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ABSTRACT: 

 

Sentinel-5P (S5P) data provide information on atmospheric pollutants daily, and, for higher latitudes, consequent orbits partially 

overlap the same day. Provided clear atmospheric conditions, these data can provide insights on emission hotspots and on spatial 

distribution of critical air quality issues. The purpose of this work is to analyse several aspects of NO2 data from S5P over the years 

2019, 2020 and 2021, in particular: (i) yearly average values between S5P data and 624 ground measurement stations were tested for 

correlation; (ii) 387 pairs of images from overlapping orbits on the same day were used to test for correlation on consecutive images 

with four different methods – simple linear regression over  all valid cell values across the two images, over a subset with a low cloud 

fraction, and linear and tree-based methods using multiple predictors; (iii) local maxima values extracted from yearly NO2 emission 

maps were analysed to check potential hotspots of NO2 emissions. 

 

Results show that ground measurements correlate with S5P values, with r-squared values of 0.37 and 0.43 and RMSE of 7.4 and 8.6 

µmol/m2 respectively for 2019 and 2020. Simple linear regression of overlapping consequent images returned average and standard 

deviation (sd) on r-squared respectively of 0.50(sd=0.21) and for RMSE of 11.3(sd=4.2) µmol/m2. Points from local maxima clearly 

detected 19 specific positions in large cities or nearby industrial areas, mostly in the north of Italy, with average NO2 values above 90 

µmol/m2 in some cases consistently over the three years, proving that S5P imagery is a valid index for spatial distribution of NO2 

concentration and air quality. 

  

 

1. INTRODUCTION 

Monitoring air pollution is one of the many drivers of earth 

observation (EO), as industrialized areas pollute the atmosphere 

with several emission sources, from industry to heating and 

vehicles. The paradox is that the sources of pollution have 

improved our wellbeing from one point of view (better heating, 

transportation, industry), but introduced harm in the long term do 

to the impact on health. 

 

1.1 Air pollution effect on health 

The main atmosphere pollutants that are of interest for human 

and environmental health in general are the following: nitrogen 

oxides (NOX), non-methane volatile organic compounds 

(NMVOCs), sulphur oxides (SOX), ammonia (NH3) and carbon 

monoxide (CO); particulate matter (PM) emitted directly to the 

air (primary PM): with a diameter of 2.5 μm or less (PM2.5; also 

called fine PM); PM with a diameter of 10 μm or less (PM10); 

total suspended particulates (TSPs); black carbon (BC), the most 

strongly light-absorbing component of PM (additional) 

(European Environment Agency, 2019). It is a proven fact that 

“pollution is the largest environmental cause of disease and 

premature death in the world today” and that air pollution 

specifically, “… endangers planetary health, destroys 

ecosystems, and is intimately linked to global climate change. 

Fuel combustion—fossil fuel combustion in high-income and 
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middle-income countries and burning of biomass in low-income 

countries—accounts for 85% of airborne particulate pollution 

and for almost all pollution by oxides of sulphur and nitrogen. 

Fuel combustion is also a major source of the greenhouse gases 

and short-lived climate pollutants that drive climate change. Key 

emitters of carbon dioxide, such as electricity-generating plants, 

chemical manufacturing facilities, mining operations, 

deforestation, and petroleum-powered vehicles, are also major 

sources of pollution. Coal is the world’s most polluting fossil 

fuel, and coal combustion is an important cause of both pollution 

and climate change.” (Landrigan et al., 2018). 

 

The main impacts of air pollution are on respiratory and heart 

disease. Regarding nitrogen dioxide (NO2), the World Health 

Organization (WHO) and European Environmental Agency 

(EEA) put the limit for human health to a concentration to 21 ppb 

or 40 µg/m3. Numerous projects link human disorders to air 

pollution, we report here only a few that are representative of the 

wide variety of impacts. In pregnancy (Ferrari et al., 2020), in 

asthma and lung function (Rusconi et al., 2011) and others that 

indirectly impact the human body. NO2 specifically was found 

to be linked to paediatric asthma also in cities with NO2 

emissions lower then the guideline from the WHO (Achakulwisut 

et al., 2019).   
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Health organizations have highlighted the need for monitoring 

pollution with ground sensors and remote sensing. Ground 

sensors are often spatially distributed on areas that are considered 

hot-spots, such as industrial areas and large urban areas. They 

provide important information, but are not evenly distributed in 

space, with a bias. Remote sensing fills this gap by providing 

distributed data, but has other drawbacks such as confounding 

factors in the atmosphere such as cloud cover. 

