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ABSTRACT:

Remote sensing has been an essential tool in combating deforestation. However, the ever-rising deforestation rates require new
remote sensing techniques. This paper presents a study to determine the effects on the accuracy of the data analysis of varying
the number of satellite observations, using a Random Forest classification algorithm. We carried out experiments on the Landsat-8
data cube with 22 images and developed an automatic sampling system based on PRODES to generate the labeled time series. We
split the time series dataset to build data subsets with different number of observations. The results showed that a fewer number
of observations negatively effects the accuracy of the RF algorithm when analyzing deforested areas, but not forest areas. The
RF classifiers were compared using a random test data set, where all classifiers presented an Overall Accuracy (OA), Balanced
Accuracy (BA), and f1-score (F1) above 97%. In the first evaluation, the variation in the number of observations appears to cause
little influence on the classification accuracy. The analysis used the reference map to contrast the RF classifier’s results. The
results showed that the best results in OA occurred with fewer observations. The best performance of 96% happened with four
observations. We evaluated the performance of the classes, deforestation, and forest individually. The results showed that a fewer
number of observations had negative effects on the accuracy of the RF algorithm when analyzing deforested areas, but not forest
areas. Finally, we evaluated the visual quality of the land cover maps produced.

1. INTRODUCTION

The Amazon Forest is the largest tropical rainforest in the world, 
which plays a leading role in the Earth’s climate. However, 
changes in the forest structure threaten its role as a carbon sink 
(Yang et al., 2018). Deforestation and degradation are the prin-
cipal causes of these changes (Matricardi et al., 2020). There-
fore, the development of mechanisms to curb deforestation is 
essential to maintain the stability of the Amazon ecosystem.

About 60 percent of the Amazon biome lies within Brazilian 
territory, with an area of 5,015,067.75 km2 (IBGE, 2020). The 
most effective way of monitoring deforestation such immense 
forested areas has been through remote sensing. Forest monit-
oring using remote sensing discourages deforestation and forest 
degradation as shown in Brazil by the PRODES during the first 
decade of the 21st century (Arima et al., 2014).

Despite the success of the Brazilian forest monitoring program, 
deforestation in the Amazon Forest is still a concern of author-
ities (Escobar, 2020). The dynamics of deforestation are com-
plex and change over time. Thus, the monitoring methods must 
evolve to maintain the effectiveness of information produced. 
A faster mapping of changes is required. An agile approach 
requires automated techniques to process massive Earth obser-
vation data promptly.

Luckily, the open data policies changed the guidelines for the
∗ Corresponding author.  

distribution and availability of satellite images, which resul-
ted in an abundance of free of charge Earth observation data
(Showstack, 2014, Sá and Grieco, 2016, Zhu et al., 2019). The
open access to satellite data benefits the development of re-
mote sensing methods that exploit temporal information, like
time series analysis and classification (Kuenzer et al., 2015).
A wealth of free data, added to the advance in hardware and
software has led to automatic forest mapping based on spatio-
temporal information.

Recent studies have explored the use of spatio-temporal, and
time series information to monitor the Amazon Forest (Wang et
al., 2019, Fortin et al., 2020, Maretto et al., 2020). In these
papers, the time series approach is based on at least a year
of satellite observations, resulting in time series that show an-
nual and seasonal changes in the target area. This kind of ap-
proach is important when the study pattern is defined as time-
series changes over time, such as is used in crop mapping. The
Amazon Forest has a dense vegetation structure resulting in a
land with high green density. Vegetation indices are designed
to accentuate vegetation properties. In general, these indices
present higher values in land covered by Amazon Forest when
compared with others types of cover. Thus, a time series forest
pattern in Amazon can be represented by a homogeneous time
series, which does not change over time. A break in a forest
time-series pattern may be a sign of deforestation. After the
break, the deforestation pattern changes rapidly because, usu-
ally, the region is then used for agricultural activity. Thus, there
is little time to define a time series pattern before the pattern
changes. Therefore, we consider that it is possible to character-
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ize the forest time series as a homogeneous pattern with high
vegetation indices values and the deforestation time series as a
brief deforestation pattern with low vegetation indices values.
Therefore, we want to verify if we can generate an accurate
map with a minimum number of observations as possible to pro-
duce constant information benefiting from the time component
of time series classification.

