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ABSTRACT:

Forest plantations play an important role ecologically, contribute to carbon sequestration and support billions of dollars of economic
activity each year through sustainable forest management and forest sector value chains. As the global demand for forest products
and services increases, the marketplace is seeking more reliable data on forest plantations. Remote sensing technologies allied
with machine learning, and most recently deep learning techniques, provide valuable data for inventorying forest plantations and
related valuation products. In this work, deep semantic segmentation with U-net architecture was used to detect forest plantation
areas using Sentinel-2 and CBERS-4A images of different areas of Brazil. First, the U-net models were built from an area of the
Centre-East of Paraná State, and then the best models were tested in 3 new areas that present different characteristics. The U-net
models built with Sentinel-2 images achieved promising results for areas similar to the ones used in the training set, with F1-score
ranging from 0.9171 to 0.9499 and with Kappa values between 0.8712 to 0.9272, demonstrating the feasibility of deep semantic
segmentation to detect forest plantations.

1. INTRODUCTION

Forest plantations can be defined as planted forests that are in-
tensively managed, with one or two species, native or exotic,
even age class, and regular spacing (Food and Agriculture Or-
ganization, 2020). They are of significant economic import-
ance, generating billions of dollars per year (Indústria Brasileira
de Árvores, 2021), as a source of a wide variety of products
such as wood panels, timber, pulp, paper, biomass, energy, char-
coal, and others. According to the Global Forest Resources As-
sessment 2020
(Food and Agriculture Organization, 2020), the area of forest
plantations was 131 million hectares, with the highest share be-
ing located in South America and the lowest in Europe. Glob-
ally, 44% of forest plantations’ total area is composed of intro-
duced species.

Brazil plays an important role in this segment, being the largest
exporter of cellulose pulp to the global market and ranking among
the 10 largest producers in the world regarding paper, lumber
(9th), pulp (2nd), and charcoal (1st). Brazil’s forest planta-
tions are composed of the introduced species Eucalyptus, Pine,
and Teak, and some native species such as Rubber, Acacia,
Araucaria, and Paricá. In 2020, the forest plantations’ total area
was 9.55 million hectares, with 78% composed of Eucalyptus,
18% of Pine, and the rest of the other species. The states of Mi-
nas Gerais, São Paulo, Mato Grosso do Sul, Paraná, Rio Grande
do Sul, and Santa Catarina are Brazil’s leading producers of
forest plantations (Indústria Brasileira de Árvores, 2021).

Remote sensing technologies provide valuable spatial and tem-
poral data to a great variety of applications regarding Earth Ob-
servation, which includes the forest plantations sector, whether
∗ Corresponding author

in forest mapping, biomass and age estimation, change detec-
tion, and others (Trisasongko and Paull, 2020). Many of these
applications rely on machine learning techniques (Dang et al.,
2019, Dube et al., 2014, Sibanda et al., 2021, Meng et al.,
2022), with its subgroup deep learning drawing attention as it
achieves excellent performances and improves information ex-
traction from images (Martins et al., 2021, Cui et al., 2020).

Deep learning is based on neural networks. A neural network
is composed of the following layers: the first layer that receives
the input data (input layer), the hidden layers, and the output
layer. If a neural network contains multiple hidden layers, it
is considered a deep neural network, which explains the term
deep learning. Some deep learning models are convolutional
neural networks, recurrent neural networks, autoencoders, and
generative adversarial networks (Ma et al., 2019).

The convolutional neural networks have multiple feature-extraction
stages subdivided into three types of layers: (a) convolutional
layers, (b) pooling layers, and (c) fully connected layers (Ma et
al., 2019). They have been successfully used in various fields,
including remote sensing (Zhu et al., 2017, Ma et al., 2019),
due to their ability to automatically learn feature representations
through training with minimal knowledge of the task (Lecun
et al., 1998). They have been applied in a variety of remote
sensing image analysis tasks such as image fusion, scene classi-
fication, object detection, object-based image analysis (OBIA),
land use and land cover (LULC) classification, and semantic
segmentation (Ma et al., 2019).

