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ABSTRACT:

Deep learning methods are known to demand large amounts of labeled samples for training. For remote sensing applications such as
change detection, coping with that demand is expensive and time-consuming. This work aims at investigating a noisy-label-based
weak supervised method in the context of a deforestation mapping application, characterized by a high class imbalance between
the classes of interest, i.e., deforestation and no-deforestation. The study sites correspond to different regions in the Amazon and
Brazilian Cerrado biomes. To mitigate the lack of ground-truth labeled training samples, we devised an unsupervised pseudo-
labeling scheme based on the Change Vector Analysis technique. The experimental results indicate that the proposed approach can
improve the accuracy of deforestation detection applications.

1. INTRODUCTION

Deforestation of natural forests is one of the largest sources of
greenhouse gas emissions, it is responsible for the reduction
of carbon storage and for invaluable loss of biodiversity. Con-
sequently, global concern in this regard has increased consid-
erably, and monitoring Earth’s land cover changes in forested
areas has become a priority for many authorities around the
world. Nevertheless, efficient detection of such changes is a
difficult task, which commonly relies on large amounts of re-
mote sensing (RS) data and highly trained professionals in the
visual analysis of such data.

Fortunately, the past decades have witnessed an increasing
availability of RS data due to improvements in Earth obser-
vation systems. Additionally, several techniques for the ana-
lysis of single- and multi-date RS data have been already pro-
posed. Specifically for change detection, algebra-based models,
which rely on features computed with band-wise mathematical
operations, include image difference methods, image ratio and
Change Vector Analysis (CVA) (Malila, 1980), which has been
the basis for more advanced approaches, e.g., (Thonfeld et al.,
2016).

More recently, Deep Learning models have become the domin-
ant trend in most image analysis application fields. Specifically
for change-detection, (Daudt et al., 2018b) propose a method
based on a Siamese Convolutional Neural Networks (S-CNN),
in which co-registered RS images taken at different epochs are
used as inputs for each network branch. Alternatively, Daudt et
al. (2018a) employs the Early Fusion (EF) scheme, in which the
images from the different epochs are concatenated, and used as
input of a single network. Concerning deforestation detection,
Ortega Adarme et al. (2020) employed an EF-based approach,
∗ Corresponding author

while Andrade et al. (2020) adapted the Deeplabv3+ model
for the task, also using the EF scheme. In addition, Torres et
al. (2021) evaluated state-of-the-art deep network architectures
for deforestation detection, using Landsat-8 and Sentinel-2 im-
agery.

Deep Learning models, however, are known to demand large
amounts of labeled data for proper training, which is a prob-
lem for many RS applications because of the costs involved in
the field surveys and visual interpretation required to produce
the reference data. Moreover, changes in environmental con-
ditions, geographical variability and different sensor properties
typically makes it impossible to employ previously trained clas-
sifiers for new data without a significant decrease in classific-
ation accuracy. While this phenomenon represents a problem
for any supervised classifier, considering the high demand for
labeled data, it may seriously impair the operationalization of
deep learning-based classification approaches in real-world ap-
plications (Vega et al., 2021).

Among the several ways to face the aforementioned problems,
semi-supervised learning (Zhu, 2005), weak-supervised learn-
ing (Zhou, 2018) and transfer learning (Weiss et al., 2016) ap-
proaches have been proposed. Semi-supervised models rely on
structural assumptions to leverage from unlabeled data. Trans-
fer learning, relies on models trained on a different task, and
weak-supervised learning aims at training classification models
using noisy or low-quality labels.

Regarding change detection, a weak supervised approach has
been employed in Khan et al. (2016), which uses image-level
labels to predict changes between pairs of video frames. Daudt
et al. (2021) proposed an edge preserving approach to guide the
supervised learning procedure of a change detection classifier.
As a specific setting of transfer learning, deep domain adapt-
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ation (DA) based methods have been recently proposed to im-
prove the generalization of change detection classifiers. Deng
et al. (2019) applied DA for change detection in urban areas,
and Saha et al. (2019, 2020) used VHR and HR multispectral
images for the same purpose. Additionally, Soto et al. (2020),
Noa et al. (2021) and Vega et al. (2021) have employed deep
semi-supervised DA (Tuia et al., 2016) for the deforestation de-
tection problem.