 

1.2 Remote sensing for atmospheric pollution 

Satellite images that provide information on nitrogen dioxide 

(NO2) concentrations are available as open data from the 

National Aeronautics and Space Administration (NASA) and the 

European Space Agency (ESA).  These two agencies provide 

data respectively with the Ozone Monitoring Instrument (OMI) 

sensor on the Aura satellite (minimum pixel size of 13x24 km2) 

and the Tropospheric Monitoring Instrument (TROPOMI) sensor 

on the Sentinel-5 Precursor (S5P) satellite (minimum pixel size 

of 5.5x3.5 km2).  

 

The COVID-19 lockdowns were one of the most studied testbeds 

for checking the effect on atmospheric pollution. Trivially 

lockdowns decreased drastically some sources of pollution, such 

as vehicle and industrial (partially), and less other such as 

household heating. Results from remote sensing data show a 

significant reduction between the months of January and 

February in eastern and central China, and between February and 

March in northern Italy (European Space Agency, 2020). Air 

quality went back to previous levels when economic activities 

resumed to “business as usual” (Filonchyk and Peterson, 2020). 

 

1.3 Sentinel-5 Precursor 

In support of services related to air quality, in the frame of the 

Copernicus Programme, ESA implemented the Sentinel-5 

Precursor (S5P) mission. The S5P satellite has been successfully 

launched on Friday, 13th October 2017 and completed its 

commissioning phase on 24th April 2018, and is currently in its 

operational phase. 

 

The TROPOMI instrument carried by the Sentinel-5P satellite, 

which has a swath of ~2600 km and covers the whole planet in a 

single day with a sun-synchronous polar orbit at an altitude of 

~824 km. It thus provides daily coverage at ~13:30 local solar 

time.  The satellite actually passes the equator (orbits) 14 times 

per day, with small gaps at the equator and overlaps at higher 

latitudes. The exact same image geometry is achieved every 29 

days (orbit cycle) with 412 orbits.  

 

Figure 1.  right: footprint of image swath and left: global 

representation of image swath (courtesy ESA). 

 

1.3.1 S5P Validation: Validation of NO2 concentration 

estimates from S5P in the tropospheric segment of the 

atmosphere is not a simple task, as direct measurement of the 

number of molecules in large areas is not possible. It can be 

compared with other estimations with other ground-based 

instruments which have been validated and proven to provide 

good fits. One approach is to use differential light absorption 

spectra measured from UV and visible-light spectrometers. Each 

measured spectrum is compared with a reference from the 

spectrum measured from direct daily noon zenith light.  

 

Spectral fitting software and inverse models are then used to 

provide atmospheric trace gas abundances. One such test to 

validate S5P NO2 concentration values over a city in Belgium is 

provided in (Dimitropoulou et al., 2020), which used the method 

reported in (Friedrich et al., 2019). The authors also report the 

expected error budget, which is a key information for further 

comparison with other methods; the total uncertainty ranged 

between 10% to 14% depending on the spectral range that use 

used in the inversion model. Results from (Dimitropoulou et al., 

2020) varied depending on the season, with an overall under-

estimation of S5P measures in this particular case. 

 

Different sources of uncertainty in are discussed thoroughly in 

(Boersma et al., 2004) and are here briefly mentioned. Clouds are 

a major source of error, which is largely, but not completely, 

accounted for by removing pixels with cloud cover. Nevertheless, 

there can be light clouds or pixels only partially covered that are 

still considered valid, but contribute to overall uncertainty. 

Surface albedo is another source of uncertainty of the NO2 values 

that are derived from S5P, as sensitivity of NO2 air mass factor 

(AMF) is markedly high; at low albedo values (0.0 to 0.2) 12% 

change in AMF for a 0.015 albedo change.  ESA’s Validation 

Data Analysis Facility (VDAF) for NO2 reports a bias and 

dispersion respectively of -34% and 2.7 Pmolec/cm2 (~44.8 

µmol·m–2). 