This paper presents the impact of the number of observations
used in the time series to create classifiers based on machine
learning algorithms. In this study, we analyze the impact on the
perspective of the Random Forest (RF) algorithm. We gener-
ated distinct RF classifiers from the same training sample with
a varied length of time series to compare their, using standard
metrics. The main objective was to evaluate the quality of these
classifiers and to verify the possibility of using samples with
fewer observations in a time series classification to obtain more
granulated information.

2. MATERIALS AND METHODS

2.1 A Random Forest Based Algorithm

RF is a supervised learning approach, where an independent set
of decision trees is built, based on a random training sample
subset, where each tree output is used in an ensemble process
to define the value or classification label (Breiman, 2001). RF
can be considered a state-of-the-art algorithm in remote sens-
ing. And It has been applied with success in land cover and
land use time series classification (Zhu and Woodcock, 2014,
Wang et al., 2019, Pelletier et al., 2019, Fortin et al., 2020).
These studies were based on at least a year of satellite data to
map a region, resulting in a large of number of observations
over time. This means each sample has the number of steps
equal to the number of images in the period. Each time-series
step results in one feature in a machine learning classifier. So,
to predict new data, the same number of observations must be
used as in the classifier training. In a scenario where the object-
ive is to produce fast and constant information, a classification
approach that uses many images is too slow to be effective, be-
cause the latency to deduce new information is directly linked to
the number of new observations necessary to provide the classi-
fier. For example, if the classifier needs 10 images to generate a
new classification and the temporal resolution of the images is
16 days, the latency to produce new information will be at least
160 days not counting the processing time. Therefore, testing a
state-of-the-art classification algorithm like RF is the first step
in to developing an approach that uses fewer time steps in time
series classification to produce information with lower latency
and, evaluate its accuracy.

2.2 Region of Interest

The Region of Interest (ROI) crosses five indigenous reserves
and two conservation units. Intensive agriculture surrounds these
areas, making them a focus of attention for government author-
ities concerned with deforestation, as shown in Figure 1. The
location of the ROI is in the Brazilian state of Rondônia within
the Amazon Forest, between 10°58’5”S and 9°56’50”S (latit-
ude), and 65°16’31”W and 63°40’49”W (longitude); it covers
an area of ≈18463km2. The indigenous and reserve land areas
combined cover ≈6871km2, corresponding to approximately
0.37% of the ROI.

Figure 1. Left: Region of Interest. Right: Sentinel-2 image from
Brazil Data Cube on 07-28-2018, indigenous reserves, and

conservation units of the ROI.

2.3 Satellite Data

The study was carried out by using the Landsat-8/OLI image
data cube available as open data in the Brazil Data Cube (BDC)
platform (Ferreira et al., 2020). Data cubes are multidimen-
sional arrays, using a regular grid of spatial coordinates and a
temporal dimension made of a sequence of time intervals. Data
cubes are built using analysis-ready data, which are images that
have been processed according to a common set of reference
standards1. The LC8 30 16D STK-1 data cube had 30m of spa-
tial resolution and a temporal composition of 16-days as the
result of the selection of the pixels with less cloud interference
within this period. This data cube can be retrieved using the
BDC Data Cube Explorer or by using the BDC STAC service2.

2.4 Reference data

PRODES is a project maintained by Brazil’s National Institute
for Space Research (INPE), that produces information about
the annual rate of deforestation in the Brazilian Amazon. The
PRODES data is respected worldwide given its high assertive-
ness rate of accuracy in mapping, with around 95% of accuracy
(INPE, 2021). Thus, the training and validation samples used
in this study were based on the datasets available in PRODES.
Figure 2 shows a 2018 PRODES vector map of the ROI and
presents part of the PRODES information. The ”no data” class
in the image corresponds to previous mapping, like a river, rock
formation, or deforestation map made before 2018.

Figure 2. Left: PRODES map of ROI in 2018. Right: Example
of polygons and attributes that can be visualized.