In this work, we evaluate a noisy-labeled-based, weak-
supervised approach for deforestation detection. We aim at in-
vestigating if such an unsupervised pseudo-label scheme can
be used to effectively mitigate the lack of labeled samples in
the training of DL-based models. To verify the effectiveness of
the proposed procedure, we conducted experiments considering
three different areas associated with images from different sites
in the Amazon and Brazilian Cerrado biomes.

The rest of this paper is organized as follows. Section 2 briefly
describes the techniques which support the proposed procedure.
A detailed description of the proposed method is the subject of
Section 3. The experimental protocol is reported in Section 4.
Section 5 shows the results obtained in the conducted exper-
iments. Finally, Section 6 presents conclusions and indicates
future research directions.

2. FUNDAMENTALS

Weak-supervised learning comprises a set of techniques that
aim at mitigating the lack of labeled samples in the training
of supervised learning models such as deep neural networks
(DNN). Among the various weak-supervised approaches pro-
posed thus far those designed for DNNs constitute the current
state-of-the-art (Zhou, 2018).

According to Zhou (2018) weak supervision can be categor-
ized as incomplete supervision, inexact supervision, or inac-
curate supervision. In incomplete supervision a small amount
of labeled data, insufficient to train a good learner is available,
as well as abundant unlabeled data. In inexact supervision some
supervision is given during training, but not as exact as desired.
A typical scenario in that category is when coarse-grained la-
bel information is available as, for instance, image level label
information in a semantic segmentation problem. Finally, in-
accurate supervision refers to the scenario in which the super-
vision information is not always ground-truth; in other words,
some label information may suffer from errors/noise. The typ-
ical example is learning with noisy-labels (Zhou, 2018). In
this work we follow the inaccurate supervision-based weak-
supervised approach. The noisy-labels are generated using
an unsupervised procedure based on Change Vector Analysis
(CVA).

Basically, the CVA (Malila, 1980) technique is used to com-
pute the magnitude and direction of change between two cor-
registered multispectral images acquired at different epochs.
Formally, let xt0(i, j) and xt1(i, j) represent a pixel’s spectral
vector at a given pixel location (i, j) in a pair of coregistered
images acquired at t0 and t1, respectively. The magnitude M
and direction ϕ of changes are computed as follows:

M = ||xt1(i, j)− xt0(i, j)||2 (1)

cosϕ =
xt1(i, j) · xt0(i, j)

||xt1(i, j)||2||xt0(i, j)||2
(2)

where || · ||2 denotes the L2 norm.

CVA components have been used in several ways, for different
change detection purposes. In this work, we binarize each com-
ponent separately using thresholds calculated with the OTSU
(Otsu, 1979) algorithm. Then, we consider the change trans-
ition between xt1(i, j) and xt0(i, j) as positive (with respect to
the deforestation change class) if both the corresponding mag-
nitude and phase are greater than the respective thresholds.

3. WEAKLY SUPERVISED LEARNING FOR
DEFORESTATION DETECTION

In this work, we follow the Early Fusion approach for defor-
estation detection, in which RS images from a particular site,
taken at different epochs (t0 to t1), are concatenated along the
spectral dimension forming samples.

Let xT
q = [xT

qt0
: xT

qt1
] represent the q − th coregistered, con-

catenated pair of multispectral remote sensing image patch of
dimensions w × h × b pixels acquired at t0 and t1, respect-
ively, where w is the width, h is the height, both in pixels, b
the number of spectral bands, and [:] is the concatenation op-
erator. Let T denote the set of target domain samples {xT

q };
and ŷT

q represent the pseudo-label of xT
q , taking a value from

the set {0, 1}, where 1 means deforestation, and 0 means no-
deforestation. The pseudo-label ŷT

q is predicted by a function
C(·). We denote as Q = |T | the number of image pairs in set
T .

As described in the algorithms presented in this section, the
learning process begins by selecting (weakly) balanced sets
of training samples from the target domain. First, pseudo-
labels ŷT

q are created for the target domain samples xT
q , with

q =1,...,Q, (Step 1 of Algorithm 1) by the function C(·), which
will be described later. Then, the actual balancing procedure
(Step 2 of Algorithm 1) is performed by a function U(·), which
employs traditional data augmentation operations, i.e., rotations
and reflections, to increase the number of samples of the under-
represented positive class (deforestation), and which randomly
selects an equal number of samples of the over-represented neg-
ative class (no-deforestation). The resulting labeled set com-
prises N samples, with N < Q.

