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ABSTRACT:

Deep learning-based land cover classifiers learnt from Satellite Image Time Series (SITS) are known to reach high performances.
In order to explain, at least partly, the rationale leading to each one of their decisions, attention-based architectures have been
proposed to automatically weight the importance of predefined data components in the classification process. Though generated
for each decision separately, the informational content conveyed by such explanations can remain insufficient to end-users because
of the complex nature of SITS. Moreover, getting a general perspective about the way a classifier works requires merging all
explanations for each class and relating them to its mode of operation, which is not always straightforward. A preliminary and
complementary approach for automatically identifying the data features detected by a pixel-wise deep spatiotemporal land cover
classifier and explaining its behavior at the class level is therefore proposed in this paper. Classified pixels are first described
using interpretable features coming under the form of data mining patterns. A redescription mining technique is then employed to
automatically select, for each class, the features matching the different activation level configurations of the layer that is assumed
to capture the aforementioned patterns. Experiments based on a Sentinel-2 time series and a deep spatiotemporal neural network
implementing a channel-separated processing as well as a channel-based attention mechanism show the interest of such a combined
approach.

1. INTRODUCTION

Land Cover Classification (LCC) is a task that has been bene-
fiting from the last advances in deep learning for several years
(Vali et al., 2020). Many works such as (Pelletier et al., 2019),
(Rußwurm and Körner, 2020) or (Censi et al., 2021) shows
that high-performance deep land cover classifiers can be learnt
from Satellite Image Time Series (SITS). Moreover, the black-
box nature of these Deep Neural Networks (DNNs) has been
being addressed using different methods designed to gain in-
sights into the rationale leading to their decisions (Campos-
Taberner et al., 2020). Among them, Saliency Masks (SMs)
have been proven to be effective at explaining each one of the
outcomes. These masks can be produced by recent explana-
tion methods such as Grad-CAM (Selvaraju et al., 2017) and
SHAP (Lundberg and Lee, 2017). Other explanation methods
can be established by integrating specific operators to both en-
hance model relevance and provide insights on the predictions,
for example using attention-based architectures. Works such
as (Garnot et al., 2020), (Rußwurm and Körner, 2020), (Ienco
et al., 2020), (Censi et al., 2021) or (Courteille et al., 2021) fol-
low this direction. These architectures weight the importance
of predefined data components in the classification process. To
our knowledge, no proposal taking into account all SITS dimen-
sions has emerged so far. In addition, no explanation regard-
ing the results supplied by attention mechanisms themselves
is provided. Finally, as decisions are explained independently
from each other, getting a general perspective about the way a
classifier works requires merging all explanations for each class
and relating them to its mode of operation, which is complex.
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A preliminary and complementary approach for identifying au-
tomatically the dataset features detected by a pixel-wise deep
spatiotemporal land cover classifier and explaining its function-
ing at the class level is therefore proposed in this paper. Each
classified pixel is first described using interpretable features
coming under the form of data mining patterns. These features,
built using all SITS dimensions, are detailed in Section 2. Each
pixel is then also characterized by the activation levels of the
layer that is assumed to summarize a large part of the processing
performed by the network and capture high level concepts sim-
ilar to the aforementioned intepretable features. Finally, pixel
descriptions are analyzed for each class separately using rede-
scription mining (Galbrun and Miettinen, 2017) to automatic-
ally extract correspondence rules between the interpretable fea-
tures and the different activation level configurations. The re-
description mining technique adopted in this paper is presen-
ted in Section 3. The proposed approach is assessed using a
Sentinel-2 time series and a spatiotemporal deep neural net-
work implementing a channel-separated processing as well as
a channel-based attention mechanism. This experimental set-
ting is described in Section 4. Obtained results are made avail-
able in Section 5. They show that, while preserving good per-
formances, the attention-based explanations of the decisions are
meaningful and can be enriched with class level explanations
relying on intepretable features identified by redescription min-
ing. Section 6 concludes this paper by summarizing the main
contribution, discussing its limits and pointing to possible fu-
ture work directions.
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2. GROUPED FREQUENT SEQUENTIAL PATTERNS