1 https://ceos.org/ard/
2 https://brazildatacube.dpi.inpe.br/portal/
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2.5 Defining the Time Series Period Based on PRODES

PRODES is based on a visual analysis of a remote sensing im-
age, in which specialists identify clear-cut deforestation. It can
identify deforestation within an area greater than 6.25 ha. The
system maps areas of deforestation in primary forests incre-
mentally. Once deforestation is identified in a region, that loca-
tion is not assessed in mappings in upcoming years. The period
of mapping begins on August first of the current year to July
31st of the subsequent year (INPE, 2020). The “view date” of
the polygon is the date of the image (best image of PRODES
year) used to map the region. The polygons over ROI gener-
ally have a “view date” during the Amazon dry season at the
end of the PRODES year. These considerations informed our
sampling approach.

Our main goal was to select the most homogeneous sample pat-
ter within the time-series period, where the land cover samples
did not change over time. For example, if a coordinate repres-
ented a forest cover in the first image, the coordinate should
also represent forest during all subsequent periods of obser-
vation. In addition, we wanted to define a time series pat-
tern where PRODES already confirmed deforestation change
to avoid a time series pattern where the sample still contained
forest. Thus, to specify the range of satellite data, we used the
“view date” information to create our sampling approach.

The deforestation “view date” does not represent when the forest
was cut, since the deforestation event may have occurred days,
weeks, or months before mapping. Thus, it is not possible to de-
termine the ground truth before the deforestation “view date”.
After the “view date”, the location is no longer considered a
primary forest. The area within the polygon can regenerate or
be used in farming, but this takes some time. Thus, the period
after the deforestation “view date” is the safest period to sample
deforestation samples. In the case of the forest “view date”,
however, the polygon represents an area covered by forest up
to the forest “view date”. After that, in these polygon regions,
a deforestation event can occur. So, it is not possible to de-
duce the ground truth after the forest “view date”. For forest
polygon, therefore, the safest period to sample a forest time
series is before the “view date”. So, the time period that is most
likely to produce accurate, or safe samples begins with the last
“view date” showing forest cover and ends with the first “view
date” indicating deforestation for each ROI. This corresponds
to the intersection of the forest and deforestation graphs where
the known ground truth data overlaps.

Figure 3 summarizes how we used the “view date” of a poly-
gon to define a safe period to extract a time series. The safe
period means the one where we can deduce the ground truth
over the time series periods. Figure 3 shows a hypothetical ex-
ample, using a NDVI time series representation to clarify how
we combined the “view date” of forest and deforestation poly-
gon and defined a time series period. In the example, a couple
of days were used, but the strategy can be applied using a longer
time interval, which will be presented in Section 2.6.

2.6 The Sampling Approach

The sampling approach selected samples of two classes, forest
and deforestation. The previous notes about PRODES were the
basis for the sampling approach, where our objective was to
minimize appointment errors in sampling process, define co-
ordinates, define the coordinates, and define a time series period
of around one year of observations. Figure 4 summarizes the

Figure 3. Example of how to define a safe period in the sampling
approach.

sampling approach. The boxes with black lettering show the
operations applied in the PRODES maps. The boxes in red are
the main outputs used in the time series extraction.

Figure 4. Sampling Approach.

The approach used two consecutive years of the PRODES poly-
gons, (2017-2018), mapped over the ROI to generate a compos-
ite map, where the deforestation polygons came from the 2017
map and the forest polygons were taken from the 2018 map.
The data range was defined from the composite map, where the
start date of the sample period was the last date among the de-
forestation polygons and the end date was the first of the forest
polygons.

In order to facilitate the sampling procedure, the PRODES data-
set was rasterized with the same coordinate reference system
and spatial resolution used in the BDC Landsat-8 data cube
(LC8 30 16D STK-1). The raster map made it possible to choose
a coordinate by evaluating the neighborhood of the pixel. Then,
the points were randomly selected by considering their neigh-
bourhoods to avoid transition areas. Only pixels with all neigh-
bours in a 3× 3 grid belonging to the same class were selected.
The sampling approach resulted in a time series period starting
on July 28, 2017 and ending on July 12, 2018, thus providing
about a year of observations. The random sampling resulted in
32,402 samples (18,680 of forest and 13,722 of deforestation).

