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ABSTRACT:

The Normalized Difference Vegetation Index (NDVI) is a useful index for vegetation monitoring. However, due to cloud cover the
observations of NDVI are discrete and vary in the intensity. Therefore, there is a need to estimate the NDVI during cloud cover
using alternative sources of satellite observations. The main objective of this study is to estimate NDVI during cloudy conditions
using moderate resolution multi-spectral and synthetic aperture radar (SAR) observations. Two approaches were identified: 1)
pixel replacement and 2) machine learning based regression analysis to estimate cloud free NDVI. Moderate Resolution Imaging
Spectroradiometer (MODIS) 8-day NDVI composite, Sentinel-1 SAR and cloud masked Sentinel-2 multi-spectral observations were
collected for entire cropping season. The satellite observations were selected only for agricultural areas by applying the agriculture,
non-agriculture land use land cover mask. Machine learning algorithms such as Linear Regression (LR), Random Forest Regression
(RFR), and Support Vector Regression (SVR) were used for NDVI estimation. Regression analysis was performed using Sentinel-2
NDVI as an independent variable and VV, VH, Cross Ratio (i.e., VV/VH), and MODIS NDVI as dependent variables. NDVI of
the cloudy pixel was estimated using the trained regression models over the agriculture areas. A regression model was trained and
applied to each Sentinel-2 tile that covers an area of 100 km x 100 km. The RFR and SVR showed the highest R2 of 0.73 and a
RMSE of 0.12. A visual comparison of time series graphs showed good alignment between actual (Sentinel-2) and predicted NDVI
and usual crop growth trend.

1. INTRODUCTION

The Normalized Difference Vegetation Index (NDVI) is one of
the most widely and frequently used vegetation indexes for ve-
getation monitoring. Time series of NDVI have been used for a
variety of agricultural applications, including crop health mon-
itoring, crop area classification, crop yield prediction, and land
cover classification (Zheng et al., 2015, Friedl et al., 2002).
These applications require NDVI at high spato-temporal res-
olution. With the advent of global monitoring satellites like
Sentinel 2 (A/B), Landsat 8, and MODIS, massive amounts
of multispectral satellite observations are available. However,
satellite-based NDVI is often affected by cloud cover and snow.
In some regions during the rainy season, due to persistent cloud
cover, it is difficult to obtain a continuous time series of NDVI.
Therefore, to reduce the effect of clouds, there is a need to re-
move or replace the cloudy pixel NDVI for spatio-temporal ve-
getation growth analysis.

Researchers have proposed temporal image compositing and
cloud masking techniques to reduce the impact of cloud cover.
The most frequently used method is the maximum value com-
posite (MVC) (Liao et al., 2016). This method selects the
maximum NDVI over multiple time instances to create a single
NDVI output. As the image compositing approach requires
at least one cloud-free observation in a selected time window,
the approach fails over regions having cloud cover for a long
duration, i.e., more than 10 to 15 days. Studies have shown
that vegetation dynamics in heterogeneous landscapes often re-
quire NDVI datasets with both high spatial and temporal resol-
ution. A single satellite based sensor has technical limitations
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and cannot achieve the required spatio-temporal coverage (Hol-
ben, 1986). Multi-sensor fusion techniques have been used to
address the temporal scalability issues. An improved spatial
and temporal data fusion approach (ISTDFA) combines 250-
m MODIS NDVI product and 10-m Sentinel-2 NDVI data to
generate a synthetic Sentinel-2 NDVI time series for monitor-
ing of a crop pest and disease (Wu et al., 2018). To obtain
the cloud-free image, a possible alternative is to use Sentinel-1
synthetic aperture radar (SAR) images that provide continuous
all-weather, day-and-night imagery in C-band. NDVI derived
using Sentinel-1 can be used for crop monitoring (Filgueiras et
al., 2019). Also, studies have shown that SAR data can be used
for vegetation index monitoring (Baghdadi et al., 2015).