Since class labels of target domain are not available, function
U(·) takes {ŷT

q }Qq=1 ← C({xT
q }Qq=1) as pseudo-labels for the

target samples {xT
q }. Function C(·) implements the pseudo-

label prediction procedure explained in Algorithm 2. The pro-
cedure is based on the Change Vector Analysis (CVA) tech-
nique (Malila, 1980), and on the OTSU (Otsu, 1979) unsuper-
vised thresholding algorithm.

First, CVA delivers the magnitude Mq and phase ϕq values of
the difference vector associated with the center pixel location
of each patch xT

q = [xT
qt0

: xT
qt1

]. Then, the OTSU proced-
ure computes the thresholds ThM and Thϕ for each set of CVA
components {Mq} and {ϕq}. Finally, a binarization procedure,
in which the outcome of magnitude and phase are combined
through the AND (&) logic operation, defines the pseudo-label
set.

The balanced set of training target samples, represented as T tr,
is then used to train the deforestation detection model, EF-CNN
with parameters {θl}, until convergence (Step 3 of Algorithm
1). Once the EF-CNN model have been trained, it is used to
classify test samples of the target domain.
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Algorithm: Weakly Supervised Learning for Deforestation
Detection
Inputs :

• T =
{
xT
q

}Q

q=1
Unlabelled target samples.

• N Number of training samples.

• {θl} EF-CNN initial set of weights.

• {µ0, α, β} Hyper-parameters
Output: {θl} Final set of weights after training.

1 // Step 1: Compute pseudo-labels:

2 {ŷT
q }Qq=1 ← C(T )

3 // Step 2: Select N balanced samples with
the pseudo-labels:

4 T tr =
{
xT
n , ŷ

T
n

}N

n=1
← U(T,N) where N < Q

5 // Step 3: Training the EF-CNN model:
6 while j < # Epochs do
7 p← j

#Epochs

8 µ← µ0

(1+αp)β

9 // Step 3.1: Building the batch:

10 T tr
batch ← SelectBatch(T tr)

11 // Step 3.2: Forward processing:
12 Ll ←

1
|T tr

batch
|

∑
(xi,ŷi)

ŷi log(Gl(xi))+(1− ŷi) log(1−Gl(xi))

13 // Step 3.2: Back-propagation:

14 θl ← θl − µ ∂Ll
∂θl

15 j ← j + 1
16 end while

4. EXPERIMENTAL ANALYSIS

The experiments reported in this section aimed at verifying the
effectiveness of the proposed weak supervised approach in the
context of deforestation detection in tropical forests.

The selected regions represent forests of different types, af-
fected by various deforestation practices. Two sites are as-
sociated with regions in the Brazilian Legal Amazon (BLA)
containing Dense Ombrophyll Forest areas, and Open Om-
brophyll Forest areas. The third represents a site in the
transition between the Brazilian Cerrado and the Amazon
Rainforest, which contains Seasonal Deciduous and Semi-
Deciduous Forest areas.

Additionally, the results of the proposed alternative were com-
pared with those obtained by a EF-CNN classifier trained with
labeled data from one of the above described sites, and evalu-
ated on the remaining sites. Those results are considered as a
baseline, and are used to measure the real gain brought with the
weak supervised procedure.

4.1 Datasets

The study areas are located in two Brazilian Biomes, namely
the Amazon rainforest and the Brazilian Cerrado (Savannah).
Two of the sites are located in the Amazon, specifically in the
Brazilian states of Rondônia (RO) and Pará (PA). The Cerrado
study area is located in Maranhão (MA) state. Table 1 shows
detailed information regarding geographical localization, dates,
vegetation typology, and class distribution.