 

 

2. MATERIALS AND METHODS 

2.1 Study area 

The study area is the Italian peninsula. Its complex topography 

provides varied scenarios. The northern part is highly 

industrialized, with flat terrain and relatively slow air flux, which 

makes air quality an issue. Figure 2 below shows clearly the 

difference of the northern area with respect to the rest, on the 

worst period of the year, which is across the winter season. 

 

 

Figure 2.  Study area with ground stations. 
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2.2  Data 

2.2.1 Sentinel-5P data: In this investigation we use S5P data 

from Google Earth Engine (GEE). These data were processed by 

GEE from L2 to L3 by binning to a grid at 1.1 km resolution. The 

tropospheric_NO2_column_number_density band was used. For 

this product all pixels with a QA value below 75% were removed 

in the process. This means that only cloud-free and weakly 

cloudy pixels satisfy the recommended quality assurance. Each 

image is also tagged by ESA with two flags related to quality, 

“Processing Status” and “Product Quality”; both can have two 

values, “nominal” or “degraded”. Images with “degraded” flags 

were not considered and were removed.  

 

The GEE product does not include the “nitrogen dioxide 

tropospheric column precision” which provides the error estimate 

originating from the spectral fit and other retrieval aspects (Eskes 

et al., 2021), which would add information to the data and the 

process itself. ESA’s Validation Data Analysis Facility (VDAF) 

for NO2 reports a bias and dispersion respectively of -34% and 

2.7 Pmolec/cm2 (~44.8 µmol·m–2). Considering the orbital cycle 

of 14 orbits per day, this means that subsequent orbit stripes are 

a bit more then 1.5 hours apart and that high latitudes overlap 

partially.  Figure 3 below shows the overlapping area over the 

study area, the Italian peninsula. 

 

 
Figure 3. Snapshot showing two overlapping S5P consecutive 

orbits: red area highlights the overlap that increases at 

higher latitudes, embracing the study area. 

 

Due to the orbit geometry, and to the way that GEE structured 

the data tiles, the study area intercepted several thousand datasets 

between 2018 and 2021, but many of them consisted in marginal 

data. Via a GEE script we created a filter to keep only images that 

did not have the “degraded” product quality flag and that 

contribute with more than 50% of data pixels in the study area. 

This resulted of a total of 1617 images, distributed as seen in  

 

Table 1 below. Due to the overlap (Figure 3) some images from 

consecutive orbits in the same date where present.  

 

 2018 2019 2020 2021 

January 0 42 40 34 

February 0 38 37 32 

March 0 42 41 41 

April 0 37 40 42 

May 0 41 40 43 

June 1 40 42 40 

July 10 41 42 42 

August 38 43 41 43 

September 37 42 39 42 

October 42 38 41 39 

November 41 33 42 36 

December 42 39 36 15 

Total 211 476 481 449 

Table 1. Number of images per year and month. 

 

2.2.2 NO2 ground stations: Datasets with ground-

measurements of NO2 concentrations are available in Italy from 

19 different regional environmental agencies and 2 from the 

autonomous province of Trento and Bolzano. The regional 

agencies are called ARPA (Agenzia Regionale per la Protezione 

dell’Ambiente). Data accessibility is quite varied, as only some 

ARPA provide open and easy access to data, others require a 

formal data request to some parts of the data. Data are available 

in different formats, ranging from formats that are easy to ingest 

(ASCII text files, comma separated values or MS Excel files) and 

others have data in PDF tables which are much less readable by 

automated scripts. For this investigation we used 624 measuring 

stations in Italy with average annual data values of measured 

NO2 in µg ·m3 units. The data are provided by the national 

agency that confederates the different regional ARPAs, the 

Sistema Nazionale per la Protezione dell’Ambiente (SNPA).  

 

To make the process of creating the image stack of S5P and 

harmonizing the data fully replicable and open, all data and code 

were processed using R and GEE Javascript on the earthengine 

API and are available upon request.  

