image of Richibucto.  

Site Class Eelgrass Sand 

floor 

Deep 

water 

Average 

separability 

4 Sand floor 2.000   1.988 

Deep water 1.934 2.000  

Oyster cages 1.996 1.995 1.999 

5 Sand floor 1.993   1.969 

Deep water 1.914 1.996  

Oyster cages 1.990 1.991 1.999 

6 Sand floor 1.918   1.932 

Deep water 1.927 1.966  

Oyster cages 1.902 1.975 1.989 

 

3.2 Classification 

When applying the RF classifier to a combination of the original 

band reflectance, associated vegetation indices and bathymetric 

ratios, we achieved an overall classification accuracy (OA) of 

99.0% and a Kappa coefficient of 0.99 with the Souris image, 

indicating an excellent classification accuracy (Table 9). The 

classification accuracy is better with the Richibucto image (Table 

10), with an OA of 99.5% and a Kappa coefficient of 0.99. For 

the Souris image (Table 9), the lowest User’s class accuracy 

(UA) occurred for the “Eelgrass” class (97.9%), while the lowest 

Producer’s accuracy (PA) occurred for the “Deep Seaweed” class 

(97.1%). For the Richibucto images (Table 10), the lowest UA 

(98.9%) and the lowest UA (97.2%) occurred for the “Oyster 

Cages” class. The resulting classified images are presented in 

Figure 4 for Souris and Figure 5 for Richibucto. 

 

Table 9.  Confusion matrix (in pixels) and associated 

accuracies when the RF classifier is applied to the 

original band reflectance images, vegetation indices, 

and bathymetric ratios the Souris image(*) 
Class Eelgrass Shallow 

seaweed 

Deep 

seaweed 

Sand 

floor 

Deep 

water 

UA 

(%) 

EC 

(%) 

Eelgrass 2169 40 6 0 0 97.9 2.1 

Shallow 

seaweed 
29 2288 1 3 1 98.5 1.5 

Deep 

seaweed 
4 9 1748 0 5 98.9 1.0 

Sand 

floor 
0 21 0 5745 3 99.6 0.4 

Deep 

water 
0 8 9 1 2218 99.2 0.8 

PA (%) 98.9 98.1 97.1 99.4 100.0 OA (%) = 99.0 

Kappa = 0.99 EO (%) 1.1 1.9 2.9 0.6 0 

(*) Bold figures indicate well-classified pixels 

 

Table 10.  Confusion matrix (in pixels) and associated 

accuracies when the RF classifier is applied to the 

original band reflectance images, vegetation indices, 

and bathymetric ratios for the three Richibucto 

images (*) 
Class Eelgrass Shallow 

water 

Deep 

water 

Oyster 

cages 

UA 

(%) 

EC 

(%) 

Eelgrass 82841 33 111 27 99.8 0.2 

Shallow water  147 21339 0 11 99.3 0.7 

Deep water 208 5 28997 0 99.3 0.7 

Oyster cages 93 1 0 3282 97.2 2.8 

PA (%) 99.5 99.8 99.6 98.9 OA (%) = 99.5 

Kappa = 0.99 EO (%) 0.5 0.2 0.4 1.1 

(*) Bold figures indicate well-classified pixels 

 

 

Figure 5.  Classified image produced by applying the RF 

classifier to the reflectance band images, associated 

vegetation indices and bathymetric ratios to the UAV 

image of Souris. 
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(a) Site 4 

 

(b) Site 5 

 
(c) Site 6 

 

Figure 6.  Classified image produced by applying the RF 

classifier to the reflectance band images, associated 

vegetation indices, and bathymetric ratios to the UAV 

image of Richibucto for a) Site 4, b) site 5, and c) Site 

6. 

 

RF produces a variable importance plot ranking the input features 

as a function of their importance in the classification. For the 

Souris image classification, the Red, Green, Red-edge and Blue 

bands are the most important band reflectance (Table 11). For the 

vegetation indices, the most important are NNIR, NR and NDVI, 

while the most important bathymetric variable is the Blue/Green 

ratio. For the Richibucto images, the most important variables are 

the Green2 and Green1 band reflectance across all three sites. 

Among all the indices, the most important variables are the NG-

2 vegetation index and the Blue1 / Green2 bathymetric ratio. 

 

Table 11.  List of the 20 most important input variables 

computed when applying RF to the original band 

reflectance, associated vegetation indices, and 

bathymetric ratios of the UAV images as a function 

of the image or site. 