As for the forest typologies, the selected regions represent a
gradation that goes from a very dense forest, with little vari-
ability of the canopy structure (PA), to a seasonal forest with

Algorithm: Pseudo-labelling and sample balancing func-
tions

1 Function C({xq}):
2 // Extract patches‘ central pixel

3 {xqt0
} ← {xqt0

}, {xqt1
} ← {xqt1

}
4 // Compute magnitude and phase of central

pixels

5 {Mq} ← {||xqt1
− xqt0

||2}

6 {ϕq} ←
{
arccos

xqt1
·xqt0

||xqt1
||2||xqt0

||2

}
,

7 // Otsu threshold for magnitude and phase

8 ThM ← OTSU({Mq}), Thϕ ← OTSU({ϕq})
9 // Generate pseudo-label

10 {ŷq} ←
{

1 if (Mq > ThM ) ∧ (ϕq > Thϕ)
0 otherwise

}
11 return {ŷq};
12 Function U(Samples,N):
13 // Select N negative samples randomly

14 {xneg
n , yneg

n }Nn=1 ← Select(Samples,N)
15 // Select N positive samples randomly with

augmentation

16 {xpos
n , ypos

n }Nn=1 ←
SelectAndAugment(Samples,N)

17 return {(xneg
n , yneg

n )} ∪ {(xpos
n , ypos

n )};

high canopy variability (MA). The open rainforest (RO) is at
an intermediate point between these two formations in terms
of canopy variability. Figure 1 shows the location of the study
areas, as well as a RGB composites of the most recent images
of the corresponding image pairs. Table 1 shows the acquisition
dates and the forest typologies (IBGE, 2012) in the respective
domains, plus the number of pixels in each domain labeled as
deforestation, no-deforestation, and previous deforestation. As
can be seen in the table, the class distribution is highly imbal-
anced.

The images were acquired by the Landsat 8-OLI sensor with
30m resolution and 7 spectral bands. The images were ac-
quired with minimum cloud cover at dates in the dry season,
which occurs from late May to late August. They have the
following dimensions: 2550×5120 pixels (RO); 1100×2600
pixels (PA); and 1700×1440 pixels (MA). All images under-
went Level-1 data processing and were downloaded from the
Earth Explorer web service from the United States Geological
Survey (USGS)1. In all experiments, the individual image bands
were normalized to zero mean and variance equal to one.

The ground truth for deforestation was produced by the
PRODES Deforestation Mapping project of the Brazilian Na-
tional Institute for Space Research (INPE), which, according
to (Pinheiro Maurano et al., 2019; Parente et al., 2021), have
accuracies of approximately 93% in both the Amazon and Cer-
rado biomes. The data is freely available at the Terrabrasilis
website2. We observe that the images that compose the data-
sets for this study were also used in PRODES for deforestation
mapping, for the respective sites and epochs (Almeida et al.,
2021). As shown in Table 1, all images were acquired in the
months of July and August, in which the acquisition conditions
are optimum with respect to cloud coverage.

Figure 2 shows the deforestation reference for the respective
image pairs (dark orange), which represent the deforestation
that happened between the acquisition of the two images. The

1 https://earthexplorer.usgs.gov/
2 http://terrabrasilis.dpi.inpe.br/map/deforestation
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Study areas RO PA MA
Coordinates 09◦36’51” S - 10◦18’35” S

62◦56’41” W - 64◦20’51” W
03◦08’21” S - 03◦26’16” S

50◦34’04” W - 51◦16’12” W
04◦44’52” S - 05◦12’48” S

043◦37’58” W - 044◦01’23” W

Vegetation Open Ombrophyll Forest Dense Ombrophyll Forest Seasonal Deciduous
and Semi-Decidous Forest

Date 1 July 18, 2016 August 2, 2016 August 18, 2017
Date 2 July 21, 2017 July 20, 2017 August 21, 2018

deforestation pixels 225 635 (3%) 82 970 (3%) 71 265 (3%)
no-deforestation pixels 3 816 981 (29%) 1 867 929 (65%) 1 389 844 (57%)

previous deforestation pixels 9 013 384 (69%) 903 901 (32%) 986 891 (40%)

Table 1. Detailed information of each domain: image acquisition dates, coordinates, class distribution, and vegetation typology.

(a) (b)

(c) (d)

Figure 1. Visual representation and localization of each study area used in the experiments carried out in this work. (a) Geographical
localization of the respective sites. True color composites of the images covering the sites, corresponding to the acquisition date 2017

(b) Rondônia (RO), (c) Pará (PA), and (d) Maranhão (MA). Figure taken from Vega et al. (2021).

figure also shows the accumulated deforestation (light gray),
which occurred between 1988 and the acquisition year of the
first image of the pair.

