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ABSTRACT: 
 

Urbanization is often accompanied by succession of underlying land cover with impervious surfaces. Built intensification significantly 

alters the surface energy budget making cities warmer than their outlying suburbs, which signifies an ecological deterioration. Landsat 

imageries with scene covering Abuja city is processed using Google Earth Engine platform to estimate land cover and land surface 

temperature over the span of 30 years (1990-2020). Dimensions of land cover transitions were examined in-terms losses, gains, swaps, 

net-change and persistency. Thermal signature of each land cover type was estimated using land surface temperature. Urban thermal 

field variance index is computed from land surface temperature to evaluate the thermal conditions in the city. Results indicate that net-

changes for built-up exhibited gains of 40% while agricultural land, bare-land and vegetation exhibited loss of 27%, 7% and 8% 

respectively. Built-up also showed the highest proportion of persistence (12%). Results shows that land surface temperature has 

increased by 2.01°C from 1990 to 2020. Agricultural land, bare-land and built-up were found with the highest temperature. Lowest 

temperature was found in waterbody and vegetation. The ecological evaluation showed that 47% of the city is experiencing bad to 

worst thermal condition. These findings provide further information that can contribute towards an informed spatial planning in cities. 
 
 

1. INTRODUCTION 

The worlds urban population is above 50% and projected to reach 

70% by 2050 (UN-Habitat, 2019). Cognizant of the fact that 35% 

of the projection will come from China, India and Nigeria (UN-

DESA, 2019). Urbanization is often accompanied by profound 

alteration of underlying natural surfaces such as vegetation (P W 

Mwangi et al., 2021). The natural surfaces are transformed into 

impervious structures such as roads and buildings (Filho et al., 

2021). The prevalence of impervious surfaces modifies 

biophysical properties such as albedo, latent heat and 

conductivity, thereby creating Urban Heat Island (UHI) 

phenomena (Oke, 1973). Extreme heat has the potential of 

effecting the thermal comfort and health of urban dwellers  

(Cavan et al., 2014; EPA, 2016). This raises concerns for prior 

planning towards achieving the United-Nation’s Sustainable 

Development Goals (SDGs) (UN-Habitat, 2020).  

 

Urbanization have occurred on relatively small-fraction of 

Earth’s  land surface, but yet it contributes significantly to the 

loss of natural ecosystems (UNCCD, 2017). An informed land 

management strategy have great potential of ensuring a more 

secure and sustainable urban future (Hishe, 2021). There is need 

for a spatially resolved analytics of land cover and its ecological 

footprints. Remote Sensing and geographic information system 

(GIS) have been recognized as effective geospatial technologies 

for observing earth’s surface features (Manakos et al., 2021). 

Geodata analytics provides adequate spatial detail needed for a 

sustainable spatial planning. Land surface temperature (LST) is a 

key indicator of Earth’s surface energy balance (Dissanayake, 

2019).  

 

In-depth analysis of cross-tabulation matrix of land cover change 

provides insights on the components of transitions (Adugna et al., 

2017; Pontius et al., 2004). UHI intensity is extricable linked to 

the anomalous changes in LST and can be ecologically evaluated 

using the Urban Thermal Field Variance Index (UTFVI) 

(Alcantara et al., 2019). Abuja City has significantly urbanized 

since its inauguration as the capital of Nigeria  (Gumel et al., 

2020). This paper aims to explore the geospatial dimensions of 

land cover transitions and Land Surface Temperature (LST) in 

Abuja city, Nigeria. The specific objectives of this study are: (I) 

to analyse the dynamics of land cover in Abuja City, Nigeria; (II) 

to analyse the pattern of LST in relation to land cover changes; 

and (III) to evaluate the thermal comfort of Abuja City, Nigeria.  

 

2. METHODOLOGY 

2.1 Study Area 

The study focuses on Abuja City, Federal Capital Territory (FCT) 

of Nigeria (Figure 1). The area covers 256 km2 and extends 

between latitude 7° 25' & 9° 20' Northing of the Equator and 

longitude 5° 45' & 7° 39' Easting of the Greenwich Meridians.  
 

 
Figure 1: The Location of Abuja City, Nigeria 

© Open Street Map Image Copyright 2021 
 

Abuja City serves as the administrative and political headquarters 

for the Federal Government of Nigeria (FGN)  (Abubakar, 2014). 

The area has two distinct seasons, rainy and dry. The rainy season 

starts in April and retreats by September, while the dry season 

starts in November and retreats by March (Adeyeri et al., 2017). 