Souris 
Richibucto 

Site4 Site5 Site6 

NNIR Green2 Green2 Green2 

Blue / Green Green1 REVI-1 Green1 

Red Blue2 REVI-2 NG-2 

Green Blue1 / Green2 RedEdge1 Red1 

RedEdge Blue1 / Green1 NG-1 Blue1 / Red1 

NR Blue1 Green1 Blue1 / Red2 

Blue GRVI-2 Red1 RedEdge3 

NDAVI NG-2 Blue1 / Green2 Red2 

REVI NNIR-2 NG-2 NR-1 

WAVI GRVI-1 Blue1 / Red1 Blue2 / Red2 

NDRE Red2 Blue2 / Red1 NG-1 

Blue / Red Blue1 / Red1 Blue1 / Green1 Blue1 / Green2 

NDVI NNIR-1 NR-1 GRVI-1 

DVI RVI-1 Blue2 / Green1 Blue2 / Red1 

GDVI Red1 Blue2 / Green2 Blue2 / Green2 

NIR REVI-2 Red2 NNIR-2 

RVI REVI-1 Blue1 / Red2 RedEdge1 

GNDVI RedEdge3 RedEdge2 RVI-2 

NG Blue1 / Red2 Blue2 Blue1 / Green1 

GRVI NG-1 Blue2 / Red2 GRVI-2 

 

3.3 Validation 

All the images were compared to sonar data categorized into two 

classes (“Eelgrass Present” and “Eelgrass Absent”). For the 

Souris image, the classification with the original UAV band 

reflectance, associated vegetation indices and bathymetric ratios 

show an overall validation accuracy of 91.3% and a kappa 

coefficient of 0.57 (Table 12). The highest PA (94.57%) and UA 

(95.6%) occurred for the “Eelgrass Absent” class. The “Eelgrass 

Present” class had a PA of 65.2% and a UA of 60%. The 

classified image correlates well with the sonar track (Figure 7). 

For the images of Richibucto, we achieved an overall validation 

accuracy for the presence/absence of eelgrass of 86.9% and a 

Kappa coefficient of 0.73 (Table 13). The highest PA (88.1%) is 

for the “Eelgrass Present” class, while the highest UA (91.3%) is 

for the “Eelgrass Absent” class. The classified images correlate 

well with the sonar tracks (Figure 8). 

 

Table12.  Confusion matrix (in GPS sonar points) and 

associated accuracies when the UAV classified image 

of Souris is compared to the sonar data (*).  

 Sonar data 

Im
ag

e 

Class Eelgrass 

Present 

Eelgrass 

Absent 

UA (%) EC (%) 

Eelgrass Present 15 10 60.00 33.33 

Eelgrass Absent 8 174 95.60 16.67 

PA (%) 65.21 94.57 Overall Accuracy (%) = 91.30 

Kappa coefficient = 0.57 EO (%) 32.67 17.09 

(*) Bold figures indicate well-classified pixels 

 

 

Figure 7.  Sonar track overlaid over the UAV classified image 

for Souris. 

Table 13. Confusion matrix (in GPS sonar points) and 

associated accuracies when all the UAV classified 

images of Richibucto with Random Forests are 

compared to the sonar data (*) 

 Sonar data 

Im
ag

e 

Class Eelgrass 

Present 

Eelgrass 

Absent 

UA (%) EC (%) 

Eelgrass Present 356 81 81.46 18.54 

Eelgrass Absent 48 501 91.26 8.74 

PA (%) 88.12 86.08 Overall Accuracy (%) = 86.90 

Kappa coefficient = 0.73 EO (%) 11.88 13.92 

(*) Bold figures indicate well-classified pixels 

 
(a) Site 4 

 

(b) Site 5 

 
(c) Site 6 

 

Figure 8.  Sonar track overlaid over the UAV classified image 

for a) Site 4, b) Site 5, and c) Site 6 in Richibucto. 
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4. DISCUSSIONS 

This study has shown the potential of applying the RF classifier 

to UAV multispectral images to produce eelgrass bed distribution 

maps in the Souris River (Prince Edward Island) and Richibucto 

River (New Brunswick) estuaries. Following Clyne et al. (2021), 

several vegetation indices and bathymetric ratios were added to 

the classification of both images. The training areas for both 

classifications were created by air photo interpretation, and the 

subsequent image classification is thus highly dependent on this 

step. Using only the band reflectance images, we achieved a 

mean J-M distance of 1.96 for the Souris image and higher than 

1.93 for the Richibucto images, indicating a good class spectral 

separability for the two estuaries. These mean J-M distances were 

comparable to the value of 1.98 for Forsey et al. (2000), who used 

a Worldview-2 image to map eelgrass beds in New Brunswick. 

