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ABSTRACT:

Deforestation in tropical rainforests is a major source of carbon dioxide emissions, an important driver of climate change. For
decades, the Brazilian government has maintained monitoring programs for deforestation detection in the Brazilian Legal Amazon
area based on remotely sensed optical images in a protocol that involves considerable efforts of visual interpretation. However, the
Amazon region is covered with clouds for most of the year, and deforestation assessment can rely only on images acquired in the
dry season when cloud-free images are more likely to capture. One possibility to lessen that restriction and enable deforestation
detection throughout the year is to synthesize cloud-free optical images from corresponding SAR images, which are only marginally
influenced by atmospheric conditions. This work compares a set of such image synthesis methods, considering deforestation
detection in the Amazon forest as the target application. Specifically, we evaluate three deep learning methods for cloud removal in
Sentinel-2 images: a conditional Generative Adversarial Network (cGAN) based on the pix2pix architecture; an extension of that
method, which uses atrous convolutions (Atrous cGAN) to enhance fine image details; and a non-generative method (DSen2-CR)
based on residual networks. In the evaluation, we assess both the quality of the generated images and the accuracy obtained when
performing deforestation detection from those images. We further compare those methods with an image aggregation tool available
in Google Earth Engine (GEE Tool), which creates cloud-free mosaics from sequences of images acquired at nearby dates. In this
study, we considered two sites in the Brazilian Amazon, characterized by distinct vegetation and deforestation patterns. In terms
of the quality metrics and classification accuracy, the Atrous cGAN was the best performing deep learning method. The GEE Tool
outperformed all those methods when dealing with images from the dry season but turned out to be the poorest performing method
in the wet season.

1. INTRODUCTION

Deforestation is one of the most significant sources of CO2

emissions to Earth’s atmosphere. With 5.5 million km2, the
Amazon rainforest is the largest tropical forest in the world. In
the past decade, the forest has become, for the first time a source
rather than a sink of CO2. According to (Gatti et al., 2021), the
emissions currently amount to a billion tons of carbon dioxide
per year, most of which are due to forest fires deliberately set
to clear land for subsistence agriculture, cattle farming and soy
plantations.

In the past decade, the Amazon forest has become, for the first
time a source rather than a sink of CO2. According to (Gatti et
al., 2021), the emissions currently amount to a billion tons of
carbon dioxide per year, most of which are due to forest fires
deliberately set to clear land for subsistence agriculture, cattle
farming and soy plantations.

The Brazilian government maintains the Monitoring Program
for the Amazon and Other Biomes (PAMZ+) (de Almeida et al.,
2021), which includes the Brazilian Amazon Rainforest Monit-
oring Program by Satellite (PRODES) (INPE, 2021). PRODES
has produced reports on newly deforested areas each year since
1988. The reports produced by PRODES present official figures
∗ Corresponding author

and typically result in on-the-spot checks that involve the mo-
bilization of substantial human and material resources. There-
fore, high accuracy of the related classification processes is re-
quired, thus demanding considerable effort to audit the outcome
of automatic interpretation tools visually.

Furthermore, climate conditions restrict the deforestation mon-
itoring frequency as the Amazon region is covered with clouds
for most of the year. For that reason, the PRODES program re-
lies on anniversary images captured in the dry season (from late
May to late August), when cloud-free images are more likely
to be obtained. Interpretation of SAR data could be an altern-
ative outside the dry season, as they are marginally affected by
atmospheric conditions. However, SAR images are more chal-
lenging to interpret, visually or automatically.

The recent literature reports the efforts of several researchers to
conceive methods able to synthesize cloud-free optical images
from SAR images. The present work aims at evaluating a set
of such methods, having deforestation detection in the Amazon
forest as the target application. Specifically, we compare three
deep learning-based methods for cloud removal in Sentinel-2
images:

• a conditional Generative Adversarial Network (cGAN)
based on the pix2pix model that synthesizes a cloud-free
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version of a cloudy Sentinel-2 image, using as inputs the
original optical image and a Sentinel-1 image acquired at
a close date, (Bermudez et al., 2019);

• a similar cGAN method based on a different architecture,
i.e, the Atrous cGAN (Turnes et al., 2020), and

• a non-generative method, called DSen2-CR (Meraner et
al., 2020), which also takes as input a cloudy Sentinel-2
image and a corregistered contemporary Sentinel-1 image
to generate a cloud-free Sentinel-2 image version.