2.7 Time Series Extraction

The time series period defined through the sampling approach
was comprised of 22 Landsat-8 images in the data cube LC8 30
16D STK-1 taken at 16-day interval, for a total time series of
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349 days. In this study, only vegetation indices were used due
to their variation over a predetermined range. This controlled
variation also limited the variety of classification patterns. The
development was based on three vegetation indices to define the
time series data set: Normalized Difference Vegetation Index
(NDVI)(Rouse et al., 1974), Visible Atmospherically Resistant
Index (VARI)(Stow et al., 2005), and Enhanced Vegetation In-
dex (EVI)(Jiang et al., 2008). Equations 1, 2, and 3 show how
to calculate the indices:

NDV I =
NIR+Red

NIR−Red
(1)

EV I = 2.5 ∗
(

NIR−Red

NIR+ 6 ∗Red− 7.5 ∗Blue+ 1

)
(2)

V ARI =
Green−Red

Green+Red−Blue
(3)

The BDC Landsat-8 data cube provided a layer, based on Fmask4
cloud detection (Qiu et al., 2019). This information was used
to fill in the missing values with a linear interpolation of the
time-series.

Only the red, blue, and green bands, along with the EVI and
NDVI spectral indices, were extracted from the BDC data cube.
The first three bands were used to compute the VARI index. The
feature set of the samples was composed from the NDVI, VARI,
and EVI time series. Thus, considering a time series length with
22 images at regular intervals, called time steps, each sample
had a total of 66 features.

2.8 Generating the RF classifiers

The training strategy used the 22 LANDSAT images, or obser-
vations, in the cube to define the number of time steps. From
the first observation, the same training and test data set was split
to generate data subsets with different time steps. Figure 5 sum-
marizes the strategy used to generate and calibrate the RF clas-
sifiers based on the number of observations time steps included.
The first observation was the start point of all datasets, so that
all classifiers benefitted from the more cloud-free images that
occurred at the beginning of the observation period, during the
Amazon’s dry season. Then, using a cumulative approach, new
data subsets were created that contained from 2 to all 22 time
steps, by increasing the number of time steps included, one by
one. The first data subset had 2 time steps, t1 and t2. The next
was composed of three time steps, t1, t2, t3 and so on, until all
22 time steps were included in the dataset. Each of these test
runs generated one RF classifier.

To select the hyper-parameters for each classifier, a random
search was applied to a list of predefined parameters. The range
of parameter settings tested is presented below.

• Number of Estimators (NE): [200; 400; 600; 800; 1,000;
1,200; 1,400; 1,600; 1,800; 2,000]

• Maximum depth (MD): [10; 20; 30; 40; 50; 60; 70; 80;
90; 100; 110; None]

• Minimum of split samples (MS): [2; 5; 10]

Figure 5. Strategy to split the dataset based on the number of
observations included to generate RF classifiers.

• Minimum of leaf (ML): [1; 2; 4]

• Bootstrap (BS): [True; False]

For each classifier, we tested 30 random parameter settings,
where each classifier was optimized by 3-fold cross-validation.
The best training result for each sub-dataset was selected from
the resulting classifiers. We adopted the random strategy to gen-
erate and calibrate the classifiers to avoid benefitting one subset
over another and to maintain impartiality in terms of the number
of time-steps.

2.9 Validation and accuracy metrics

The RF classifiers were trained using a random search over a
list of predetermined parameters. We split the dataset obtained
in the sampling approach into 70% training and 30% testing
samples, using the training dataset in the random search and
the test data to evaluate the resulting classifiers. Each set of
random parameters generated an RF classifier and then fit and
score them based on k-fold cross-validation. Cross-validation
is a statistical method used to estimate the performance of a
machine learning method with new data (Refaeilzadeh et al.,
2009). The k-fold cross-validation technique is a computational
technique that trains the classifier k times, using a 1/k fraction
of the data set as test material and the rest as training material.
This fraction varies in each interaction testing all data (Rodrig-
uez et al., 2010). Using this approach, we expected a lower
variance between each random forest classifier that was gener-
ated from the different data sub-sets with a distinct number of
time steps in each.