They were higher than 1.84 obtained by Clyne et al. (2021), who 

used a Landsat-8 OLI image to map eelgrass beds in James Bay. 

For the Souris image (Table 7), the lowest J-M distance (1.86) 

occurred between the “Deep seagrass” and “Deep water” classes, 

probably because both classes are related to deeper water. The 

highest J-M distance (1.99) occurred between the “Eelgrass” and 

“Deep water” or “Sand floor” classes. The mean J-M distances 

were lower for the Richibucto images (Table 8). The lowest 

values occurred between the “Eelgrass” and “Deep water” classes 

in Sites 4 and 5 but between the “Eelgrass” and “Sand floor” 

classes in Site 6. The highest J-M distance occurred between the 

“Oyster cages” and “Deep water” classes in Sites 5 and 6 but 

between the “Sand floor” and the “Eelgrass” or “Deep water” 

classes in Site 4.  

 

We achieved an overall classification accuracy equal to or higher 

than 99.0% with both images (Tables 9 and 10). These accuracies 

are slightly higher than those obtained by Gallant et al. (2021) 

with the Souris UAV image. The confusion matrix showed that 

the largest confusion was between the “Eelgrass” and “Shallow 

seaweed” classes for the Souris image (Table 9), such as Gallant 

et al. (2021). For the Richibucto images (Table 10), the largest 

confusion was between the “Eelgrass” and “Deep water” classes 

in Sites 4 and 5 or with the “Sand floor” class in Site 6.  

 

The resulting maps were compared with sonar data. The overall 

validation accuracy for the eelgrass presence/absence obtained 

with the independent sonar dataset was 91.3% with the Souris 

image (Table 12) and 86.9% with the Richibucto image (Table 

13). These accuracies were comparable to 90.8% of Gallant et al. 

(2021), which used a UAV RGB image on the same area. It 

agrees with other studies which applied a Support Vector 

Machine classifier to UAV RGB image that was segmented with 

an object-based image analysis procedure (OBIA), such as 

Nahirnick et al. (2019a) (86.5% - 96.3%), Nahirnick et al. 

(2019b) (91.5%), Svane et al. (2021) (93%), and Krause et al. 

(2021) (90%). However, Svane et al. (2021) produced a map with 

various eelgrass cover rate classes with an accuracy of 90%.  

 

The variable importance plots show that Red, Green, Red-edge 

and Blue reflectances are the most important bands for the Souris 

image classification. The importance of the Red band was already 

observed by Gallant et al. (2021) with the UAV RGB image. We 

explain this importance by the reddish colour of the sand floor 

related to the high content of ferric iron oxide in the surface 

material of this area. The most important reflectance across all 

the sites is the Green2 and Green1 reflectances for the Richibucto 

images. Given that the image was acquired in Richibucto at low 

tide, the importance of the green band is probably linked to the 

presence of emerged eelgrass beds.  

 

For the Souris image, amongst all the vegetation indices, the most 

important is NNIR. NG-2 seems to be very important across all 

sites for the Richibucto images, particularly for sites 4 and 6. We 

can explain this result because some of the eelgrass beds can 

emerge given the low tide in Richibucto or because the water is 

shallow enough to detect eelgrass, such as in Souris.  

 

Because we did not explicitly apply a water column correction to 

the reflectance, such as in Leblanc et al. (2020), the addition of 

bathymetric ratios in the classification allows considering the 

influence of the water column to some extent the classification. 

Indeed, the bathymetric ratios play a more significant role in the 

classification than several vegetation indices. The Blue/Green 

ratios are among the most important variables for the Souris and 

the Richibucto image classifications.  