Additionally, we assess the performance of a Google Earth
Engine tool (GEE tool), introduced in (Schmitt et al., 2019),
which essentially aggregates cloud-free Sentinel-2 images of
user-defined areas captured within a selected time range.

Finally, besides evaluating the quality of the images produced
with those methods, we employed the generated images in
the deforestation detection task, considering two sites in the
Brazilian Amazon, which are characterized by distinct veget-
ation and deforestation patterns. As baselines, we used real op-
tical, cloud-free Sentinel-2 images, and plain SAR Sentinel-1
images for the same task.

The contribution of this work is twofold:

• an evaluation of state-of-the-art methods for cloud removal
in optical images of the Amazon rainforest; and

• an evaluation of the cloud-free images produced by those
methods as inputs for an automatic deep-learning-based
deforestation detection network.

The remainder of this work is organized as follows: Section 2
presents the selected cloud removal methods, namely, pix2pix,
Atrous cGAN and DSen2-CR; and the image aggregation (GEE
tool) method. Section 3 presents the experiments carried out,
the study areas, and the configuration of each method, as well
as the metrics used in the evaluation. Section 4 presents a both a
qualitative analysis of the synthesized images, and a quantitat-
ive analysis based on image similarity metrics and classification
performance.

2. METHODS

For all but the (GEE tool) method, a pair of co-registered
Sentinel-1 (S1) and cloudy Sentinel-2 (S2 Cloudy) images is
used as input, as well as a target cloud-free Sentinel-2 image
(S2 Clear) from a nearby date. As the end objective is to use
the synthesized cloud-free images for deforestation detection,
and as that application requires images from different epochs
(T0 and T1), we synthesize one image for each epoch, using
corespondent image triplets: S1, S2 Cloudy and S2 Clear.

2.1 pix2pix

This method performs pixel to pixel mapping using a condi-
tional GAN (cGAN) model (Isola et al., 2017). Its basic ad-
versarial training scheme is presented in Figure 1.

The input of the generator network (G) is a patch extracted from
the concatenation of a co-registered Sentinel-1 (S1) image and
a Sentinel-2 cloudy (S2 Cloudy) image. The input is forwarded
through a U-Net based generator, which tries to produce a S2

cloud-free synthesized image patch. During training, patches of
the real (S2 Clear) and synthesized image patches are presented
to a discriminator (D) alternately, together with the correspond-
ing (conditioning) patches of the input image pair (S1 and S2
Cloudy). In the adversarial training scheme, G tries to produce
synthetic outcomes which are similar to the real (S2 Clear) im-
age patches, with the aim of fooling the discriminator D, i.e.,
making it incorrectly classify them as real. At the same time,
D is trained to distinguish between real and synthesized im-
age patches, considering the corresponding conditioning image
patches (from S1 and S2 Cloudy). When training finishes, it is
expected that G is able to properly map the inputs (S1 and S2
Cloudy) to the target (S2 Clear) image.

Further detains about the architecture of the networks that com-
prise the method evaluated in this work can be found in (Ber-
mudez et al., 2019).

Figure 1. cGAN adversarial training. pix2pix uses U-Net as
generator, while Atrous cGAN uses Deeplabv3 as generator.

2.2 Atrous cGAN

The Atrous cGAN method basically extends the pix2pix method
by adding atrous convolutions to capture and properly generate
fine details in the reconstruction outcome, thus producing less
noisy images. Originally, the Atrous cGAN method was em-
ployed to translate S1 images into LANDSAT-8 images (Turnes
et al., 2020). In this work, we adapted it to synthesize S2 cloud-
free images from the co-registered S1 and S2 cloudy images.

The underlying deep learning model considers multiple recept-
ive fields, both in the generator G and the discriminator D archi-
tectures. The generator includes a backbone based on the Dee-
plabv3 (Chen et al., 2017) architecture, using several dilated
convolutions in parallel, and a very deep residual configura-
tion. Additionally, the discriminator uses parallel dilated con-
volutions to grab multiscale information, being able to better
discriminate real and synthetic samples. Further detains about
the architecture of the networks can be found in (Turnes et al.,
2020).