4.2 Classifier Training Setup

For the deforestation detection accuracy assessment, we
used the Early Fusion (EF-CNN) classifier proposed in (Or-
tega Adarme et al., 2020). Additionally, also following (Or-
tega Adarme et al., 2020; Noa et al., 2021; Vega et al., 2021),
the image space was divided into 100 tiles. Approximately 20%
of the tiles were used to extract training samples/patches, 5% to
extract validation patches, and the remaining 75% to extract the
patches used for the evaluation of the classifier. Figure 2 shows
the training, validation and test configuration tiles.

The input to EF-CNN is a tensor of size 29×29×14. The re-
spective image patches were extracted following an overlap-
ping sliding windows procedure with a stride of 3, as in Or-
tega Adarme et al. (2020). During the training and evaluation

steps, patches with central pixels having the following charac-
teristics were avoided: belonging to polygons that have been
deforested in previous years; lying inside a buffer around the
deforestation reference polygons; and lying inside deforestation
polygons smaller than 6.25 ha, which corresponds to 69 pixels.

Regarding the first and third conditions, we simply adopted the
same procedure employed in the PRODES project. The second
condition aims at avoiding the impact of inaccuracies in the
ground truth produced by the rasterization process. Based on
visual inspection of the correspondence between the ground
truth and the deforested areas in the images, the width of the
buffer was set to 6 pixels: 4 outside the polygons, and 2 inside
them for RO while 2 pixels outside the polygons were adopted
for PA and MA.

Data augmentation has been applied only to patches which the
central pixel is labeled as deforestation (positive samples). A
90◦ rotation, as well as vertical and horizontal flips, were the
data augmentation transformations. Additionally, only part of
the no-deforestation patches (negative samples) in the training
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(a)

(b) (c)

Deforestation in past years Deforestation in target year No deforestation

Training Validation

Figure 2. Distribution of image tiles for training, validation and testing in the respective study areas: (a) Rondônia (RO); (b) Pará
(PA); and (c) Maranhão (MA). Please note that the tiles that are not shaded correspond to the ones selected for testing. The figure also
shows the polygons associated with the deforestation that occurred during the image acquisition dates of the respective domains, the

polygons associated with the deforestation that occurred prior to the date of the first image of the respective image pairs, and the areas
labeled as not deforested. Figure taken from Vega et al. (2021).

and validation tiles were (randomly) selected (the same number
as the positive samples after data augmentation), in order to
balance the number of training samples per class. In the end,
as in the patch-wise classification employed in (Ortega Adarme
et al., 2020), the classification outcome of an input patch was
assigned to its central pixel.

During training, the binary cross entropy objective function was
minimized using the Momentum optimizer and learning rate de-
cay. We set the initial learning rate µ0 and momentum β1 equal
to 0.01 and 0.9 respectively. The batch size was 32, and the
early stopping procedure was used to avoid overfitting. The pa-
tience parameter, which controls the number of epochs without
improvements in the validation loss, was set to 10. The classi-
fier was executed 10 times, each time with a different (random)
initialization of the trainable parameters, and with a different
set of randomly selected negative samples/patches.

4.3 Network Architecture

The network architecture of the EF-CNN classifier is described
in Table 2 and Table 3. In those tables, the symbols identi-
fies the operations for each layer: convolution (C), ReLU (Re),

MaxPooling (MP ), and Batch normalization (Bn). The number
of filters, filters’ dimensions and the convolution stride are in-
dicated in parenthesis. In the case of MaxPooling, the values
in parenthesis refer to the kernel dimension and stride. In the
case of Reflection Padding, the value in parenthesis refer to the
padding height/width.

Layer Output shape
Input (29, 29, 14)

CRe(128, 3, 1) (29, 29, 128)
MP (2, 2) (14, 14, 256)

CRe(256, 3, 1) (14, 14, 256)
MP (2, 2) (7, 7, 256)

CRe(512, 3, 1) (7, 7, 512)
ResNet block (7, 7, 512)
ResNet block (7, 7, 512)
ResNet block (7, 7, 512)

Global Average Pooling (512, 1)
Dropout (512, 1)
Softmax (2, 1)

Table 2. EF-CNN classifier architecture.
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Layer
Reflection Padding (1)

CBnRe(64, 3, 1)
Reflection Padding (1)

CBn(64, 3, 1)

Table 3. ResNet block architecture.