 

5. CONCLUSIONS 

This study shows the potential of applying the RF classifier to the 

classification of UAV multispectral images for mapping eelgrass 

beds. Following Clyne et al. (2021), some vegetation indices and 

bathymetric ratios were added to the image classification. We 

achieved an overall image classification accuracy of 99.0% and 

more for the study areas. The confusion matrix showed that the 

largest confusion is between the “Eelgrass” and the “Shallow 

seaweed” classes for the Souris image. For the Richibucto 

images, the biggest confusion is between the “Eelgrass” and 

“Deep water” classes for Sites 4 and 5 and between the 

“Eelgrass” and “Sand floor” classes for Site 6. All the classified 

images produced in this study were cross-validated with sonar 

data. The overall validation accuracy for the presence/absence of 

eelgrass obtained with the independent sonar dataset was 91.3% 

with the Souris image and 86.9% with the Richibucto images. 

The accuracies for both estuaries were comparable to previous 

studies using UAV RGB images, such as Gallant et al. (2021) 

(90.8%), Nahirnick et al. (2019a) (between 86.5% and 96.3%), 

Nahirnick et al. (2019b) (91.5%), Krause et al. (2021) (90%), and 

Svane et al. (2021) (93%).  

 

Our study tested UAV imagery for mapping the distribution of 

eelgrass beds in two contrasting estuaries in Atlantic Canada. 

Further work is needed to test this methodology in other estuaries 

of Atlantic Canada. While having promising results, there is still 

some confusion between eelgrass beds and seaweed. Further 

investigation is needed to reduce this confusion. The resulting 

maps were only presence/absence eelgrass maps, and additional 

work is necessary to map eelgrass bed coverage or biomass, such 

as in Konar et al. (2018) and Svane et al. (2021). Also, the study 

occurs in areas with only one seagrass species, and further work 

is needed to test the method in areas with multiple seagrass 

species to produce species maps, such as Traganos and Reonartz 

(2018) and Kovacs et al. (2018). In this research, we only used 

UAV images acquired on the same day; further work is needed 

to test whether the use of multi-temporal UAV imageries will 

produce better results. Given the small pixel size for the UAV 

images and the high number of input features in the classification, 

applying the method to a high number of estuaries could lead to 

a high volume of data. The small pixel size of the UAV images 

is also suitable to apply an OBIA before classification, such as in 

Nahirnick et al. (2019a; 2019b), although Duffy et al. (2018) 

showed that an unsupervised classification performs better than 

OBIA methods. Also, by contrast to Leblanc et al. (2020), and 

like the other UAV-based eelgrass studies (Duffy et al., 2018; 

Konar et al., 2018; Nahirnick et al.,2019a; 2019b; Krause et al., 

2021; Svane et al., 2021), no water column correction was 

performed on the image. Additional work is needed to test 

whether a water column correction method such as the one of 
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Lyzenga (1981) will improve the classification. Finally, our UAV 

image was acquired under clear sky conditions, but there is also 

the need to test whether cloudy sky images will be suitable.  

 

ACKNOWLEDGMENTS 

This study was funded through Environment Canada, 

Department of Fisheries and Oceans, MITACS, the Coalition-

SGSL, and the University of New Brunswick via grants and 

contracts awarded to Prof. Dr. B. Leblon. The authors wish to 

acknowledge and thank Brendan Gaudet and Greg Norris for 

operating the UAV, Lucas Sherry for collecting the sonar data, 

and Kevin Clyne for processing the sonar data. 

 

REFERENCES 

Aarts, L., Larocque, A., Leblon, B., Douglas, A., 2020. Use of 

UAV Imagery for Eelgrass Mapping in Atlantic Canada. ISPRS 

Annals Photogramm Remote Sens Spatial Info Sci, V-3-2020, 

287-292. 

 

Barnes, E.M., Clarke, T.R., Richards, S.E., 2000. Coincident 

detection of crop water stress, nitrogen status and canopy density 

using ground-based multispectral data. In Proc. Fifth Int. Conf. 

Precision Agriculture, Madison, WI, USA, 16–19 July 2000; 

Robert, P.C., Rust, R.H., Larson, W.E., Eds.; American Society 

of Agronomy (CD-ROM): Madison, WI, USA. 

 

Birth, G.S., McVey, G.R., 1968. Measuring the color of growing 

turf with a reflectance spectrophotometer. Agron. J., 60, 640–643 

 

Breiman, L., 2001. Random Forests. J Mach Learn, 45(1), 5-32. 

 

Buschmann, C., Nagel, E., 1993. In vivo spectroscopy and 

internal optics of leaves as basis for remote sensing of vegetation. 

Int. J. Remote Sens., 14, 711–722.  