The first step of the proposed approach consists in character-
izing each pixel for which a ground truth is available with in-
terpretable features. It is assumed that some of these features
are captured by deep SITS land cover classifiers and could help
understand how the latter distinguish classes. With the object
of exploiting all SITS dimensions, spatiotemporal features ex-
tracted from each available channel are focused on. They are
obtained by mining the so-called Grouped Frequent Sequentiel
patterns originally proposed in (Julea et al., 2011). These pat-
terns are spatiotemporal data mining patterns designed to de-
scribe and summarize SITS at the pixel level in an unsuper-
vised way (Julea et al., 2011). We propose to characterize each
pixel with such patterns by extracting them from each channel
separately. Let us consider a given channel. Its pixel values are
first quantized with standard techniques such as equal frequency
bucketing or clustering (Julea et al., 2011). Quantized pixel val-
ues are then associated with symbols denoting the quantization
intervals they belong to. As a result, each pixel is described by
a symbolic series containing as many symbols as the number
of images involved in the SITS. The set of symbolic series de-
scribing pixels is then mined to extract all possible sequential
patterns such as 2 ) 3 ) 2. This pattern, if observed for a sym-
bolic series, indicates that, some time in the series, the value
of the pixel it describes is denoted by quantization interval ‘2’,
then, some times later, by interval ‘3’, and finally, some times
later by interval ‘2’ once again. No timing constraint is im-
posed, and there might be other symbols occurring in-between
the occurrences of the pattern symbols. Moreover, if this pat-
tern is observed for several other symbolic series, i.e., it affects
other pixels, no synchronisation constraint between pattern oc-
currences is considered. In other words, such a pattern is al-
lowed to occur anywhere in space and in time.

In order to reject spurious patterns and safely prune the search
space, two spatial constraints must be fulfilled. A pattern is re-
tained if: 1) it affects a sufficient number of pixels, i.e., it covers
a minimum surface and 2) affected pixels are sufficiently con-
nected to each other on average, i.e., they form homogeneous
regions in space, whatever their shapes. The first constraint is
simply set using a minimum surface threshold termed minimum
frequency threshold and denoted σ. The second constraint is
evaluated by considering the 3 × 3 neighbourhood of each af-
fected pixel, counting the number of immediate neighbours that
are also affected by the same pattern, averaging all of these
counts and checking whether this mean exceeds or not a min-
imum grouping threshold denoted κ. If unclassified pixels are
located in the neighborhood of affected pixels, it is assumed that
they are not affected by any pattern. Applying these spatial con-
straints allow to target sequential patterns whose occurrences
are frequent and grouped, hence the name of Grouped Frequent
Sequential Patterns or GFS-patterns. In addition, only maximal
GFS-patterns are selected to focus on the most specific ones.
A pattern is maximal if it is not contained in any other pattern
of the output collection. The reader is referred to (Julea et al.,
2011) for a more formal definition of GFS-patterns and details
regarding the corresponding extraction algorithm. Finally, max-
imal GFS-patterns are ranked using a dedicated and efficient
randomization approach designed to guide end-users towards
the most promising GFS-patterns, i.e., the patterns that are the
less or the more likely to occur in randomized versions of the
symbolic datasets. More details about this ranking method can
be found in (Méger et al., 2019). Back to this paper, it is pro-
posed to describe each pixel for which a ground truth is avail-

able by indicating, for each channel, which are the most prom-
ising maximal GFS-patterns occurring in its symbolic series,
if any. In the following, the most promising maximal GFS-
patterns are simply referred to as patterns when clear from the
context.

3. REDESCRIPTION MINING

Redescription mining is ‘a data analysis task that aims at find-
ing distinct common characterizations of the same objects’ (Gal-
brun and Miettinen, 2017). For instance, if geographical areas
are described on one side by the presence of mammal species,
and, on the the other side by their temperatures, it is possible
to find the following redescription: ’The areas inhabited by
either the Eurasian lynx or the Canada lynx are approximately
the same areas as those where the maximum March temperat-
ure ranges from -24.4 ◦C to 3.4 ◦C.’ (Galbrun and Miettinen,
2017). More precisely, let us suppose that each studied object
is described by as many tables as they are distinct characterisa-
tions. Within such tables, each object, i.e. a row, is described
by attributes, i.e. columns, whose type can be numerical, cat-
egorical or Boolean. Each table can be separately used to pro-
duce descriptions of the objects, i.e. expressions built using
the attributes of the table. Each expression allows to assign
a Boolean value to each object by checking whether it char-
acterizes it, even partially, or not. Back to the first redescrip-
tion example, it can be alternately expressed with descriptions
p = Eurasian lynx ∧ Canadian lynx and q = [−24.5 ≤
March maximum temperature ≤ 3.4] originating from the
table denoting the presence of mammal species and the table
reporting the temperatures respectively. The set of objects for
which a description is true is termed support. A redescription
is a pair of descriptions such as (p, q), also denoted p ∼ q, each
description being produced from a different table. In order to
rank redescriptions according to their accuracy, the Jaccard in-
dex of each description p ∼ q is computed as |supp(p)∩supp(q)|

|supp(p)∪supp(q)| .
It allows to evaluate to which extent the objects for which a
description is valid can be also characterized by the other de-
scription, i.e., to which extent descriptions p and q are similar.
The set of objects characterized by both p and q is the support of
redescription p ∼ q. Finally, redescription mining is about find-
ing all redescriptions by taking into account potential additional
constraints such as limiting the support of redescriptions, lim-
iting the length of descriptions or selecting redescriptions that
are statistically significant. The reader is referred to (Galbrun
and Miettinen, 2017) for a more formal and general overview
of redescription mining.