We used the first metric to evaluate the classifiers globally, us-
ing distinct accuracy metrics: Overall Accuracy (OA), Balanced
Accuracy (BA), and, F1-score (F1) (Fatourechi et al., 2008). In
addition to this review, we evaluated all classifiers, using the
PRODES map for the ground truth. We classified the ROI to
apply all metrics to the composite map created in the sampling
approach. We evaluated the accuracy of the approach by com-
paring the forest and deforestation classes to PRODES, using:
User’s Accuracy (UA), and Producer’s Accuracy (PA) (Con-
galton, 1991).

3. RESULTS

3.1 RF Training, calibration, and test classifiers

The training approach generated 21 RF classifiers with am in-
creasing number of observations. All classifiers were generated
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from the same source, but for each RF classifier, a different
number of observations in the time series was used. Table 1
shows the best parameters found in the random search and val-
idation metrics for the test samples.

Ts NE MF MD MS ML BS OA BA F1
2 2000 auto 20 2 1 TRUE 0.973 0.973 0.973
3 600 auto 70 2 1 TRUE 0.977 0.977 0.977
4 1000 auto 40 2 2 FALSE 0.979 0.979 0.979
5 800 sqrt 20 2 1 FALSE 0.981 0.981 0.980
6 800 sqrt 20 2 1 FALSE 0.982 0.982 0.982
7 800 sqrt 20 2 1 FALSE 0.981 0.982 0.981
8 800 sqrt 20 2 1 FALSE 0.981 0.982 0.981
9 800 sqrt 20 2 1 FALSE 0.981 0.981 0.981

10 800 sqrt 20 2 1 FALSE 0.981 0.981 0.981
11 800 sqrt 20 2 1 FALSE 0.981 0.982 0.981
12 800 sqrt 20 2 1 FALSE 0.982 0.982 0.981
13 800 sqrt 20 2 1 FALSE 0.982 0.982 0.981
14 800 sqrt 20 2 1 FALSE 0.982 0.982 0.981
15 800 sqrt 20 2 1 FALSE 0.982 0.982 0.981
16 800 sqrt 20 2 1 FALSE 0.982 0.982 0.982
17 800 sqrt 20 2 1 FALSE 0.982 0.982 0.981
18 800 sqrt 20 2 1 FALSE 0.983 0.983 0.983
19 800 sqrt 20 2 1 FALSE 0.984 0.984 0.983
20 800 sqrt 20 2 1 FALSE 0.984 0.985 0.984
21 1000 auto 40 2 2 FALSE 0.984 0.984 0.984
22 800 sqrt 20 2 1 FALSE 0.985 0.985 0.985

Table 1. Random Forest parameter settings and accuracy
metrics. Table header: Time series steps (Ts), Number of

Estimators (NE), Maximum depth (MD), Minimum of samples
split (MS), Minimum of samples leaf(ML), Bootstrap (BS),

Overall Accuracy (OA), Balanced Accuracy(BA), and
F1-Score(F1)

The calibration of the parameter settings resulted in classifiers
with high indices for all metrics. The results showed that the al-
gorithm performed well irrespective of the number of time steps
included in the sample. To visualize differences among the res-
ults, it is necessary to display the values with three decimal
places to highlight the similarity of the accuracy rates for all
numbers of observations in the time series. There was an im-
provement when samples included more time steps, but the im-
provement value was only around 0.012 from the smaller size
to the larger size tested. This value is not enough to affirm
that the classifier with fewer observations would generate the
worst results in an all-area classification. Therefore, this result
demonstrates that a good selection in parameter settings gen-
erated accurate classifiers for all numbers of time steps. This
would suggest that, at least for the training data set, the number
of time steps used in the data subset did not interfere drastically
with the test sample rate of accuracy.