2.3 DSen2-CR

The input of this method is the concatenation of S1 and S2
Cloudy images. The resulting tensor is forwarded through a
sequence of residual blocks, which resulting representation is
added to the original S2 Cloudy image. Thus, the collection
of residual blocks learns the corrections that need to be made
to the S2 Cloudy image in order to produce the desired cloud-
free synthetic image. During training, the generated images are
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compared with the corresponding cloud-free target image (S2
Clear) in the loss function. The method’s basic architectural
scheme is presented in Figure 2. Details about the architecture
of the network can be found in (Meraner et al., 2020).

As the input (S2 Cloudy) and target (S2 Clear) optical images
may present undesirable spectral differences due to their tem-
poral distance, using S2 Clear as target might result in synthes-
izing errors. To mitigate this problem, DSen2-CR incorporates
a cloud-regularized loss function. First, a cloud mask is pre-
computed using the input S2 Cloudy image. During training,
the L1 loss is calculated with S2 Clear as target only in the
cloud-covered areas; in the cloud-free areas S2 Cloudy original
pixels are used as target in the L1 loss.

Figure 2. DSen2-CR basic architecture.

2.4 Google Earth Engine (GEE tool)

GEE tool is a cloud computing-based platform that (in most
cases) allows aggregating cloud-free Sentinel-2 multispectral
images (Schmitt et al., 2019). Contrary to the aforementioned
DL-based methods, the GEE tool does not rely on statistical
or machine learning algorithms, it rather uses posterior in-
formation calculated from Sentinel-2 images acquired in a user
defined time period.

The method’s workflow is composed of three main stages: (1)
the Query Module loads images from the image collection; (2)
the Quality Score Module produces pixel-wise cloud scores;
and the (3) Image Merging Module creates cloud-free images
by mosaicking the less cloudy pixels from the image collection,
according to (2).

It is important to observe that the tool’s outcome may still con-
tain cloud covered pixels, depending on the time period spe-
cified by the user.

3. EXPERIMENTS

3.1 Study Areas

The selected methods were evaluated in two regions of the
Brazilian Legal Amazon. The datasets comprise co-registered

S1 and S2 (clear and cloudy) images. The first study site is
located in the Pará (PA) State, Brazil, covering an area that cor-
responds to 17730× 9200 pixels. The second site is located in
the Mato Grosso (MT) State, Brazil, covering an area that cor-
responds to 16795× 10420 pixels. Figure 3 shows the location
of the two study areas. For the first site (PA), we considered
the deforestation that occurred between 2018 and 2019; for the
second site (MT), we considered the deforestation that occurred
between 2019 and 2020.

For the pix2pix and Atrous cGAN methods, we excluded the
Sentinel-2 bands with 60m resolution. For DSen2-CR, we used
all Sentinel-2 bands. In all cases, we resampled some of the
bands, standardizing all of them to 10m resolution. Consider-
ing that two dates T0 and T1 are required to perform deforest-
ation detection, we performed the synthesis on both dates for
each study area. Specific acquisition dates of Sentinel-1 and
Sentinel-2 images are presented in Table 1.

3.2 Experimental Protocol

For the DL-based adversarial image synthesis methods, i.e.,
pix2pix and Atrous cGAN we used the Adam optimizer starting
with a 2e-4 learning rate for both the generator and the discrim-
inator networks. Following (Turnes et al., 2020), for both meth-
ods, we employed a learning rate decay policy to reach stable
models. Following (Meraner et al., 2020), we used Nadam op-
timizer with 7e-5 learning rate for the DSen2-CR method.

We used input patches of size 256 × 256 for Pix2pix and At-
rous cGAN, and 128 × 128 for DSen2-CR. For the adversarial
approaches, we used the loss function described in (Turnes et
al., 2020), with λ = 100. In all cases, we trained the networks
for 60 epochs.

To evaluate the quality of the images generated through the
aforementioned methods, we compared them with the corres-
ponding S2 Clear images for the different sites and epochs. Ac-
cordingly, we measured the following similarity metrics: peak
signal-to-noise ratio (PSNR); spectral angle mapper (SAM);
and structural similarity index (SSIM). The first two metrics as-
sess spectral similarity, while the latter is a perceptual-based
metric that evaluates the structure of objects in the visual
scenes. The higher the PSNR and SSIM and the lower the SAM,
the better the generated image.

To complete the analysis, we used the generated images for
semantic segmentation, employed for deforestation detection.
Following (Ortega et al., 2021), we used a ResUNet network to
perform semantic segmentation, taking as input a tensor formed
by stacking the corresponding T0 and T1 images. We trained
the network on the synthesized images and compared the res-
ults with those obtained using real cloud-free S2 images from
a nearby dates, and using S1 image pairs. The network’s in-
put patch size was 128 × 128 pixels. Further details about the
network architecture can be found at (Ortega et al., 2021).