In this paper, objects are pixels described by 1) the different
activation levels of the neurons of the layer that is assumed
to capture GFS-patterns, and 2) GFS-patterns themselves. Let
ai denote the activation level of neuron i. Since we aim to
automatically match the different activation level configurations
with the presence of patterns, redescriptions such as [0.2 ≤
a1 ≤ 0.3] ∧ [0.7 ≤ a17 ≤ 0.9] ∼ 2 ) 3 ) 2 are expected.
The ReReMi algorithm proposed in (Galbrun and Miettinen,
2012a) is therefore considered. It can indeed handle Boolean
data and automatically determine the optimal numerical inter-
vals that should be considered when establishing a description
from numerical attributes. In addition, a wide range of descrip-
tions are explored. Disjonctions and conjonctions can be em-
ployed, and variables can be negated. Some restrictions are
nevertheless considered to make extractions tractable: the de-
scriptions are evaluated from left to right, irrelevant of the op-
erator precedence, and every variable can be used only once.
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Basically, ReReMi can extract redescriptions whose Jaccard in-
dex is above a user-defined threshold and whose descriptions
are statistically dependent. This dependence is checked using a
p-value expressing the probability that the supports of descrip-
tions overlap as much as observed. Such a test tends to favor
redescriptions with low support and can be counter-balanced by
rejecting those whose support is below a user-defined threshold.
Even if such additional constraints are fulfilled, the search space
remains exponential and an heuristic pruning is performed: the
algorithm starts from the best redescriptions whose descriptions
contain only one variable and greedily expand their descriptions
as long as they form the best redescriptions. More details about
the algorithm can be found in (Galbrun and Miettinen, 2012a).

4. EXPERIMENTAL SETTING

The experimental setting comprises a SITS for which a ground
truth and accurate classifiers are available in the literature as
well as a dedicated deep spatiotemporal land cover classifier
whose design is inspired by state-of-the-art classifiers.

4.1 The Sentinel-2 Time Series

A Sentinel-2 SITS covering the Réunion island, for which the
ground truth is available in (Dupuy et al., 2020) and land cover
classifiers have been proposed in (Ienco et al., 2020) and (Cour-
teille et al., 2021), is used. It consists of 21 images with size
6667 pixels × 5916 pixels. They were acquired between Janu-
ary and December 2017 and cover a 67 km x 59 km scene with
a 10 m spatial resolution. Clouds are filtered using a multi-
linear interpolation (Ienco et al., 2020). The following spectral
bands are available: B2 (blue), B3 (green), B4 (red) and B8
(near-infrared). The Normalized Difference Vegetation Index
(NDVI) and the Normalized Difference Water Index (NDWI)
(McFeeters, 1996) are also supplied. These standard indexes
are defined by NDV I = f(B8, B4) and NDWI = f(B3, B8)
with f(x, y) = x−y

x+y
, an homogeneous function from R∗

+ ×R∗
+

to [−1; 1]. Regarding the ground truth, 2% (880,828 pixels) of
the pixels are annotated according to 11 unbalanced land cover
classes listed in Table 3 along with their class ratios.

4.2 The Deep Spatiotemporal Land Cover Classifier

The Deep Spatiotemporal Land Cover Classifier (DSLCC) used
in this paper is designed to be as interpretable as possible. Neural
networks based on recurrent cell models such as Long Short
Term Memory (LSTM) ones (Ienco et al., 2017) are thus dis-
carded in favor of Convolutionnal Neural Networks (CNN) such
as (Pelletier et al., 2019) or (Ienco et al., 2020). Moreover, the
CNN field of view (fov), i.e., the extent of the input neighbor-
hood influence, can be controlled by design. This allows us to
specify the temporal fov, which is crucial when dealing SITS
as they generally contain few acquisitions. Following the work
of (Courteille et al., 2021), all the convolutions are performed
for each channel separately, and a auxiliary attention branch
weighting the importance of each channel in the decision of the
classifier is added. Such an attention operator is chosen because
it delivers meaningful explanations that can be easily merged
for each class using box plots (Courteille et al., 2021). Its ar-
chitecture is detailled in Table 1. Inspired by the work of (Pel-
letier et al., 2019), temporal convolutions (layers 3⃝ and 4⃝)
are applied at the pixel level. They are carried out after having
computed spatiotemporal ones whose spatial footprint is 3 × 3
to match the spatial extent used to extract GFS-patterns (layers
2⃝). As a result, a description based on 96 neurons is obtained