Semantic segmentation aims to generate a pixel-wise classific-
ation of images. For remote sensing, the state-of-the-art frame-
works are typically composed of encoder and decoder subnet-
works (Ma et al., 2019), with U-net (Ronneberger et al., 2015)
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and Fully Convolutional Network (Long et al., 2014) being ex-
amples of architectures for semantic segmentation. U-net sum-
marizes patterns in both the spectral and spatial domain. Be-
sides, it works well with small training datasets, which is ad-
vantageous for the remote sensing field, where gathering ground
truth annotations can be time-consuming and expensive (Ron-
neberger et al., 2015, Solórzano et al., 2021, Illarionova et al.,
2021).

Deep semantic segmentation with U-net could be used to map
forest plantations. In (da Costa et al., 2021) 24 models based
on combinations between six architectures, including U-net,
and four encoders, were compared regarding Eucalyptus planta-
tions’ mapping in Sentinel-2 images with 10 bands. As per (Wag-
ner et al., 2019) very high resolution red-green-blue (RGB) im-
ages from the WorldView-3 satellite (0.3 meter of spatial resol-
ution) and U-net were used to segment natural forest and Euca-
lyptus plantation in the Brazilian Atlantic Forest region.

The goal of this work was to detect forest plantation areas through
remote sensing imagery and deep semantic segmentation with
U-net architecture. This is the first necessary step in the de-
velopment of a remote forest plantation inventory and valuation
product. The remainder of this work is organized as follows.
Section 2 presents the methodology regarding the study areas,
the remote sensing images, and the U-net models, Section 3 ex-
hibits the results of the performed experiments, Section 4 con-
cludes the paper and Section 5 highlights some of the next steps
of this research.

2. METHODOLOGY

2.1 Study areas

The study areas are divided into two groups: the first was used
to train and define the best U-net models, and these best models
classified the areas in the second group. Figure 1 presents the
study areas, with study area A belonging to the first group and
the remaining study areas (B, C, and D) in the second group.

2.1.1 Definition of best models Study area A is shown in
more detail in Figure 2. It is in the Centre-East of Paraná
State, near Telêmaco Borba and Ibaiti counties. Most of the
area is located in the Atlantic Forest biome, which is character-
ized by ombrophilous (dense, open, and mixed) and seasonal
(semideciduous and deciduous) forests. The remaining area is
located in the Cerrado biome, which presents forest and coun-
tryside formations, with savanna being the most expressive, and
its most common physiognomy is sparse trees and shrubs on
a grassy carpet (Instituto Brasileiro de Geografia e Estatistica,
2019). Its Köppen’s climate types are Cfa (Humid subtropical
zone with oceanic climate, without dry season, and with hot
summer) and Cfb (Humid subtropical zone with oceanic cli-
mate, without dry season, and with temperate summer) (Alvares
et al., 2013). It presents a flat to slightly undulating topography,
and it is mainly composed of forest plantations areas, being the
majority of Eucalyptus and the rest of Pine.

Thirteen grids, highlighted in Figure 2, were chosen in which
nine are 2×2km2 and four are 2×0.444km2. For the Sentinel-
2 dataset, all of these grids were used, being the vast majority of
the area (around 95%) composed of the Atlantic Forest biome
and the rest being Cerrado. For the CBERS-4A dataset, two
grids were used, both located within the Atlantic Forest biome.

Figure 1. Location map of the study areas.

Figure 2. Sentinel-2’s RGB composition image of the study area.
The grids used to define the best U-net models are highlighted,

being 13 for the Sentinel-2 dataset and 2 for CBERS-4A.

2.1.2 Applying best models in new areas Three new areas
(B, C, and D), with Eucalyptus plantations, were chosen to at-
test to the robustness of the generated models, with Table 1
showing their geographical boundaries (coordinates of the up-
per left and lower right corners). They vary in biome, topo-
graphy, and climate as can be seen in Table 2. Area B is in
the municipality of Itatinga, in the State of São Paulo, which
is in Cerrado (majority of the area) and Atlantic Forest biomes.
It has a flat to slightly undulating topography, its climate type
is Cfa (Alvares et al., 2013), and besides forest plantations, it
presents sugar cane, coffee, and orange plantations. Area C is a
flat area located in Indianópolis city (State of Minas Gerais), in
the Cerrado biome, presenting a Cwb (Humid subtropical zone
with dry winter and temperate summer) climate (Alvares et al.,
2013) and also having coffee plantations.
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Area D is in the municipality of São Pedro da Água Branca, in
the State of Maranhão. It is in the Amazon biome, the most
extensive biome of Brazil, which is mostly composed of dense
ombrophilous forest (Instituto Brasileiro de Geografia e Estat-
istica, 2019). It presents a flat topography, and its climate type
is a Tropical zone with dry winter (Aw) (Alvares et al., 2013).