For training the semantic segmentation network, we used the
Adam optimizer with a 0.001 learning rate. Due to the high
class unbalance, we used weighted categorical cross-entropy as
loss function, with a vector of weights [0.1, 0.9, 0] for forest,
deforestation, previous-deforestation classes. We used a batch
size of 32, and an the early stopping strategy, halting training
after 10 epochs without performance improvement over the val-
idation set.
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Images Para (PA) Mato Grosso (MT)
T0

2018
T1

2019
T0

2019
T1

2020
PRODES Ref. 21 July 24 July [02,18] August 04 August

S1 [19,26] July [21,26] July [02,09] August [03,08] August
S2 (Clear) [21,26] July [21,26] July [02,05] August [04,11] August

S2 (Cloudy) 11 June 06 July [26,29] August [15,18] September
GEE Tool 01 to 15 July 01 to 10 July 15 to 30 September 10 to 30 September

Table 1. Acquisition dates of Sentinel-1 and Sentinel-2 images of the selected study areas. Observe that the days between brackets
indicate that the corresponding images are mosaics of two Sentinel scenes, assemble to cover the whole study areas’ extents.

Figure 3. Geographical location of the study areas, and RGB composition of the corresponding Sentinel-2 images acquired at T0.

For training and testing, we used the same ground truth poly-
gons, obtained from the the PRODES database. We used ap-
proximately 40% of the sites’ areas for training, 10% for val-
idation, and 50% for testing. We present classification results
in terms of the F1 score for the deforestation class. The classi-
fication results correspond to the average values obtained from
three experiment runs. In all cases, we used code provided
by the original authors. In Atrous cGAN, we deactivated dro-
pout and increased the overlap at inference. Because of this, we
provide the network’s modified code. 1

4. RESULTS

4.1 Para Site (PA)

Figure 4 presents visual results for all methods (RGB composi-
tion). From left to right: clear and cloudy S2 images of the Para
region captured at close dates of T1, as indicated below the im-
age. The next four images illustrate the results obtained with
each evaluated method (pix2pix, Atrous cGAN, DSen2-CR, and
GEE tool), whereby the period given for the GEE-tool search
was 10 days.

Observing the images in Figure 4, it is possible to notice the su-
periority of Atrous cGAN over the other deep learning-based
methods, presenting the sharpest synthesis with colors very
similar to the S2 Clear image. This result was confirmed in
all experiment runs. Nevertheless, the best visual results were
obtained with the GEE tool. It should be noted that such good

1 Code available at https://github.com/DiMorten/ForstCARe-Clouds–tf1

performance delivered by GEE tool refers to a favourable setup.
Notice that the search period, in this case, fell in the centre of
the dry season when the probability of images with cloud-free
areas is maximum. Figure 5 shows GEE tool results for the
same area for a search period of 1 and 3 months, respectively,
in the wet season. Clearly, such results are inferior to those pro-
duced by the methods evaluated in this study (see Figure 4). In
short, GEE tool produced high-quality results in the dry sea-
son, but its performance tends to drop significantly outside this
range.

Table 2 reports the performance of each method in terms of
SAM, PSNR, and SSIM. The metrics’ values confirm the con-
clusions drawn from the visual results. Atrous cGAN produced
the best results in terms of the spectral similarity metrics PSNR
and SAM. However, the GEE tool delivered the highest SSIM.
That was an expected result, because the latter method does not
synthesize new images, but instead pieces together a mosaic
from images of a same area, which allows it to better preserve
structural similarity.

Area Method PSNR SAM SSIM

PA
Pix2pix 28.8 0.11 0.81

Atrous cGAN 31.9 0.06 0.85
DSen2-CR 31.7 0.07 0.87
GEE tool 29.9 0.09 0.91

Table 2. Similarity metrics for the images generated for the PA
site. The values correspond to averages, considering T0 and T1

synthetic images - best results in bold face.

We further assessed the performance of the methods as a kind of
representation learner for an automatic deforestation detector.
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Figure 4. Sample visual results of the images generated with the methods being compared for the PA site. From left to right: S2 Clear
(reference image), S2 Cloudy (cloudy image), results of the pix2pix, Atrous cGAN, DSen2-CR and GEE tool methods.