 

2.3  Methods 

2.3.1 S5P processing: The daily S5P images from GEE were 

stacked and aggregated to three single rasters per year with the 

following metrics: (i) annual average, (ii) median and (iii) 75th 

percentile values. The years taken in consideration are 2019, 

2020 and 2021.  

 

To analyse potential emission points, local maxima over a 5x5 

cells window (25x25 km) were extracted from each of the 2019, 

2020 and 2021 averaged rasters. The result are coordinates that 

represent estimated NO2 hotspots sources and are further 

discussed in the next sections.  

 

2.3.2 Overlapping orbits processing: Over almost 3.5 years, 

1617 orbit strips (see Figure 3 and Table 1) overlap the study 

area. Of these, 393 pairs are from consequent orbits that overlap 

with an average time difference of ~100 minutes. The 

overlapping cells in this short time difference were analysed to 

assess how correlated the NO2 data estimations are over the short 

time lapse. The hypothesis is that most cells should have similar 

values as emissions are consistent over such short time. Large 

differences can potentially be caused by strong wind or other 

meteorological factors affecting the pollutant distribution; 
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nevertheless most should be highly correlated to a linear 

regression. Eq. 1 below represents the intersection of the two-

consequent image rasters with NO2 values, with and without a 

cloud fraction filter. 

 

 

𝐼𝑛 = {
𝑖 𝑋𝑖 ∈ ℝ
∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐽𝑛 = {
𝑗 𝑋𝑖 ∈ ℝ 𝑎𝑛𝑑 𝐶𝑓 <  0.2
∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴 = 𝐼𝑡2 ∩ I𝑡1

𝐵 = 𝐽𝑡2 ∩ J𝑡1

𝑂2,|𝐴|  =  [
𝑉𝑡1,𝐴

𝑉𝑡2,𝐴
]

𝑃2,|𝐵|  =  [
𝑉𝑡1,𝐵

𝑉𝑡2,𝐵
]

𝑇

 (1) 

 

Where In is the set of indices of cells in image n that have a valid 

real number (i.e. is not null/NaN). Jn is a subset from In where 

cloud fraction (Cf) is below 0.2. It1 and I t2 are the sets of valid 

cell indices of the two dates being compared, thus A is the 

resulting set of cell indices with valid values in both images and 

B is a subset of A that keeps only pixels  with low values of cloud 

fraction. A and B indices are then used to extract the two sets of 

S5P values at the two consecutive times t1 and t2 as vectors (V) 

of size |A| and |B| respectively, and resulting in two matrices O 

and P with size 2·|A| and 2·|B| respectively.  

 

The next step consisted in splitting the two sets, with all valid 

values (O) and with low cloud fraction (P), in two equal parts, 

one for fitting (training) and one for validation.  

 

The sets were further analysed for each single pair and also all 

together by simple linear regression, multivariable linear 

regression and machine learning with the following four 

combinations in table below. 

 

1) Simple: simple linear regression between values from the 

two dates:  Vt2 = b1Vt1 + a 

 

2) Low clouds: same as (1) but with the indices in B (see eq. 

1), i.e. the cells with cloud fraction below 0.2. In this case 

we want to test to see if the regression goodness of fit 

improves when only cloud-free (almost) areas are 

considered. 

3) Multivariable: multivariable linear regression, adding to 

(1) three other predictor variables:   

 

 Vt2 = b1Vt1 + b2Cft1 + b3Cft2 + b4Hasl + a (2) 

 

where Hasl is height above sea level of the cell. 

 

4) Random forest: regression with a machine learning 

method, random forest, is applied with multiple variables 

like in (3). This was done to test if a non-linear non-

parametric method can significantly improve the 

prediction. 

 

Table 2.  Regression approaches to overlapping consecutive 

images. 

 

Regression results from the four approaches listed above and for 

multiple consequent image pairs were compared using the 

coefficient of determination (r-squared) and root mean square of 

residuals/errors (RMSE). 

 

Ground stations and municipality data: Spatial association to 

the single coordinate of each station was complicated as the 

coordinates of the position of the measuring station are not 

included in the data. There is only a reference to the town were 

the station is located. Two approaches were therefore tested for 

geolocating the measurements: (1) reverse geocoding using an 

online service (Microsoft Bing); (2) joining each measuring 

station to the area of a municipality using the identification code 

used by the Italian administration (ISTAT code) which is 

included in the data.  The first approach consists in providing the 

geocoding service a string consisting in the concatenation of the 

name of the measuring station and the name of the municipality. 