5. RESULTS

Table 4 shows the F1-scores obtained with the plain
CVA+OTSU classification; with the EF-CNN model trained
with ground truth labels; and with the EF-CNN model trained
with pseudo-labels produced with the CVA+OTSU procedure,
hereinafter denoted EF-CNN-PS. Note that the scores in Table
4 refer to the classifiers trained and tested with samples from
the same domains.

Table 4 shows that the EF-CNN model trained with pseudo-
labels produced with the CVA+OTSU procedure (EF-CNN-
PS) obtained better results compared with the sole use of the
CVA+OTSU procedure for classification. We believe that those
results have to do with the capacity of the network to consider
context in the classification of a single pixel.

Methods / Domains PA RO MA
EF-CNN 83.2 67.0 85.5
EF-CNN-PS 56.1 66.2 73.0
CVA+OTSU 55.0 42.0 73.0

Table 4. F1-scores of the different approaches.

In order to enrich the analysis of the different classification ap-
proaches, we compared their results with the ones obtained with
the EF-CNN model in a cross-domain classification setup.

Figures 3 and 4 show the accuracies obtained with the different
approaches under single and cross-domain scenarios, in terms
of F1-Score and mean average precision (mAP), respectively.
Each group of bars represents a scenario: S refers to the source
domain, and T to the target domain. The blue bars represent the
accuracy of the EF-CNN model trained with ground truth labels
from the target domain and tested on target domain samples.
The orange bars represent the accuracy of the EF-CNN model
trained with pseudo-labels from the target domain and tested
on target domain samples (EF-CNN-PS). The yellow bars cor-
respond to the EF-CNN model trained ground truth labels from
a source domain and evaluated with samples from a target do-
main (cross-domain classification).Finally, the gray bar shows
the results of the plain CVA+OTSU method for the correspond-
ing target domain. Figure 4 does not show mAP accuracy val-
ues for CVA+OTSU because its output is not a score value a
threshold can be applied to, which prevents the mAP computa-
tion.

As expected, the EF-CNN model trained and tested with ground
truth labels from the same domain (blue bars) produced the
best F1-Score and mAP values. Surprisingly, when used in the
cross-domain classification (yellow bars) for the combination
[Train(MA)|Test(PA)], the EF-CNN classifier delivered an ac-
curacy in terms of mAP that is better than the one obtained in
the intra-domain case, a result that needs further investigation.

It is interesting to see that the intra-domain classifications with
the the EF-CNN model trained with pseudo-labels (EF-CNN-
PS, orange bars) delivered results that are not so distant from the

Figure 3. F1-Score of the different techniques.

Figure 4. Mean Average Precision (mAP) of the different
techniques.

ones obtained with EF-CNN model trained with ground truth
labels.

Additionally, in all but one cross-domain scenario
([Train(MA)|Test(PA)]), the EF-CNN-PS approach was
significantly superior to the EF-CNN model trained with
ground truth labels from one (source) domain and tested
with samples of another (target) domain. We believe those
results indicate the appropriateness of using the pseudo-labels
produced with the CVA+OTSU procedure to aid domain
adaptation approaches.

6. CONCLUSIONS

In this work we proposed a noisy-label-based, weak supervised
approach for change detection, applied to deforestation detec-
tion in tropical biomes. The weak supervision relies on an un-
supervised pseudo-labeling procedure based on Change Vector
Analysis, and aims at mitigating the lack, or low availability,
of labeled samples for training deep learning-based supervised
models.

We compared the performance of the proposed weak supervised
approach with those obtained with the same underlying classi-
fication model (EF-CNN) in cross-domain combination scen-
arios. The results showed that in intra-domain classification
scenarios, the proposed approach delivered results not so dis-
tant from the ones obtained with with ground truth labels.

Also, in most cross-domain scenarios, the proposed approach
was significantly superior to the EF-CNN model trained with
ground truth labels from a source domain and tested with
samples of a target domain.

Based on the cross-domain classification results, we hypothes-
ize that the pseudo-labels produced with the devised procedure
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can be used to improve the accuracy of unsupervised domain
adaptation approaches.
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