for each channel independently (layers 4⃝). These neurons are
assumed to summarize a large part of the processing performed
by the network and capture high level concepts similar to GFS-
patterns. Their number is set so as to limit the number of ac-
tivation level configurations and ease interpretability. Finally,
channel-wise features are gathered and then summarized with
dimension reduction layers ( 5⃝, 7⃝ and 8⃝). For each chan-
nel, an auxiliary attention branch (layer 6⃝) is added to weight
the importance of each channel in the decision of the classifier.
To fit the Réunion SITS with T = 21 timestamps, the size of
convolutional kernels is adjusted to set a temporal field of view
such that k1 = k2 = k3 = 7. Finally, the number of convolu-
tional filters progressively decreases with N1 = 256, N2 = 64,
and N3 = 32.

Layer Operation Specifications Tensor output
shape

1⃝ split 6 input channels (T, 3, 3, 1)(×6)

2⃝ (x 6) conv3d
kernel=(k1, 3, 3),
no padding,
nfilters = N1

(T1, 1, 1, N1)

3⃝ (x 6) conv1d
kernel=(k2),
with or no padding ,
nfilters = N2

(T2, N2)

4⃝ (x 6) conv1d
kernel=(k3),
with or no padding,
nfeat = N3

(T3, N3)

5⃝ stack 6 channels from 4 (6, T3, N3)
6⃝ attention 6 weights αi

7⃝ from 5⃝ hidden dense + relu 256 neurons
8⃝ final dense + softmax 11 neurons

Table 1. DSLCC architecture. Features are extracted by 3
different convolutional layers computed for each one of the 6

channels (6 times layers 2⃝, 3⃝, 4⃝). Attention layer 6⃝ is outing
6 channel attention weights.

5. EXPERIMENTS

5.1 Pattern extraction

All pixels for which a ground truth is available are characterized
using patterns (see Section 2). The whole extraction process,
from pixel value quantization to pattern ranking is run using the
free prototype DFTS-P2miner (Nguyen et al., 2019). Original
pixel values are quantized with three intervals using equal fre-
quency bucketing. As a result, for each channel, pixel values
are denoted by symbols ‘1’, ‘2’, and ’3’, that respectively re-
port ’low values’, ’medium values’ and ’high values’. Such a
preprocessing is commonly adopted to mine patterns (Julea et
al., 2011). The minimum surface of a pattern is set so as to
be able to find patterns for each class. The class that is less
represented, namely ‘greenhouse crops’, only contains 1, 931
pixels. Assuming that about half of these pixels share the same
kind of evolution, the minimum surface was set to 881 pixels,
which is a very weak constraint since it represents 0.1% of an-
notated pixels. The average connectivity constraint imposed on
the pixels affected by a pattern is set to 5, which is a standard
setting when processing optical SITS (Julea et al., 2011). The
20 patterns that are the more likely to occur in randomized ver-
sions of the data are retained along with the 20 patterns that
are the less likely to do so, which is once again a standard set-
ting (Méger et al., 2019). For a given channel, each pixel is thus
described by indicating the absence or presence of 40 patterns.

5.2 Training of the DSLCC

The model optimisation is performed using TensorFlow2. In-
puts are normalised channel-wise between 0 and 1 using a min-
max feature scaling to facilitate the convergence of the training
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process. A stratified sampling preserving class ratios is em-
ployed to split annotated pixels into a training dataset (60%),
a validation and test dataset (20% each). Pixels belonging to
a same object all belong to the same dataset. The network
is learnt by considering the standard unweighted categorical
cross-entropy CE and defining the loss as Lglobal = CE(Y, Y

main) + 0.5 × CE(Y, Yaux) where Ymain and Yaux are the
model main and auxiliary outputs. Gradients are back-propagated
using an Adam optimizer and an L2-regularization with a weight
decay of 1.10−6 to avoid overfitting on all layers.

The performances of the DSLCC is assessed against a classical
random forest (500 trees, 200 splits) and two deep land cover
classifiers, namely TempCNN (Pelletier et al., 2019) and Sdeep-
B-Multi-ii (Courteille et al., 2021). Both work at the pixel level,
ignore the spatial dimension, exploit all bands and indexes, and
rely on temporal convolutions. In addition, Sdeep-B-Multi-ii
is equipped with an attention operator weighting the import-
ance of each channel in the final classification decision. The
random forest, TempCNN, Sdeep-B-Multi-ii and the DSLCC re-
spectively reach 90.4%, 91.3%, 92.2% and 84.4% of accuracy.
Though less accurate, the performance of DSCLC is still de-
cent. It is detailled in Table 2.