The name of the measuring station is usually related to the area, 

taking the name of the street or of the specific location. It must 

be noted that this method has to be checked manually for errors 

that are caused by a name of the measuring station that is not in 

any way connected to the spatial location. The second approach 

is quite trivial and provides an accurate match to the municipality 

area, but not to the exact coordinate of the measuring station. S5P 

average yearly values were aggregated to each area of the 

municipality using average, median and 75th percentile. 

 

 

3. RESULTS 

3.1 Overlapping image pairs 

Over almost 3.5 years, 1617 orbit strips (see Figure 3) overlap 

the study area. Of these, 393 pairs of consequent orbits overlap 

on the same day, but only 387 of these resulted to have more than 

1000 valid pixels, so were further analysed. The final dataset 

consisted in two columns, one with all cell values from earlier 

satellite overpass and the second column with cell values the later 

overpass. The exact time difference between two consecutive 

images is 101.5 minutes. 

 

Regression on all pairs together resulted in RMSE of 12.4 

µmol·m–2, r-squared of 0.74 and 40% or relative RMSE. Figure 

4 shows the scatterplot and regression results. 

 

 
Figure 4. Regression over all NO2 values from image pairs 

merged together. Red line is the regression line, blue 

line is the 1:1 slope line. 
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Figure 5. Residuals distribution divided in classes of NO2 

values. 

 

Each pair was tested for goodness of fit using the 4 combinations 

described in  Table 2. Further analysis was conducted over all 

data together. Coefficient of determination and root mean square 

of residuals are calculated to assess how close each pair is, with 

some examples in Figure 6 and Figure 7.  

 
Figure 6.  An example of results from two consecutive orbits. 

All values are in µmoles/m2. Blue line is 1:1 slope and 

red line is the regression fit. The regressions number 

references information in Table 2: top left is simple 

linear regression (1)  between NO2 values between 

the two dates; top right is regression with a subset of 

cells with a cloud fraction less then 0.2 (2); bottom 

left is regression with the NO2 values of one date as 

dependent variable with four independent predictors 

(NO2 values of the other date, cloud fractions of both 

dates and height above sea level of pixel) (3); bottom 

right is regression with random forest using the same 

set of independent predictors as the previous set (4). 

 
Figure 7.  An example with a lower coefficient of determination 

and lower values of NO2 concentration. The figure 

structure is the same as described in Figure 6. 

 

Distribution of r-squared and RMSE values resulting from 

regression of each pair of images from the four regression types 

are tested for significant difference with Mann–Whitney U test. 

This test was used because distributions are not normally 

distributed, as proven from testing the data with the Shapiro-Wilk 

test.  Figure 8 below reports the results. 

 

 
Figure 8.  RMSE distributions for the four regression types (see 

Table 2) with letters accounting for significant 

difference at 99% confidence level from the Mann-

Whitney U test. Boxplot is interquartiles and median. 

Red dot and line are mean and standard deviation. 

 

 

3.2 NO2 ground stations vs S5P data 

Two approaches were chosen to analyse ground data: single 

station and aggregating station to municipality with a single 

average value. As mentioned in the methods section this was 

necessary because coordinates of single stations were estimated 
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from reverse geocoding; this method is not 100% accurate and 

might have given a few wrong results, which are discussed in the 

next section. On the other hand, assigning the municipality to the 

ground station is more reliable, but average in many cases more 

values to a large area. After aggregation to the polygon of the 

municipality, 394 and 425 municipalities have valid yearly 

average values of NO2 for 2019 and 2020 respectively.  

 

3.2.1 Single station NO2 vs S5P: The table below reports the 

values of correlation and RMSE between S5P data and measured 

averages. It must be noted that only 2020 ground measures also 

have median and 75th percentile values reported in the table. 

 

 

ARPA values    > 

S5P values    ˅ 
Mean Median 75th Perc. 