Area Latitude Longitude

B 23º07’18.97”S 48º44’12.80”W
23º17’58.24”S 48º32’18.31”W

C 18º50’42.76”S 47º54’47.94”W
19º01’20.75”S 47º43’12.86”W

D 05º04’00.53”S 48º18’25.82”W
05º09’56.47”S 48º12’27.80”W

Table 1. Coordinates of the upper left and lower right corners of
the new areas.

2.2 Remote sensing images

The images used in this work are from sensors Multispectral
Instrument (MSI) of Sentinel-2A/2B satellites and Multispec-
tral camera and Panchromatic Wide (WPM) of China-Brazil
Earth Resources Satellite-4A (CBERS-4A). The MSI sensor
has a radiometric resolution of 12 bits and acquires 13 spec-
tral bands from visible and near-infrared (VNIR) to shortwave
infrared (SWIR) with different spatial resolutions of 10 (red,
green, blue, and near-infrared bands), 20 (red-edge and short-
wave infrared bands) and 60 meters (atmospheric correction
bands) (European Space Agency, 2015). The WPM sensor ac-
quires 4 VNIR bands (red, green, blue, and near-infrared) with
a spatial resolution of 8 meters and a panchromatic band with
2 meters spatial resolution. The radiometric resolution of its
images is 10 bits (dos Santos et al., 2022).

Area

Satellite A B C D

Sentinel-2 2020-06-21 2021-07-23 2021-04-24 2021-08-08
CBERS-4A 2020-07-09 2021-07-26 2021-04-24 2021-07-01

Table 3. Acquisition dates for the images used in this work.

Table 3 shows the dates of the acquired images. The images
from MSI were at Level 1C, with radiometric processing and
geometric correction, and the bands with 20 meters spatial res-
olution were resampled to 10 meters with the default resampling
method (nearest neighbor) in Geospatial Data Abstraction Lib-
rary (GDAL) (GDAL/OGR contributors, 2022), totaling 10 bands
that were used in this work. As the data collected from the
WPM sensor still doesn’t have radiometric correction (dos San-
tos et al., 2022), a linear regression was made to standardize
WPM data regarding MSI. This was made by collecting MSI
and WPM images from the same area and around the same date,
sampling approximately 60 pixels, and finding the slope and in-
tercept of the regression line. For WPM’s panchromatic band,
the corresponding MSI pixels were calculated by the mean of
bands blue, green, red, and red-edge 4. The regression lines for
the performed radiometric calibration of WPM bands are shown
in Equation 1.

bluecalibrated = 5.8432 ∗ blueWPM + (−120.9271)

greencalibrated = 6.4327 ∗ greenWPM + (−91.8606)

redcalibrated = 6.2849 ∗ redWPM + (−151.7777)

nircalibrated = 7.3931 ∗ nirWPM + (−264.7779)

pancalibrated = 5.6297 ∗ panWPM + 4.1212

(1)

The pixels values of each band were transformed to range between
0 to 255. For MSI, two input images with 10 meters spatial
resolution were created: one with Landsat-like data where the
bands Blue, Green, Red, and Near-Infrared (BGRNir) were chosen,
and the other used the 10 available bands (BGRNir plus the four
Red-Edge and the two shortwave infrared bands). As for WPM,
a BGRNir image was created, and then a fusion (pansharpen-
ing operation in GDAL, with nearest as resampling method)
between the panchromatic band and this image was performed,
resulting in a BGRNir image with 2 meters spatial resolution.

The grids of the study area A (Telêmaco Borba) were divided
into smaller images of size 256×256 pixels with minimal over-
lap, resulting in 640 images for the Sentinel-2 dataset and 3, 200
images for CBERS-4A. These images were split into approx-
imately 70% training, 10% validation, and 20% test. To build
these sets, the following steps were taken: the proportion of
forest plantation pixels was calculated for each 256 × 256 im-
age; the images were divided into quartiles according to their
proportion, and random selection was performed for each quart-
ile to define in which set (training, validation or test) each image
would be added.