Class Precision Recall % of annotated pixels
Sugar cane 88 89 10.1
Pasture 88 84 7.7
Market gardening 61 65 2.0
Greenhouse crops 17 35 0.2
Orchards 62 67 3.8
Wooded areas 83 86 23.3
Moor 84 79 17.6
Rocks 92 92 17.5
Relief shadows 78 91 6.2
Water 98 84 9.2
Urban area 81 80 2.2
Mean 75.8 77.4 -

Table 2. Precision and recall by class for the DSLCC on the test
set (176,166 pixels).

5.3 Explaining the DSLCC decisions

In order to produce explanations as general as possible, all an-
notated pixels are supplied to the DSLCC to infer their classes.
As expected, the overall accuracy is still high with a score of
87%. The precision and the recall obtained for each one the
classes are listed in Table 3.

Class Precision Recall % of annotated pixels
Sugar cane 96.7 96.6 12.4
Pasture 92.8 94.0 7.3
Market gardening 75.1 74.3 2.3
Greenhouse crops 52.9 52.3 0.2
Orchards 80.1 83.7 3.9
Wooded areas 87.3 94.4 23.5
Moor 92.4 77.9 16.0
Rocks 97.5 97.7 21.4
Relief shadows 94.3 98.7 5.1
Water 99.9 99.4 6.1
Urban area 84.6 91.0 1.8
Mean 86.7 87.3 -

Table 3. Precision and recall by class for the DSLCC for all
annotated pixels (880,828 pixels).

5.3.1 Attention: As shown in Figure 1 for some classes
of interest and all annotated pixels, the attention weights differ
from one class to another, which illustrates the interest of the at-
tention operator. It can be noted that all bands are exploited to
take decisions. These weights are extremely similar to the ones
obtained at the scale of the validation and test sets. One ex-
ception is class ‘Water’. This can be explained by the presence

of different evolution sub-classes. Finally, let us remark that
merging attention weights is simple when considering channels
or the temporal dimension. Contrarily, doing so for the spatial
dimension or a set of dimensions is far from being straightfor-
ward.

Figure 1. All annotated pixels: box plots of channel weight
attention for 4 classes, normalized by class sums. Horizontal

lines depict activation thresholds (0.5 for a sigmoid).

5.3.2 Redescription mining: Channel attention-based ex-
planations given by Figure 1 are enriched with redescriptions
extracted from annotated pixel descriptions, i.e., patterns and
the activation levels of layer 4⃝ observed at inference time. This
is performed for each predicted class of interest and each chan-
nel using the free prototype SIREN (Galbrun and Miettinen,
2012b). In order to extract expressive but yet simple redescrip-
tions, disjunctions and negated variables are not considered, the
maximum number of variables is set to 4 for the neuron activ-
ation level ones and 1 for pattern ones. The minimum Jaccard
index is set to the SIREN default value, i.e., 0.01, to extract
as much redescriptions as possible. The minimum number of
pixels supporting a redescription is arbitrarily set to the SIREN
default value, i.e. 5%. The maximum p-value is set to the stand-
ard value 0.05. All other SIREN parameters resort to default
values. Finally, once redescriptions are extracted, redondant
ones are filtered out by removing those supported by pixels sup-
porting other redescriptions whose Jaccard index is better.

The following table gives, for each predicted class of interest
and each band, the number of extracted redescriptions (r), the
fraction of pixels supporting all of them (Sall), the minimum
and maximum cardinality of their supports (Smin, Smax) as
well as their minimum and maximum Jaccard indices (Jmin and
Jmax). Though redescriptions are statistically significant since
their p-values are lower or equal to 0.05, the match between the
activation level configurations and the patterns is not complete.
According to Jmin and Jmax, redescription accuracy indeed
varies between 0.08 and 0.66. Moreover, since Sall reaches 0.7
as a maximum, redescriptions extracted from different bands
should be therefore considered jointly to explain as much de-
cisions as possible, which is no suprise since the classifier itself
adopts this strategy to infer classes (see Section 5.3.1).
The cover of decisions by redescriptions Cr , i.e. the percentage
of decisions that can be explained with one or more redescrip-
tions is given for each class in Table 5. This cover is provided
along with the minimum, maximum and mode numbers of rede-
scriptions per decision, Rm, RM , Rd, and the minimum, max-
imum and mode numbers of bands from which these decisions
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Class / Band r Sall Smin Smax Jmin Jmax