Figure 5. Sample visual results obtained with the GEE tool for
different search periods during the wet season in the PA area.

In that respect, Figure 6 presents classification results obtained
using real and synthesized images as inputs, in terms of aver-
aged F1 score. As expected, classification using real images as
input produced the best results: the highest F1 score was ob-
tained using a pair of S2 Clear images. The second best result
was obtained when classifying multidate pairs of S1 images,
with only a 13% drop in accuracy in relation to the best score.

In general, the classification outcomes obtained with synthes-
ized images produced worse scores as compared to aforemen-
tioned ones, with the best performing method being the GEE
tool, which resulted in a 13% drop compared to the S1 altern-
ative. The best performing method among the deep learning-
based ones was the Atrous cGAN, which outperformed its coun-
terparts by a large margin, of up to 20%.

4.2 Mato Grosso Site (MT)

By and large, the results for the MT site were similar to the
ones obtained for PA. Figure 7 presents the images generated
with the alternative methods for the MT site (T1 date). In this
case, the best visual results among the deep learning methods
were produced by the Atrous cGAN and pix2pix methods. Al-

S2 Clear S1 Pix2Pix Atrous-
cGAN

DSen2-CR GEE Tool
0

20

40

60

80

100

Sc
or

e

F1-score

Real images Synthesized images

Figure 6. Classification results in terms of F1 score for the
deforestation class in the PA site.

though DSen2-CR produced similar results, the synthesized im-
age shows a clear difference in the reconstruction of cloudy and
cloud-free regions from the original S2 Cloudy image.

In this case, however, the GEE tool generated an image that
still has cloud covered areas. As in the PA site, GEE tool also
presented low quality results during the wet season, failing to
produce a cloud-free image (Figure 9).

Table 3 presents similarity metrics values computed for the gen-
erated images. The results are again consistent with the qualit-
ative analysis. The Atrous cGAN method is associated with the
best spectral similarity metrics, while the GEE tool delivered
the highest SSIM value.

Area Method PSNR SAM SSIM

MT
Pix2pix 30.5 0.07 0.85

Atrous cGAN 31.0 0.06 0.87
DSen2-CR 25.2 0.23 0.85
GEE tool 29.8 0.08 0.92

Table 3. Similarity metrics for the images generated for the MT
site. The values correspond to averages, considering T0 and T1

synthetic images - best results in bold face.

Figure 8 presents deforestation detection results in terms of F1
score. Similarly to what was observed for the PA site, the best
results were obtained with the real images (S2 Clear and S1).
None of the cloud removal methods produced better classific-
ation results than the ones obtained with the S1 images. The
pix2pix and Atrous cGAN methods produced the best results
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Figure 7. Sample visual results of the images generated with the methods being compared for the MT site. From left to right: S2 Clear
(reference image), S2 Cloudy (cloudy image), results of the pix2pix, Atrous cGAN, DSen2-CR and GEE tool methods.

S2 Clear S1 Pix2Pix Atrous-
cGAN

DSen2-CR GEE Tool
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Real images Synthesized images

Figure 8. Classification results in terms of F1 score for the
deforestation class in the MT site.

among the synthesizing approaches with small drops of ap-
proximately 3% compared to the S1 images. In this case, the
deep learning methods outperformed GEE Tool by up to 6.7%
in terms of F1 score.

Figure 9. Sample visual results of GEE tool for different search
periods during the wet season in the MT area.

5. CONCLUSIONS

This work compared methods for cloud removal from optical
and SAR images for deforestation detection. Qualitatively, the
best results were obtained with the GEE tool and the Atrous
cGAN. Although the former method produced high quality res-

ults for the dry season, its performance significantly decreased
during the wet season.

In terms of deforestation detection, classification accuracy was
highest when optical cloud-free images were used, as expec-
ted. The next best result was obtained using Sentinel-1 images,
which indicates its usefulness for deforestation detection in the
Amazon region, where images are usually covered with large
amounts of clouds for most of the year. Although synthesized
cloud-free images produced satisfactory visual results and good
similarity metrics values, the classification performances ob-
tained when using those images were inferior to those obtained
with the Sentinel-1 baseline.

Although the GEE Tool has outperformed the deep-learning-
based methods for the dry season in the PA site, its perform-
ance tends to decrease for other periods of the year. Indeed, it
delivered the worst performance under all metrics among the
methods investigated in the middle of the wet season.
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