2019 

Mean 0.31(9.2) - - 

Median 0.33(9.1) - - 

75th Perc. 0.30(9.3)  - - 

2020 

Mean 0.35(7.5) 0.35(6.9) 0.37(10.3) 

Median 0.37(7.4) 0.36(6.8) 0.39(10.1) 

75th Perc. 0.35(7.5) 0.34(7.0) 0.36(10.4) 

Table 3.  R-squared values and RMSE values (in parenthesis) 

for values from station coordinates. Bold values are 

the highest r-squared values. 

 

 

 

 

Figure 9.  Highest r-squared values (Table 3) for 2019 (left) and 

2020 (right) from ground measures at station 

coordinates. 

 

3.2.2 Municipality aggregated NO2 vs S5P: The table 

below summarizes the correlation values and RMSE values. As 

can be seen by comparing with Table 3, the values are generally 

higher. 

 

 ARPA 

values > 

S5P values    

˅ 

Mean Median 75th Perc. 

2019 

Mean 0.36(7.4) - - 

Median 0.37(7.4) - - 

75th Perc. 0.34(7.5) - - 

2020 

Mean 0.40(6.3) 0.41(5.6) 0.42(8.7) 

Median 0.40(6.3) 0.40(5.6)  0.43(8.6) 

75th Perc. 0.39(6.4) 0.39(5.7) 0.41(8.7) 

 

Table 4.  R-squared values and RMSE values (in parenthesis) 

for values from ground measured aggregated to single 

municipality area. Bold values are the highest r-

squared values. 

 

 

 

 

 

Figure 10.  Highest r-squared values (Table 4) for 2019 

(left) and 2020 (right) from municipalities where 

stations were aggregated. 

 

 

3.2.3 Local maxima hotspots: The number of local maxima 

values around a 25 km by 25 km radius which are above 40 

µmol/m2 and 60 µmol/m2 are respectively 443 and 167. They are 

located as depicted in Figure 11. Table 5 shows the 19 cities that 

have values above 90 µmol/m2 . It must be noted that some cities 

are nearby large metropolis, like the first one in Table 5 is in the 

north of Milan. 

 

 
Figure 11. Hotspots with average values above 60 µmol/m2. 

Shapes represent the year: triangles are 2019, 

rhomboids 2020 and circles 2021. 

 

 

Table 5 shows the cities were local maxima were located and the 

number of years that they had the local maximum. Only values 

above 90 µmol/m2 are reported to limit space of the table 

reporting 19 cities. The total number of cities with values above 

60 µmol/m2 were 68. 
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Municipality n.Years Mean NO2 

Cinisello Balsamo 2 193.0 

Cormano 1 156.0 

Dalmine 1 143.7 

Bergamo 1 133.6 

Brescia 3 130.4 

Osio Sopra 1 128.8 

Prevalle 1 124.4 

Torino 3 122.4 

Verona 3 109.0 

Montecchio Maggiore 1 99.9 

Arzignano 1 99.3 

Monteviale 2 99.2 

Venezia 2 97.8 

Peschiera del Garda 1 97.6 

Padova 3 96.9 

Creazzo 1 95.2 

Casoria 2 94.6 

Napoli 1 91.1 

Piacenza 2 90.2 

Table 5.  Cites were hotspots were found from local maxima 

with respective average NO2 values in µmol/m2. 

 

 

4. DISCUSSION 

The analysis of overlapping image pairs provides some insights 

on the uncertainty which seems to be 12.1 µmoles/m2  40% which 

is very close to the precision requirement of 0.7 Pmolec/cm2 

(~11.6 µmol·m–2) as reported in the validation work of S5P NO2 

data from Compernolle et al., (2018). The same work by 

(Compernolle et al., 2018) compared tropospheric NO2 with 

ground stations with NDACC UV-Vis Multi-Axis DOAS, Multi-

Axis Differential Optical Absorption Spectroscopy (MAX-

DOAS)  measurements, finding higher values of RMSE in some 

stations, and lower RMSE in stations located in areas with clean 

air. Further correlation values between ground stations and S5P 

in Compernolle et al., (2018) show a r-squared value of 0.55, that 

is higher then what was found in this study, i.e. ranging from 0.33 

to 0.30 when compared to single ground stations. It must be noted 

that the comparison in this study is with ground stations that use 

a very different measuring method, based on point-in-space 

measures in contrast with the MAX-DOAS measurements that 

use spectral models, that are closer to the way that S5P measures 

are provided.   