Pasture / B2 2 0.28 0.05 0.23 0.18 0.45
Pasture / B3 3 0.33 0.05 0.18 0.19 0.47
Pasture / B4 5 0.70 0.06 0.20 0.23 0.40
Pasture / B8 2 0.48 0.08 0.40 0.19 0.42
Pasture / NDVI 1 0.05 0.05 0.05 0.15 0.15
Pasture / NDWI 2 0.41 0.14 0.27 0.27 0.45
Rocks / B2 2 0.11 0.05 0.06 0.08 0.33
Rocks / B3 3 0.20 0.05 0.10 0.11 0.41
Rocks / B4 5 0.33 0.05 0.09 0.15 0.40
Rocks / B8 3 0.15 0.05 0.05 0.12 0.24
Rocks / NDVI 1 0.05 0.05 0.05 0.17 0.17
Rocks / NDWI 4 0.38 0.08 0.12 0.22 0.39
Water / B2 2 0.31 0.14 0.17 0.48 0.51
Water / B3 4 0.36 0.05 0.16 0.17 0.44
Water / B4 1 0.06 0.06 0.06 0.39 0.39
Water / B8 0 - - - - -
Water / NDVI 0 - - - - -
Water / NDWI 1 0.60 0.60 0.60 0.66 0.66
Urban area / B2 1 0.15 0.15 0.15 0.48 0.48
Urban area / B3 1 0.05 0.05 0.05 0.08 0.08
Urban area / B4 2 0.10 0.05 0.05 0.13 0.21
Urban area / B8 4 0.26 0.06 0.08 0.23 0.39
Urban area / NDVI 2 0.11 0.05 0.06 0.19 0.23
Urban area / NDWI 2 0.27 0.09 0.18 0.20 0.27

Table 4. Support and accuracy of extracted redescriptions.

originate, Bm, BM , Bd. As it can be observed, a majority of de-
cisions are covered by redescriptions (between 65% and 91%)
using up to 8 redescriptions and all 6 bands. Reported modes
also show that decisions are most frequently covered by one
ore two redescriptions extracted from one or two bands. Con-
sidering several patterns coming from different bands to explain
decisions also makes sense when considering input data char-
acteristics. For example, 97% of the pixels labelled as ‘Pasture’
by the classifier are indeed affected by up to 10 redescription
patterns (i.e., the patterns occurring in redescriptions, not re-
descriptions themselves) while no more than 5 redescriptions
patterns can be supplied by a single band for class ‘Pasture’.
This cover of decisions by redescription patterns, Crp, is given
Table 5 for each class along with the minimum, the maximum
and mode numbers of redescription patterns covering decisions,
Rm, RM , and Bd. Finally, since not all decisions can be asso-
ciated with redescriptions, other extraction parameter settings
could be tried, in particular for the support of redescriptions
and the number of patterns retained to describe each band.

Class Cr Crp Rm RM Rd Bm BM Bd RPm RPM RPd

Pasture 0.91 0.97 1 8 2 1 6 2 1 10 2
Rocks 0.72 0.83 1 6 1 1 5 1 1 8 1
Water 0.73 0.78 1 7 1 1 4 1 1 7 1
Urban area 0.65 0.80 1 5 1 1 4 1 1 8 2

Table 5. Decision covers.

For class ‘Pasture’, a very high attention is reported for B8,
which is expected as it is a vegetation class. Redescriptions
obtained for B8 are given hereafter along with their accuracy,
J , and the number of pixels supporting them, S:

• r1: [3.347221 < a10] ∼ 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 )

3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 (J = 0.42, S =
0.40)

• r2: [−35.42756 < a33 < −5.023269] ∧ −[7.611569 <
a62 < −1.214998] ∧ [0.322748 < a70 < 1.388656] ∼
3 ) 3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 (J = 0.19, S = 0.08)

These descriptions illustrates the fact that a pattern can be cap-
tured using a single or more neurons. Redescription r1 indic-
ates that 40% of the decisions are associated with a pattern
exhibiting a continuous presence of vegetation at a quite high
level: symbol ‘3’ occurs in 20 images (the series contains 21