3.2 Comparison with PRODES reference data: a global
analysis

The 21 RF classifiers were used to produce a map of all the ROI.
The next comparison used these maps against the PRODES map
used in the sampling approach, disregarding the ”no data” re-
gion in the map. We used metrics to compare each produced
map globally, using the PRODES map as ground truth. Figure
6 shows a chart with OA, BA, and F1 for all the numbers of
observations tested.

The OA initially presented a crescent behavior for the first 4
observations totals, reaching the highest value of 0.963. After
that, the overall accuracy declined, until achieving the lowest
value (0.924) for 21 total observations. In the BA, there was an

Figure 6. OA, BA, and F1 vs Total Number of Observations.

increase in metric value from 2 to 3 total observations, followed
by a drop over the next two steps. After that, the BA presented
a crescent behavior for the next 16 observations totals, reaching
its highest value at 0.94 for 21 total observations. In the F1-
Score, the best result occurred with 11 observations, scoring
around 0.74; the worst F1-score happened with 20 total obser-
vations, with a score of about 0.67.

The OA shows that, increasing the number of observations does
not result in better classifier performance. But the OA does not
consider the imbalance between the classes, which is caused by
the fact that the forest area is much greater than the deforested
area in the ROI. Therefore, to analyze the performance regard-
ing the class imbalance, we analyzed the BA and F1 metrics.
The BA showed a significant improvement when increasing the
total number of observations, indicating that the deforestation
class score can benefit from that increase. On the other hand,
the F1 value did not exhibit the same behavior; while the defor-
estation class improved with the number of observations, the
forest class performed worse. The progressively worse per-
formance for the forest class as the number of observations
increased occurred mainly because the classifier became more
sensitive to the edge regions, as shown in the next section 3.4.
Therefore, the question of which is the better classification will
depend on which class is the priority in classification rate ac-
curacy.

3.3 Compare with PRODES reference data: analysis per
class

To analyse the behaviour of the accuracy per class, we calcu-
lated user and producer accuracy for forest, and deforestation
classes. Figure 7 presents the results obtained from the met-
rics against the total number of observations for the total forest
class.

The forest PA was approximately 99% for all numbers of obser-
vations tested; so, it may be considered invariant for the number
of observations. The worst percentage of UA occurred with 21
total observations at around 92%, and the best result occurred
with 5 observations at around 97%. As for the UA, there was
a significant decrease in accuracy when the number of observa-
tions increased. In short, the accuracy for the forest class was
high for all numbers of observations, but the increase in obser-
vation totals worsened accuracy.

Figure 8 displays the chart of UA, and PA against the number
of observations obtained for the deforestation class. For the de-
forestation PA, the increase of observations did not appear to
influence the PA very much, with the PA’s best result at around
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Figure 7. forest User’s accuracy, Producer’s accuracy, Errors of
commission and Errors of omission vs Number of Observations.

37%. But, in the case of the UA, there was considerable im-
provement in the accuracy as the total number of observations
increased, with about a 30% improvement between worst and
best results.

Figure 8. Deforestation User’s accuracy, Producer’s accuracy,
Errors of commission and Errors of omission vs Number of

Observations.

The results for the deforestation class were different from those
obtained for the forest class. While the increase in the number
of observations decreased the accuracy of the classifier for the
forest class, there was a UA increase for the deforestation class.

3.4 Comparison with PRODES reference data: Visual ana-
lysis

The last comparison was a visual analysis of the ROI classific-
ations, using PRODES as a reference and a true-color image
at the beginning of the time series period. Figure 9 shows a
small ROI area inside the classified area to exemplify the visual
analysis. All the considerations for the ROI were observed in
all the classified areas. Figure 9 presents the boundaries of the
small ROI, the PRODES ground truth reference, ROI image at
the beginning of the period, and ROI in the RF classifications
that show the number of observations used in the classification.

Note that the forest pattern is more homogeneous for all forest
areas identified by PRODES. In the deforestation class, the de-
forestation pattern can have different characteristics, depending
on the time the deforestation event occurred, with three patterns
for the deforestation class: recent, ancient, and in-progress de-
forestation.

The forest areas presented a relatively homogeneous rigid green
inside the boundaries. But there were some points in the forest,
where some small areas showed a different pattern. Some isol-
ated regions in forest areas differ from their surroundings.