The mean temperature ranges between 21°C and 40°C.  
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2.2 Data and Pre-processing  

Land cover and land surface temperature data (path:189, row:54) 

are excavated from Landsat collections in the GEE platform 

(https://earthengine.google.org/). The acquired scenes are cloud 

free level_1 tier (L_1T) products generated at medium resolution 

for 1990, 2001, 2014 and 2020 (Table 1). The images were 

selected within dry season to avoid phenological variability 

between time points (Verbesselt et al., 2010). The boundary 

shapefile for Abuja City was obtained from Abuja Geographical 

Information System (AGIS). The reference layer for training and 

validation is available in Google Earth. Landsat imageries were 

projected to Universal Transverse Mercator (UTM) Zone 32N 

and georeferenced to the World Geodetic System (WGS) 1984.  
 

Satellite Band Resolution Acquisition Date 

Landsat 5TM 7 30 m 12 - 02 - 1990 

Landsat 7ETM+ 9 30 m 09 - 01 - 2001 

Landsat 8OLI 11 30 m 05 - 01 - 2014 

Landsat 8OLI 11 30 m 07 - 02 - 2020 

Table 1: Landsat data used in the study 
 

GEE cloud computing infrastructure facilitates advanced 

processing and analysis of images (Ermida et al., 2020). The 

L_1T Landsat imageries are calibrated to correct radiometric and 

geometric distortion. Prior to image analysis an atmospheric 

correction is performed. The acquired raw bands were converted 

to top of atmosphere (TOA) reflectance and radiance from digital 

numbers (DN) (Cetin et al., 2008). The multispectral bands were 

used to obtain land cover classes and Normalized Difference 

Vegetation Index (NDVI). While the TIR bands were used to 

retrieve LST. The methodology is summarized in (Figure 2).  
 

 
Figure 2: Flowchart of the methodology 
 

2.3 Land Cover Classification  

Random Forest (RF) algorithm was used to classify the land 

cover for the year 1990, 2001, 2014 and 2020. RF non-parametric 

image classifier yields higher accuracy amongst the other types 

machine leaning algorithm (Talukdar et al., 2020). The land 

cover classification scheme consisted of five (5) classes; 

agricultural land, bare-land, built-up area, vegetation and 

waterbody. The validation of RF classified land cover produced 

an overall accuracy (OA) of 82.83%, 88.64%, 90.40% and 

93.76% for the years 1990, 2001, 2014 and 2020. The kappa 

coefficient of the reference epochs ranged between 0.80 to 0.9. 
 

2.3.1 Post Classification Comparison 
 

The classified images of 1990, 2001, 2014 and 2020 were over-

laid to analyze the spatial dynamics of land cover. An extended 

two-dimensional comparison matrix of 1990 and 2020 was 

produced to dictate the declining, increasing and static patterns 

of land cover categories. The components of land cover 

transitions were analyzed based on losses, gains, swaps, net-

change and persistency (Braimoh, 2006; Pontius et al., 2004). 
  
2.4 Land Surface Temperature Retrieval 

Statistical-Mono-Window (SMW) algorithm (Mccartney et al., 

2020), was used to compute LST from the scenes of Landsat 

imageries for 1990, 2001, 2014 and 2020. Radiance was 

converted to At-sensor Brightness Temperature to rectify 

emissivity (ԑ) using Eq. (1). 
 

Tβ = K2/1n (K1/ Lλ + 1)                                                   (1) 
 

Where, 

           Tβ = Sensor brightness temperature (K)` 

           Lλ = Sensors spectral radiance (W m− 2 sr− 1 μm− 1) 

 K1 & K2 = Band specific thermal constants 
 

The temperature was converted from degrees Kelvin to Celsius 

by adding an absolute 0°C (approx.-273.15°C) using Eq. (2).  
 

Tβ = K2/1n (K1/ Lλ+ 1) – 273.15                                                (2) 
 

The study employed NDVI based emissivity correction using 

vegetation proportion (Pv) threshold method. The Pv are derived 

using Eq. (3). 
 

Pv = (NDVI – NDVI soil / NDVI veg + NDVI soil)2                        (3) 
 

Where, 

           NDVI soil = Threshold values of soil pixel 

           NDVI veg = Threshold values of vegetation pixel 
 

The calculation of land surface emissivity (ԑ) is crucial for the 

assessment of LST. It is often considered as the Plank’s Law 

proportionality factor, which is the blackbody radiance that 

predicts emitted radiance. Eq. (4) is used to calculate ԑλ: 
 

ԑλ = ԑveg.λ Pv + ԑsoil. λ (1-Pv) + CV                    (4) 
 

Where, 

           ԑveg.= Vegetation emissivity 

           Soil = Soil emissivity 

              C = Surface roughness 
 

Land surface temperature is computed as expressed in Eq. (5). 
 