The training set from Sentinel-2 was augmented by rotation and
flip, totaling 3, 400 images. As for CBERS-4A, one experi-
ment used its original training set, and the other experiment
augmented the training set by rotating the images in 180 de-
grees, duplicating the number of images (4, 478). For all the
study areas, the ground truths were built by visual interpreta-
tion of the remote sensing images’ landcover and manual de-
lineation of forest plantations polygons. Approximately eighty
hours of expert work were required to construct the ground truth
annotations.

2.3 U-net models

U-net is a Fully Convolutional Neural Network created to seg-
ment biomedical images. It has an encoder-decoder architecture
that resembles a U shape. In the encoder part, downsampling
layers reduce the spatial resolution of the image, and its fea-
tures are extracted. At the decoder occurs upsampling of the
feature map, restoring the image’s original dimensions and en-
abling the pixel-wise classification. This architecture captures
the context in the encoder and precise localization in the de-
coder (Ronneberger et al., 2015).

Two U-net implementations were used to build the models. One
is from the Segmentation Models Pytorch repository
(Yakubovskiy, 2019) and for its encoder it is used a pre-trained
Convolutional Neural Network (backbone) named Efficient-net-
b7 (Tan and Le, 2019) (eff7). This backbone was chosen as it
achieved the best results to detect eucalyptus plantation areas
using Sentinel-2 images in (da Costa et al., 2021). As eff7 has
weights trained on the 2012 ILSVRC ImageNet dataset (Deng
et al., 2009), it is expected for the model to receive an input im-
age with 3 channels. However, our input images have 4 or 10
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Area City State Biome Size (km2) Climate type Topography
B Itatinga São Paulo Cerrado/Atlantic Forest 2× 2 Cfa Flat/slightly undulating
C Indianópolis Minas Gerais Cerrado 2× 2 Cwb Flat
D São Pedro da Água Branca Maranhão Amazon 1.1× 1.1 Aw Flat

Table 2. Summary of the new areas.

Satellite Modelname Accuracy Precision Recall F1-score Jaccard score Kappa

Sentinel-2
unetv4 4bands 0.9517 0.8612 0.8564 0.8588 0.7526 0.8297

smv4 eff7 4bands 0.9363 0.8405 0.7758 0.8069 0.6763 0.7688
unetv4 10bands 0.9574 0.8775 0.8734 0.8754 0.7785 0.8497

smv4 eff7 10bands 0.9471 0.8612 0.8241 0.8422 0.7275 0.8105

CBERS-4A unetv4 4bands 0.9526 0.9364 0.9194 0.9278 0.8654 0.8925
unvetv4 4bands 180degrees 0.9514 0.9270 0.9263 0.9266 0.8633 0.8903

Table 4. Results of the evaluation metrics for the experiments to define the best models.

bands. So, for the models that use this U-net implementation,
it was needed to map the bands to 3 channels through an extra
convolutional layer. Also, the encoder weights were frozen, so
only the decoder weights were trainable.

The other is an implementation of U-net without pre-trained
weights. For all models binary cross-entropy was used as loss
function and the hyperparameters were: (a) 150 epochs; (b)
Adam optimizer; (c) 0.0001 learning rate; (d) sigmoid as ac-
tivation function, and (e) 1 batch size. To prevent overfitting
early stopping was applied, and the models with the best loss in
the validation set were saved. The models regarding the repos-
itory will be referred to as smv4 eff7 whereas the others will be
unetv4.

For the study areas B, C, and D, a mosaicking technique imple-
mentation was used to reduce edge errors, a known problem for
the U-net architecture (Ronneberger et al., 2015). This imple-
mentation has a classification window of size 256× 256 pixels
that go through the image without overlapping. Six pixels of
each window’s extremity are disregarded, so only the central
244 × 244 pixels’ classification is taken into account. This
procedure occurs five times, each of them starting in a differ-
ent pixel of the image ({x = 0, y = 0}, {x = 64, y = 64},
{x = 128, y = 128}, {x = 192, y = 192}, and {x = 256, y =
256}). Then, the window is applied to missing pixels from the
remaining rows and columns, making every pixel of the image
be classified five times with probability outputs between 0 and
1. The final pixel value will be the median of the probabilities.