Where there had been recent deforestation, the exposed soil
showed up sharply on the true-color image, which presented
a sharp red color in the deforestation limits. But, we can also
see remnants of forest areas inside the boundaries of deforesta-
tion. The ancient deforestation can be identified easily in visual
analysis, but the red tone did not appear in the true-color image.
We visualize a soft shade of green in this kind of deforestation,
which contrasts with the rigid green of its forest surroundings.
In the in-progress deforestation, the boundaries of deforestation
were not visible. Along with the recent deforestation, there was
also forest formation inside the deforestation boundaries.

The classifications show that there was an improvement in the
deforestation class, when the number of observations increased,
according to the results of Section 3.2. The greatest improve-
ment was obtained in the recent deforestation and deforestation
in-progress, where the classifiers with fewer observations did
not detect the class changes, as seen in d2 and d3 examples
in Figure 9. Now, for the ancient deforestation, all classifica-
tions obtained good results, as shown in d1. All classifications
presented boundary errors, but increasing the number of obser-
vations increased errors substantially regard less of the number
of observations (see d4 in 9). An error in the edges may have
caused this result. as noted in Sections 3.2, and 3.3.

In general, the results obtained were satisfactory for all numbers
of observations. There was an improvement in the deforestation
class when the number of observations increased. In contrast,
the same increase of time steps in time series samples resul-
ted in a deterioration in the accuracy of the forest class scores.
Therefore, we can consider that the best result depends on the
objective of the classification. If we want a conservative clas-
sification for the forest areas, we can use fewer observations
to classify the region. But, if we want a classification where
the priority highlights the changes not dealing with the forest
errors, we can use more observations.

3.5 Improving the methodology and future work

The analysis of the results suggests some directions to improve
the methodology. We can improve the sampling approach, given
that the quality of machine learning classifiers depends directly
on the samples presented to the algorithm. One way is to avoid
appointment errors in boundary areas. In this regard, we can
improve the filter by using a larger grid to define the sampling
region. Another possibility would be to use an edge detector,
such as Canny (Canny, 1986) or Sobel (Sobel and Feldman,
1968) to identify the transition areas and avoid the sample se-
lecting the areas pointed out by the detector edges. Another way
to improve the sampling approach would be to avoid appoint-
ment to pixels, where the pattern inside the PRODES polygon
can be different from the general pattern as shown in Section
3.4. To do that, we could use an NDVI image at the beginning
of the period to define a threshold to identify a vegetation pixel
inside the deforestation polygon.

For our next steps we intend to evaluate how the classification
using fewer observations behaves over time, producing consec-
utive classifications. For example, if we have 24 satellite obser-
vations in a year, we want to classify all the period considering
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Figure 9. Visual analysis over a ROI in the all the mapped region.

a specific number of observations, like 3, producing 8 classi-
fications in a year. Sequentially will combine multiple clas-
sifications, like 8 classifications, and compare them with one
classification using all 24 observations.

4. CONCLUSION

This paper analyzes the behavior of RF classifiers when varying
the number of observations in land cover mapping through ac-
curacy metrics and visual analysis of a distinct time-series data
set. The data set was composed of the same appointments. The
difference between them is the number of observations used and
consequently the number of features of the samples.

The results obtained show little variation in overall accuracy
against the number of observations. When comparing the clas-
sified maps with the reference map, overall accuracy was greater
than 94% for all RF classifications. But analyzing the accur-
acy and errors for the classes individually, it is possible to ob-
serve differences between the classifications. The increase in
the number of observations shows improved accuracy in the
deforestation class and worse accuracy in the Forest class per-
formance. Therefore, the choice of which classifier is the most
suitable will depend on the user’s priority class in mapping.

The proposed analysis tested the impact on the performance of
the RF against the number of observations to consider the use
fewer observations in deforestation mapping. In this context,
the results show a relevant impact in performance in terms of
deforestation detection with an increase in the number of obser-
vations. But considering a scenario where the focus is produ-
cing information quickly, the results demonstrated that it is pos-
sible to use fewer observations to gain valuable time in forest
conservation.
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