LST = Tβ / [1 + {(λ· Tβ/ ρ) In · ԑλ}]                       (5) 
 

Where, 

            LST = Land Surface Temperature in °C  

                Tβ = Sensor brightness temperature (°C) 

                  λ = wavelength of emitted radiance   

                  σ = Boltzmann Constant (1.38×10−23 J K−1)   

                  h = Planck’s Constant (6.626×10−34 J K−1) 

                 C = Velocity of light (2.998 * 10-8 m s-1) 
 

2.4.1 Urban Thermal Field Variance Index  
 

Urban thermal field variance index (UTFVI) was used for the 

ecological evaluation of UHI in Abuja City. UTFVI is given by 

Eq. (6) (Guha et al., 2018). 
 

UTFVI =
Ts−Tm

Ts
                                                                         (6) 

 

Where, 

           UTFVI = Urban Thermal Field Variance Index  

                   Ts = Land Surface Temperature (Kelvin) 

                  Tm = Mean of Land Surface Temperature (Kelvin) 
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2.4.2 Urban Heat Island  
 

The UHI assessment of heat stress is given by Eq. (7). 
 

UHI =
LST−LSTm

SD
                                                                        (7) 

 

Where, 

           UHI = Urban Heat Island  

           LST = Land Surface Temperature  

             SD = Standard Deviation 

 
3. RESULTS  

3.1 Land Cover Dynamics 

The classified Landsat images of Abuja City for the year 1990, 

2001, 2014 and 2020 are shown in (Figure 3). The images are 

ordered into five (5) land cover classes; agricultural land, bare-

land, built-up, waterbody and vegetation. The land cover has 

shown progressions between 1990 and 2020 due urbanization. 
 

           (a)                                                                        (b) 
 

 
(c)       (d) 

 
Figure 3: Land cover classification for Abuja City 

(a) 1990 (b) 2001 (c) 2014 (d) 2020 
 

Table 2 shows the changes in land cover for 1990, 2001, 2014 

and 2020 in Abuja City. Built-up area increased by 39.55% 

between 1990 and 2020, while agricultural land, vegetation, bare-

land has decreased with 24.72%, 8.16% and 6.31% respectively. 

Waterbody showed a negligible change over the same period. 
 

Land Cover 1990 2001 2014 2020 

Waterbody 0.25 0.38 0.23 0.22 

Bare-land 11.85 18.7 12.64 5.21 

Built-up 15.9 34.93 44.55 55.45 

Vegetation 27.45 26.77 21.59 19.29 

Agricultural Land 44.55 19.22 20.99 19.83 

Table 2: Percentage of land cover change from 1990 to 2020 

3.1.1 Land Cover Transitions  
 

The components of land cover transitions between 1990 to 2020 

are presented in the order of loss, gain, total change, swap and 

net-change (Table 3). The result indicate that built-up area 

experienced the highest gain 44% and also the least loss at 4%. 

While, agricultural land experienced the highest loss at 34%. 

Then followed by vegetation that lost 21% and gained 13%. The 

highest change attributable to the absolute net gain was found in 

built-up areas (40%) and the least was found in bare-land (7%). 

Swap type of change was highest for vegetation, which has 

experienced nearly a pure swap of its total transition pattern.  
 

Land Cover Loss Gain Total 

Change 

Swap Net 

Change 

Agricultural 

Land 34 9 

 

43 19 -24 

Bare-land 12 5 16 9 -7 

Built-up 4 44 48 8 40 

Vegetation 21 13 35 26 -8 

Waterbody 0 0 0 0 0 

Total 71 71 71 31 40 

Table 3: Components of land cover transitions (1990-2020) 
 

The proportion of each land cover category that remained static 

between 1990 and 2020 is presented as the diagonal values (Table 

4). The results indicate that built-up has the highest persistence 

at 11.97%. Followed by agricultural land at 10.10%. While 

waterbody experienced the lowest persistence at 0.19%. An 

estimated 6.19% of vegetation persisted.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 4: Land cover transition matrix (1990-2020) 
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3.2 Land Surface Temperature Patterns 

Figure 4 shows the distribution of Land Surface Temperature 

(LST) obtained from the Landsat scenes covering Abuja City for 

the year 1990, 2001, 2014 and 2020. The LST pattern reveals a 

significant anomaly between 1990 and 2020.  
 