As the U-net models’ outputs are values between zero and one,
the definition if a pixel is forest plantation or not is given by
considering a threshold in which values higher than the threshold
is forest plantation and background otherwise. For this work,
the conventional threshold of 0.5 was used. The performance
of models was assessed through six evaluation metrics: overall
accuracy, precision, recall, F1-score, Jaccard similarity coeffi-
cient score (Jaccard, 1912), and Kappa (Cohen, 1960).

3. RESULTS

3.1 Definition of best models

Table 4 presents the results for the evaluation metrics. For the
Sentinel-2 dataset, all models presented F1-score higher than
0.80 and all except one presented Kappa higher than 0.81 with
unetv4 obtaining the best results for both BGRNir (4 bands)

and 10 bands. For the two U-net implementations (unetv4 and
smv4 eff7) the results were improved when 10 bands were used
which could be explained by the vegetation characteristics’ in-
formation of the red-edge bands (Schuster et al., 2012, Immitzer
et al., 2016).

Satellite Modelname Size of
training set

Epoch Time
(s)

Sentinel-2

unetv4 4bands 3,400 384
smv4 eff7 4bands 3,400 560
unetv4 10bands 3,400 397

smv4 eff7 10bands 3,400 597

CBERS-4A unetv4 4bands 2,239 268
unvetv4 4bands 180degrees 4,478 517

Table 6. Mean training time per epoch. The experiments were
performed with NVIDIA GPU (Quadro P4000).

Although studies demonstrated that pre-trained Convolutional
Neural Networks can perform better than deep learning net-
works trained from scratch and are well suited for remote sens-
ing image’s classification and semantic segmentation (Pan et
al., 2019, Cui et al., 2020, Marmanis et al., 2016), in this work
these models had the worst results maybe because of the extra
convolutional layer that was added to map the bands to 3 chan-
nels which results in spectral information loss (Pan et al., 2019).
These models also consumed more training time per epoch, as
can be seen in Table 6. So, these models weren’t considered for
CBERS-4A dataset experiments.

F1-score and Kappa were higher than 0.92 and 0.89, respect-
ively, for the CBERS-4A dataset. The model with an augmen-
ted training set (unetv4 4bands 180degrees) did not improve
the results, being very similar to the results of the original train-
ing set, and its training time per epoch was almost twice that of
the other model.

3.2 Applying best models in new areas

Figure 3 and Table 5 present the results for the classification of
the study areas B, C, and D by Sentinel-2’s models unetv4 4bands
and unetv4 10bands. For areas B and C, unetv4 10bands had
the best results for all evaluation metrics except Precision for
area B. By analyzing the classified images, it is possible to
notice that apparently, unetv4 4bands was better to detect the
borders between forest plantation polygons for all areas, and
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Area Modelname Accuracy Precision Recall F1-score Jaccard score Kappa

B unetv4 4bands 0.9409 0.9016 0.9332 0.9171 0.8469 0.8712
unetv4 10bands 0.9484 0.8992 0.9604 0.9288 0.8671 0.8884

C unetv4 4bands 0.9561 0.9222 0.9361 0.9291 0.8676 0.8973
unetv4 10bands 0.9688 0.9369 0.9632 0.9499 0.9045 0.9272

D unetv4 4bands 0.8043 0.8456 0.5766 0.6857 0.5217 0.5508
unetv4 10bands 0.8065 0.9741 0.4904 0.6524 0.4841 0.5378

Table 5. Results of the evaluation metrics for the classification of Sentinel-2 images from study areas B, C, and D.

Sentinel-2 10m (RGB)

B

C

D

Area Mask unetv4_4bands unetv4_10bands

Figure 3. Study areas B, C, and D classified by Sentinel-2’s models unetv4 4bands and unetv4 10bands with a threshold of 0.5.

for areas B and C, unetv4 10bands was able to recognize some
forest plantation areas dismissed by the other model.