 

Byatt, J., LaRocque, A., Leblon, B., Harris, J., McMartin, I., 

2019. Mapping surficial materials in Nunavut using 

RADARSAT-2 C-HH and C-HV, Landsat-8 OLI, DEM, and 

slope data. Can J. Remote Sens., 44(5), 491-512. 

 

Cao, Q., Miao, Y., Shen, J., Yu, W., Yuan, F., Cheng, S., Huang, 

S., Wang, H., Yang, W., Liu, F., 2016. Improving in-season 

estimation of rice yield potential and responsiveness to 

topdressing nitrogen application with Crop Circle active crop 

canopy sensor. Precision Agric., 17, 136–154 

 

Clyne, K., LaRocque, A., Leblon, B., Costa, M., Leblanc, M.L., 

Rabbitskin, E., Dunn, M., 2021. Use of Landsat-8 OLI imagery 

and local indigenous knowledge for eelgrass mapping in Eeyou 

Istchee, Proc. XXIV ISPRS Congress (Accepted) 

 

Congalton, R.G., 1991. A review of assessing the accuracy of 

classifications of remotely sensed data. Remote Sens. Environ., 

37(1), 35–46 

 

DFO, 2009. Does eelgrass (Zostera marina L.) meet the criteria 

as an ecologically significant species? Department of Fisheries 

and Oceans, Canadian Science Advisory Secretariat, Research 

Document n°2009/018. pp. 1-11. Retrieved from: http://waves-

vagues.dfo-mpo.gc.ca/Library/337549.pdf 

 

Duffy. J. P.; Pratt, L.; Anderson, K.; Land, P. E.; Shutler, J. D. 

Spatial assessment of intertidal seagrass meadows using optical 

imaging systems and a lightweight drone. Estuarine, Coastal 

Shelf Sci., 2018, 200,169-180 

Forsey, D., LaRocque, A., Leblon, B., Skinner, M., Douglas, A., 

2020. Refinements in eelgrass mapping: a comparison between 

Random Forest and the maximum likelihood classifier. Can J. 

Remote Sens., 46, 491–512.  

 

Gallant, E., LaRocque, A., Leblon, B., Douglas, A., 2021. 

Eelgrass mapping with Sentinel-2 and UAV data in Prince 

Edward Island (Canada), ISPRS Annals Photogramm Remote 

Sens Spatial Info Sci,, V-3-2021, 125-132. 

 

Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R., 2006. 

Random Forests for land cover classification. Pattern Recogn. 

Lett. 27(4), 294–300.  

 

Heck, K.L., Able, K.W., Roman, C.T., Fahay, M.P., 1995. 

Composition, abundance, biomass, and production of 

macrofauna in a New England estuary: Comparisons among 

eelgrass meadows and other nursery habitats. Estuaries, 18, 379–

389. 

 

Kenny, A.J, Cato, I., Desprez, M., Fader G., Schüttenhelm, 

R.T.E., Side, J., 2003. An overview of seabed-mapping 

technologies in the context of marine habitat classification, ICES 

J Mar Sci., 60(2), 411–418.  

 

Konar, B., Iken, K., 2018. The use of unmanned aerial vehicle 

imagery in intertidal monitoring. Deep Sea Res Part II: Topical 

Stud Oceanogr, 147, 79-86. 

 

Kovacs, E., Roelfsema, C., Lyons, M., Zhao, S., Phinn, S., 2018. 

Seagrass habitat mapping: how do Landsat 8 OLI, Sentinel-2, 

ZY-3A, and Worldview-3 perform? Remote Sens. Lett., 9, 686–

695, 

 

Krause, J.R., Hinojosa-Corona, A., Gray, A.B., Burke Watson, 

E., 2021. Emerging sensor platforms allow for seagrass extent 

mapping in a turbid estuary and from the meadow to ecosystem 

scale. Remote Sens., 13(18), 3681.  

 

Leblanc, M.-L., LaRocque, A., Leblon, B., Hanson, A.R., 

Abraham, K., Humphries, M., 2020. Landsat time-series to 

evaluate seagrass dynamics: a case study in northeastern New 

Brunswick, Canada. Can. J. Remote Sens., 47(129), 1-24 

 

Liaw, A., Wiener, M., 2018. Package Random Forest: Breiman 

and Cutler’s Random Forests for classification and regression, 

4(29), 6-10., Available online: 

https://www.stat.berkeley.edu/~breiman/RandomForests/. 