                        (a)                                                    (b) 

 
                        (c)              (d) 

 
Figure 4: Land surface temperature distribution in Abuja City  

(a) 1990 (b) 2001 (c) 2014 (d) 2020 

 

The minimum, maximum, standard Deviation and mean LST has 

shown a gradual increase between 1990 and 2020 (Table 5). The 

minimum LST ranged from 19°C to 23°C, while maximum LST 

ranged from 36°C to 43°C and mean LST ranged between 30°C 

to 34°C. The mean LST increased by 2.56 °C from 1990 to 2020. 

The result concur with (Mwangi et al., 2021; Oke, 1973).  
 

Year 
 

Land Surface Temperature (°C) 

Min Max SD Mean Mean Change 

1990 20.29 36. 75 1.48 31.23 0.00 

2001 19.22 43.13 2.12 30. 75 0.45 

2014 22.47 30. 49 1.42 30. 68 0.07 

2020 21.89 40.75 1.76 33.24 2.56 

Table 5: Descriptive analysis of land surface temperature  

 

The mean thermal signature for each land cover type is shown in 

(Figure 5). Vegetation and water bodies exhibited the lowest 

mean LST, which can be attributed to their higher latent heat 

transfer and evapotranspiration (Ahmed et al., 2002). Highest 

mean LST was observed in agricultural land, bare-land and built-

up areas. Bare-land reflects incoming radiation thereby warming 

up faster than other land cover types (Huang et al., 2015). These 

findings justify the dependence of LST on land cover types.  
 

(a)  

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
Figure 5: Thermal signature of land cover types 

(a) 1990 (b) 2001 (c) 2014 (d) 2020 
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3.3      Evaluation of Thermal Comfort in Abuja city 

 

The Urban Thermal Field Variance Index (UTFVI) was used to 

quantitatively describe the thresholds of thermal and ecological 

comfort in relation to Urban Heat Island (UHI) intensity in Abuja 

City (Figure 6). UHI intensity is extricable linked to anomalous 

changes in Land Surface Temperature (LST) (Alcantara et al., 

2019). Built intensification alters surface energy budget (EPA, 

2016), thereby decreasing the thermal comfort within cities. 
 

 
 

Figure 6: UTFVI for Abuja City  
 

Table 6 summarizes the percentage coverage of UHI and EEI 

against the threshold of UTFVI. The results show that about 

41.60% of the city’s proportion experiences worst thermal 

condition (UTFVI > 0.02), while 42.90% experiences excellent 

thermal condition (UTFVI < 0.00). The sum of areas 

experiencing bad to worst thermal and ecological conditions is 

about 47.40% proportion of the city.  
 

UTFVI UHI  EEI  (%)  

˂ 0.000 None Excellent 42.9 

0.000 - 0.005 Weak Good 5.7 

0.005 - 0.010 Middle Normal 4.3 

0.010 - 0.015 Strong Bad 2.6 

0.010 - 0.015 Stronger Worse 3.2 

˃ 0.020 Strongest Worst 41.6 
 

Table 6:  Threshold of ecological evaluation index (EEI) 

 
4. CONCLUSION 

This paper analysed the spatial dimensions of land cover 

transitions and land surface temperature in Abuja city, Nigeria. 

Google Earth Engine (GEE) platform offers great potential in 

processing Landsat imagery to retrieve Land Surface 

Temperature (LST) and to classify land cover using Random 

Forest (RF) at high accuracy. The Landsat imageries were 

obtained during the dry season to avoid phenological variability 

between time points (Verbesselt et al., 2010). The analysis of 

transition matrix reveals that Abuja City has undergone 

significant change in land cover since its inauguration in 1990. 

Built-up is the dominant land cover that has significantly gained 

from the loss of other categories like vegetation, agricultural and 

bare-land. Built-up has also shown the highest level of 

persistence of changing to other land cover. The descriptive 

statistics of LST showed a significant increase in temperature 

from 1990 to 2020. Vegetation and water bodies recorded the 

lowest mean LST, which can be attributed to their higher latent 

heat transfer and evapotranspiration (Ahmed et al., 2002). 

Highest mean LST was observed in agricultural land, bare-land 

and built-up areas. Bare-land reflects incoming radiation thereby 

warming up faster than other land cover types (Huang et al., 

2015). These findings justify the dependence of LST on land 

cover types. The urban thermal field variance index of Abuja City 

shows that a sizable portion of Abuja City is experience bad to 

worst thermal comfort. There is need for a proactive land 

management strategy that will contribute towards the 

achievement the goals of SDGs and improving the thermal 

comfort of urban dwellers.  
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