images). Though accounting for 8% of the decisions, redescrip-
tion r2 is interesting as it shows a loss of biomass with a series
of 4 symbols ‘3’ followed by five symbols ‘2’. Both patterns
can be localized within the ground truth areas actually covered
by pastures using synthetic colors to denote both their spatial
extent and the date at which they ends in the SITS. The tem-
poral color palette used in this paper is given by Figure 2. The
white color is also used to point out the pixels of the ground
truth belonging to class ‘Pasture’ that are not affected by pat-
terns. Remaining pixels, i.e. black ones, are simply not covered
by pastures according to the ground truth. These SpatioTem-
poral Localizations Maps (STL-maps) (Méger et al., 2019) have
been computed and cropped to focus on a 12 km × 12 km area
of interest located inland, in the region of la Plaine des Cafres.
The resulting maps are presented with figures 3 and 4 for the r1
and r2 patterns respectively. No significant temporal behavior
is observed for the r1 pattern, which is expected as it covers
almost all the images of the SITS, i.e., 20 images out of 21.
Contrarily, the r2 pattern shows more dispersed settings since
it is shorter and can end at different dates. This dispersion is
particularly visible in the northern part of La Plaine des Cafres
as shown in Figure 5. As also evidenced by the STL-maps, and
since no pixel can be covered both by the r1 pattern and the
r2 pattern1, these patterns are complementary spatially. These
maps thus show that using these patterns to predict class ‘Pas-
ture’ makes sense even if, as underlined by white pixels, they
do not characterize all of its pixels. Knowing that the classifier
is very accurate for that class, this is far from being surprising
since about half of the decisions are explained by r1 and r2
(S=0.48). STL-maps computed with respects to decisions ‘Pas-
ture’ (and not the actual class ‘Pasture’) are extremely similar
for the same reason. They are presented in figures 6 and 7. The
same color palette is used to denote the presence of the pattern
as well as its ending dates. The white color is used to show
decisions for which the activation level conditions are not ful-
filled and the pattern is absent. The brown color is associated
with decisions such that the activation levels conditions are sat-
isfied and the pattern is absent. If the pattern is present and the
activation level conditions are not meet, then the gray color is
assigned to pixels.
Regarding NDVI, even if designed to monitor vegetation, the
DSLCC hardly exploits it according attention weights (see Fig-
ure 1). Let us have a look at the only one and quite weak
redescription extracted for this index. It is supported by 5%
of the pixels with an accuracy of 0.15%. It refers to pattern
1 ) 1 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 and thus expresses a gain
and then a loss of biomass. Since behaviors similar to B8 ones
could also be expected, this confirms that mobilizing NDVI to
detect pastures is indeed not of primary interest for this SITS.

Figure 2. Temporal color palette: 21 acquisitions, from January
2017 (red) to December 2017 (magenta).

Class ’Water’ is detected by exploiting all channels at quite high
levels according attention weights (see Figure 1). Though being
the less exploited according to attention weights, NDWI is gen-
erally expected to detect water. This is confirmed by a single
but strong redescription:
1 There is only one symbol left undescribed for pixels affected by the r1

pattern, and this pattern contains no symbol ‘2’ while the r2 pattern
contains 5 symbol ‘2’.
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Figure 3. STL-map of the r1 pattern, for ground truth areas
covered by pastures, in the region of la Plaine des Cafres.

Figure 4. STL-map of the r2 pattern, for ground truth areas
covered by pastures, in the region of la Plaine des Cafres.

• r3: [−31.58766 < a92 < −2.46482] ∼ 1 ) 1 ) 2 ) 1 ) 1 )

1 ) 1 (J = 0.66, S = 0.60)

Redescription r3 allows to describe 60% of the decisions lead-
ing to class ’Water’, which is the highest support reported for
the redescriptions extracted for the classes of interest. Its 22 km
× 17 km STL-maps, for areas located along the northwest coast
between the towns of Saint-Paul and Saint-Denis, are given by
Figure 8 and Figure 9. Though the r3 pattern contains few sym-
bols, there is few temporal dispersion with ending dates located
at the end of the year. According to the ground truth, it mainly
characterizes maritime waters, i.e., the eight large blocks picked
up by the experts in coastal waters. Contrarily, a set of inland
water zones, grouped at the lower left corner of the image is not

Figure 5. STL-map of the r2 pattern for ground truth areas
covered by pastures, in the northern part of la Plaine des Cafres.

Figure 6. STL-map of the r1 pattern, for areas identified as
pastures by the DSLCC, in the region of la Plaine des Cafres.

captured by the pattern. They belong to the Réserve naturelle
nationale de l’étang de Saint-Paul and can not be detected us-
ing redescription patterns extracted from B2, B3 or B4. The
latter indeed focus on maritime waters as well. In more details,
B2 is associated to redescription patterns expressing gradual in-
creases as well series of changes, all reflectance levels being
mobilized. Band B3 supplies redescription patterns expressing
the stability of either medium or high reflectance values. Band
B4 is exploited through a redescription expressing an abrupt in-
crease from symbol ‘1’ to symbol ‘3’.