(Accessed on 25 March 2020).  

 

Lyzenga, D.R., 1981. Remote sensing of bottom reflectance and 

water attenuation parameters in shallow water using aircraft and 

Landsat data.” Int. J. Remote Sens., 2(1), 71–82.  

 

MicaSense Inc., 2017, MicaSense RedEdge multispectral 

camera: user manual. MicaSense Inc., Seattle (WA, U.S.A.), 247 

pages 

 

MicaSense Inc., 2019. The RedEdge-MX Dual camera imaging 

system. MicaSense Inc., Seattle (WA, U.S.A.), 2 pages 

 

Nahirnick, N.K., Hunter, P., Costa, M., Schroeder, S.; Sharma, 

T., 2019a. Benefits and challenges of UAS imagery for eelgrass 

(Zostera marina) mapping in small estuaries of the Canadian 

West Coast. J. Coastal Res., 35(3), 673–683. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-649-2022 | © Author(s) 2022. CC BY 4.0 License.

 
655

http://waves-vagues.dfo-mpo.gc.ca/Library/337549.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/337549.pdf


 

Nahirnick, N.K., Reshitnyk, L., Campbell, M., Hessing-Lewis, 

M., Costa, M., Yakimishyn, J., Lee, L. 2019b. Mapping with 

confidence; delineating seagrass habitats using Unoccupied 

Aerial Systems (UAS), Remote Sens Ecol Conserv, 5(2),121–135 

 

Richards, J.A., Jia, X., 2006. Remote sensing digital image 

analysis: an introduction. Springer. New York. ISBN 978-3-642-

30062-2.  

 

Rouse, J., Haas, R.H., Schell, J.A., Deering, D., 1974. Monitoring 

vegetation systems in the Great Plains with ERTS. NASA. 

Goddard Sp. Flight Cent. 3d ERTS-1 Symp. 1974, 1. 

 

Sripada, R.P., Heiniger, R.W., White, J.G., Meijer, A.D., 2006. 

Aerial color infrared photography for determining early in-

season nitrogen requirements in corn. Agron. J., 98, 968–977. 

 

Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A., 

2008. Conditional variable importance for Random Forests. BMC 

Bioinfor, 9, 307. 

 

Stumpf, R.P., Holderied, K., Sinclair M., 2003. Determination of 

water depth with high-resolution satellite imagery over variable 

bottom types. Limnol Oceanogr., 48(1 II), 547–556.  

 

Traganos, D., Reinartz, P., 2018. Mapping Mediterranean 

seagrasses with Sentinel-2 imagery. Mar. Pollution Bull., 134, 

197–209 

 

Svane, N., Lange, T., Egemose, S., Dalby, O., Thomasberger, A., 

Flindt, M.R., 2021. Unoccupied aerial vehicle-assisted 

monitoring of benthic vegetation in the coastal zone enhances the 

quality of ecological data. Prog Phys Geogr., December. 

doi:10.1177/03091333211052005 

 

Tucker, C.J., 1979. Red and photographic infrared linear 

combinations for monitoring vegetation. Remote Sens. Environ., 

8, 127–150. 

 

Ventura, D., Bonifazi, A., Gravina, M.F., Belluscio, A., 

Ardizzone, G., 2018. Mapping and classification of ecologically 

sensitive marine habitats using Unmanned Aerial Vehicle (UAV) 

imagery and object-based image analysis (OBIA). Remote Sens., 

10(9), 1331. 

 

Villa, P., Mousivand, A., Bresciani, M., 2014. Aquatic vegetation 

indices assessment through radiative transfer modelling and 

linear mixture simulation. Int. J. Appl. Earth Obs. Geoinf., 30, 

113–127 

 

Waske, B., Braun, M., 2009. Classifier ensembles for land cover 

mapping using multitemporal SAR imagery. ISPRS J 

Photogramm, 64 (5), 450-457.  

 

Webster, T., McGuigan, K., Crowell, N., Collins, K., 

MacDonald, C., 2015. Tabusintac 2014 topo-bathymetric Lidar 

and eelgrass mapping report. Technical report, Applied 

Geomatics Research Group, NSCC, Middleton (NS).  

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-649-2022 | © Author(s) 2022. CC BY 4.0 License.

 
656

https://doi.org/10.1177/03091333211052005