For area D the Sentinel-2 models had very poor results, with
Kappa around 0.55. Both models, especially the one with 10
bands, had good Precision, showing a low rate of false positives
but disregarding many forest plantation polygons (very low Re-
call). Many areas of D are composed of forest plantations with
open canopy (background effect) which means that the crowns
of the trees do not overlap. As our models were trained with the
majority of polygons being with closed canopy, they presen-
ted difficulty in classifying forest plantations in this study area.
This difficulty also happened with areas B and C but these open
canopy plantations were the minority and didn’t impact signi-
ficantly the results.

CBERS-4A’s model presented the best evaluation metrics re-
garding study area A (Section 3.1). However, as can be seen in
Figure 4 and Table 7, it had unsatisfactory results both visually
and quantitatively for the new areas B and C when compared
with Sentinel-2’s models. As for area D, it had the best results
than the other models.

Area
B C D

Accuracy 0.8943 0.8578 0.8636
Precision 0.7904 0.6956 0.7583

Recall 0.9656 0.9803 0.9463
F1-score 0.8692 0.8138 0.8420

Jaccard score 0.7687 0.6860 0.7270
Kappa 0.7820 0.7041 0.7246

Table 7. Results of the evaluation metrics for the classification of
CBERS-4A images from study areas B, C, and D by

unetv4 4bands model.

The best metric was Recall, with values higher than 0.94, show-
ing that the model is correctly classifying a high rate of forest
plantations pixels. However, its low Precision shows that the
model labels a considerable rate of non-forest plantations areas
as forest plantations. For B, sugar cane and native forest areas
were mistaken as forest plantations. For area C, coffee planta-
tions were misclassified, whereas, for D, the wrong classifica-
tions happened in native forest areas.
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Figure 4. Study areas B, C, and D classified by CBERS-4A’s model unetv4 4bands with a threshold of 0.5.

CBERS-4A’s model was able to detect the forest plantations
areas with open canopy that the Sentinel-2’s models had diffi-
culty classifying. A possible explanation for this could be the
spatial resolution of the images used for each model. As the
images from CBERS-4A have 2 meters spatial resolution, they
carry more details, being able to detect background effect in
areas that in Sentinel-2’s images (10 meters spatial resolution)
appear to be closed canopy. With that, CBERS-4A’s model was
more sensitive to this type of areas, detecting the open canopy
forest plantations but also wrongly classifying agriculture areas.
As for the native forest areas that were mistaken, it was noticed
that these areas have a polygon pattern which could have misled
the model. More studies are needed to improve this model.

4. CONCLUSION

This work used remote sensing imagery from Sentinel-2 and
CBERS-4A and deep semantic segmentation with U-net archi-
tecture to detect forest plantations in different areas of Brazil.
These areas varied in biome, topography, and climate. The use
of 10 bands from Sentinel-2 improved the evaluation metrics.
Models with pre-trained encoders had the worst results as it was
needed to map the bands into 3 channels with an extra convolu-
tional layer, resulting in spectral information loss.

Although CBERS-4A achieved good results regarding the eval-
uation metrics for study area A, it considered many pixels as
forest plantations in the other areas, having unsatisfactory res-
ults for areas B and C. For area D, although it wrongly clas-
sified some native forest pixels, it was able to detect the forest
plantations areas with open canopy that Sentinel-2’s models had
difficulty classifying.

The models built with Sentinel-2 images achieved good eval-
uation metrics for forest plantations areas similar to the ones
used in the training set (closed canopy). With improvements
in the training set, open canopy areas may be correctly classi-
fied. Generally, the results look promising, demonstrating the
feasibility of deep semantic segmentation to detect forest plant-
ations, which could be an important alternative to support forest
plantations’ management.

5. FUTURE WORK

For future work can be highlighted the improvement of the
training set, adding samples from other areas, with different
characteristics regarding biome, topography, climate, forest plant-
ations species and ages, and non-forest plantations areas (ag-
riculture, native forest, and others). Studies will be made re-
garding the classification of forest plantations areas with open
canopy. Also, it is planned the classification of forest plantation
species and the use of time series for age estimation.

As access to training data, ground truth annotations, is always a
challenge, a semi-automated methodology used to successfully
build training data on smaller scale projects will be tested: auto-
mated landscape polygon segmentation and random selection,
feature calculation, k-means clustering and initial labelling, fol-
lowed by manual human label adjustment.
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