Finally, B8 and NDVI do not seem to be captured by the net-
work in the way patterns do since no redescription is to be
reported for these bands. Knowing that the DSLCC identi-
fies maritime waters as well as inland waters such as those of
the Réserve naturelle nationale de l’étang de Saint-Paul, one
could simply argue that patterns do not characterize such areas.
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Figure 7. STL-map of the r2 pattern, for areas identified as
pastures by the DSLCC, in the region of la Plaine des Cafres.

Among the 40 patterns automatically extracted from B8, 7 can
be manually identified as being able to detect such areas. This is
reasonable since vegetation is present in this pond region. Pat-
tern 3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 is a good example. Its
STL-map for the whole 22 km × 17 km is presented with Fig-
ure 10. Please note that it is not restricted to actual water areas
or areas identified as such by the DSLCC. As evidenced, the
inland water of the Réserve naturelle nationale de l’étang de
Saint-Paul as well as other vegetated areas are well exhibited
while maritime waters are not detected. The pattern extraction
parameters as well as the redescription extraction parameters
can thus be questioned. For example, more patterns could be
considered to characterize each band and/or a lower redescrip-
tion support could be envisaged. If the latter option is chosen,
and if the minimum number of pixels supporting a decision is
set to 1% instead of 5%, then 5 redescriptions are extracted.
Two of them rely on the inland water patterns identified manu-
ally, and pattern 3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 is one of
them. It is thus possible to relate inland water decisions with
patterns, as long as the support is correctly set. Interestingly, no
such patterns are reported for NDVI while its attention weights
are higher than those of B8.

According to attention weights, class ‘Rocks’ mainly mobilizes
visible and near-infrared channels. Rocks are indeed less likely
to be detected by vegetation nor water indices. They are also
not likely to change that much, which is confirmed by avail-
able redescription patterns. They indeed indicate that reflect-
ance levels are quite stable. Though symbol ‘1’ can occur in
a row, these levels are mainly medium and high ones for B2,
B3, and B4 (symbols ‘2’ and ‘3’) while they are lower ones
for B8, NDVI, and NDWI. (symbols ‘1’ and ‘2’). Regarding
the redescriptions provided for class ‘Urban area’, quite stable
evolutions based on medium or high reflectance values are ex-
tracted for B2, B3, B4. Contrarily, an increase from symbol to
’1’ to ’2’ is reported for NDVI and NDWI. NDWI also provides
a redescription pattern showing stability at low levels. Band B8
unveils more complex evolutions, i.e., stable ones with series
of symbol ‘2’ as well as decreases, either from symbol ‘2’ to
symbol ‘1’ or from symbol ‘3’ to symbol ‘2’. This diversity is

Figure 8. STL-map of the r3 pattern for ground truth areas
covered by maritime waters, between the towns of Saint-Paul

and Saint-Denis.

Figure 9. STL-map of the r3 pattern for areas identified as
waters by the DSLCC, between the towns of Saint-Paul and

Saint-Denis.

exploited by the DSLCC since it mainly relies on B8 according
to attention weights (see Figure 1).

6. CONCLUSION

An original approach for explaining the behavior of a deep spa-
tiotemporal land cover classifier is presented in this paper. It
unveils, for each channel and each class, the intepretable spa-
tiotemporal features captured at the pixel level by the last con-
volutional layer. These features are extracted using dedicated
data mining patterns and matched with the different neuronal
activation level configurations using redescription mining. In
order to demonstrate the feasibility of the proposed approach, a
simple architecture applying spatiotemporal and and temporal
convolutions for each channel separately is considered for the
deep classifier. As shown by experiments on a Sentinel-2 time
series, such explanations are meaningful and can enrich chan-
nel attention-based explanations. Nevertheless, though indeed
captured by the network, it is yet unclear to which extent they
do account for the final decisions. Masking methods are for ex-
ample envisaged to assess this crucial aspect. Moreover, since
some expected redescription-based explanations are missing and

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-673-2022 | © Author(s) 2022. CC BY 4.0 License.

 
679



Figure 10. STL-map of pattern 3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2,
between the towns of Saint-Paul and Saint-Denis.

decisions are not always covered by redescriptions, the selec-
tion of the patterns and the redescriptions can also be ques-
tioned. In particular, the number of most promising GFS-patter-
ns describing the pixels could be higher and the support of the
redescriptions could be lower. A method for setting them auto-
matically would be of interest. More complex redescriptions,
e.g., with more activation level variables and disjunctions could
also be extracted. In addition, it would be of interest to check
whether the presence/absence of patterns could help in under-
standing classifier errors or not. Finally, other layers such as
the final dense one should be studied, and other interpretable
features could be considered, in particular the WECS (Wavelet
Energies Correlation Screening), a wavelet-based change meas-
ure recently proposed by (Fonseca et al., 2021).
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