   
Similar work, but comparing ground stations using ground-based 

MAX-DOAS instruments in (Verhoelst et al., 2021) reported a 

negative bias for the S5P measurements of tropospheric column 

data, of typically −23 % to −37 % in clean to slightly polluted 

conditions, but reaching values as high as −51 % over highly 

polluted areas. This is in line with what is reported in this work 

at Figure 5, where it can be seen that higher values (i.e. more 

polluted) have higher residuals. Of course, residuals are not the 

same as bias, and the methods are very different, but it can still 

be noted that if precision decreases over higher values, it is likely 

that higher biases might result when comparing with ground 

measurements. 

 

Another similar work was done by (Ialongo et al., 2020) finding 

underestimation with respect to a spectrometer (Pandora) and to 

a single ground measuring station nearby. It must be noted also 

in this case that the spectrometer data is fitted with the DOAS 

model. Interestingly in this case also the measuring station data 

are used, that report data ppb and in µg/m3. Results report that the 

best correlation are, like in other investigations (Oxoli et al., 

2020), at overpass time of the satellite (around noon). Ialongo et 

al., (2020) report a coefficient of correlation (r) of 0.69, i.e. r-

squared 0.48, which means higher values than found in our study, 

which reach maximum 0.43. Oxoli et al., (2020) concentrated 

their study in the Lombardia region of Italy, and found an average 

r-squared value ranging between 0.37- 0.72 (standard deviation 

of Pearson correlation).  The results in this study fall on the lower 

side of this range, probably due to the much larger study area that 

is taken in consideration.  

 

NO2 emission from agriculture is also another interesting aspect 

that drives a more careful assessment of farming practices 

(Mozzato et al., 2018), which are one of the many anthropic 

impacts that  can be mapped to assess their effect on human but 

also on biodiversity in general  (Piragnolo et al., 2014). 

 

Regarding the ground measurements at national level, it is to note 

the importance of a national or, even better, European 

harmonization of data that are collected from the various 

environmental agencies. There are efforts in this sense, as all of 

the regional agencies (ARPAs) are collected to SNPA, but data 

are not harmonized and it is quite difficult to retrieve it. It is a 

trivial statement that collecting and sharing data through a unique 

portal would provide the scientific community with important 

data to use for cross-validation of other methods, such as remote 

sensing data. Standardized online services could make things 

easier and foster research efforts in several directions. An open 

collaborative approach could make use of city models that come 

from different projects e.g. (Prataviera et al., 2021) and that can 

provide insight on where to position low-cost sensors that 

monitor air quality from different aspects. 

 

 

5. CONCLUSIONS 

Sentinel-5P (S5P) data provide information on atmospheric 

pollutants daily, and, for higher latitudes, consequent orbits 

partially overlap the same day. These data can provide insights 

on emission hotspots and on spatial distribution of critical air 

quality issues. In this work several aspects of NO2 data from S5P 

are analysed over the years 2019, 2020 and 2021. Results show 

that ground measurements correlate with S5P values, with r-

squared values of 0.37 and 0.43 and RMSE of 7.4 and 8.6 

µmol/m2 respectively for 2019 and 2020. Simple linear 

regression of overlapping consequent images returned average 

and standard deviation (sd) on r-squared respectively of 

0.50(sd=0.21) and for RMSE of 11.3(sd=4.2) µmol/m2. Points 

from local maxima clearly detected 19 specific positions in large 

cities or nearby industrial areas, mostly in the north of Italy, with 

average NO2 values above 90 µmol/m2 in some cases 

consistently over the three years, proving that S5P imagery is a 

valid index for spatial distribution of NO2 concentration and air 

quality. 

 

As it is proven that S5P data effectively predict NO2 

concentrations, future work will address other hypotheses and 

research questions more related to health issues, with support 

from the medical scientific community. Another aspect of the 

future work is to use the S5P daily time series to assess trends in 

time of NO2 emissions and effects of weather-related variables, 

such as precipitation, temperature and wind. 
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