The time-series of radar backscatter (VV, VH, and Cross Ratio)
and NDVI derived from optical images are proven to be correl-
ated for multiple crops. SAR VV and cross ratio are correlated
with NDVI for Winter Wheat, with a R2 of 0.74 and 0.58, re-
spectively (Veloso et al., 2017). The study also showed that
for the Maize crop in the summer season, R2 of 0.91 and 0.89
was obtained between NDVI-VH and NDVI-Cross Ratio, re-
spectively. The studies have also focused on neural networks
for estimation of the NDVI using SAR-based images. Results
showed that the SAR data allows a better reconstruction of the
NDVI (Mazza et al., 2021). For agriculture areas, VV and
VH are mostly used because cover crops such as Wheat present
a high VV response and grasslands and seedlings give a higher
VH response (Wu and Sader, 1987). Studies have used the SAR
backscatter to identify the relationship between different veget-
ation indices at field level (Macelloni et al., 2001). The shape
of a plant has a impact on the relationship between SAR backs-
catter and biomass, specifically backscatter decreases with the
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increase in biomass in the case of small plants with narrow
leaves (Huang et al., 2019). Several studies have compared the
NDVI derived from various satellite observations with ground-
based sensors to find the best correlation between satellites and
ground-based sensors. Sentinel-2 derived metrics have better
agreement than MODIS derived metrics (Lange et al., 2017).
Due to coarse spatial resolution, MODIS NDVI is higher com-
pared to Sentinel-2 NDVI. Sentinel-2 NDVI represented the at-
tributes of the agriculture area better than MODIS NDVI due to
the better discrimination ability within a small area (M.B. Son
and Kim, 2021).

The main objective of this study is to estimate NDVI dur-
ing cloudy conditions using moderate resolution multi-spectral
and SAR observations for agricultural monitoring. The pro-
posed method attempts to identify the relationship between
non-cloudy pixels from multiple satellite observations using
machine learning algorithms like LR, RFR, and SVR. As cloud
cover, weather and crop growth conditions are dynamic across
geographical extent single machine learning model fails to gen-
eralize over large area. We propose a framework for dynamic
model training and evaluation to consider local variations in the
vegetation and effective cloud free NDVI estimation.

2. MATERIALS AND METHODS

This section covers information about the study area, insights
into the satellite data used and detailed approach for estimation
of NDVI for cloudy pixel using machine learning.

2.1 Study Area

We selected 59 field boundaries from West Bengal and Telan-
gana state of India. Out of 59 fields, ten fields were planted with
the Cotton, while remaining 49 had the Rice crop. Rainy crop-
ping season (locally called as Kharif ) is considered for estim-
ation of NDVI. During Kharif cropping season summer mon-
soon covers Indian sub-continent and region is mostly covered
with the dense clouds. The cropping season begins in June-
July and lasts until October-November. All selected fields are
covered in six Sentinel-2 tiles from West Bengal and Telangana
states of India. Four tiles (i.e., T44QWF, T45QWF, T44QWG
and T45QWG) covered the area of West Bengal and the re-
maining two tiles (T44QLD and T44QLE) covered the study
area of Telangana state. Figure 1 shows the selected states and
Sentinel-2 tile id’s.

Figure 1. Study Area

2.2 Data Used

In this study, we have used Sentinel-1 SAR, Sentinel-2 multis-
pectral, and MODIS 8-day NDVI composite data for cloud free
NDVI estimation. The MODIS has 8-day, 16-day, and one-
month composite images with minimal cloud interference. We
selected the similar temporal window for both MODIS and
Sentinel 2 satellite observation to minimize the effect physical
changes on the ground. Therefore, the MODIS 8-day composite
was aligned with Sentinel-2 observations. Table 1 shows the se-
lected satellite sensors spatial, temporal resolution and duration
of analysis. The details of the satellite pass and data processing
approach are covered in the subsequent sections.

Dataset Spatial
Resolu-
tion

Temporal
Resolu-
tion

Duration
of ana-
lysis

Source

Sentinel-1 10 meter 6 Days Jun-Oct
2021

ESA

Sentinel-2 10 meter 5 Days Jun-Oct
2021

ESA

MODIS 250m 8 Days Jun-Oct
2021

NASA

Table 1. Details of the satellite data

2.2.1 Sentinel-2 Data Collection & Pre-processing
Sentinel-2 is a European wide-swath, high-resolution, multi-
spectral imaging mission. The mission is intended to provide
high-resolution satellite observations with a 5-day revisit
frequency (ESA, 2022b). Each Sentinel-2 multi-spectral
observation has 13 spectral bands, of which four, six, and
three bands have spatial resolution of 10, 20, and 60 metres,
respectively. The data is also available on Amazon Web
Services (AWS). The Registry of Open Data on AWS provides
the Sentinel-2 observations at Level 2A for the analysis (AWS,
2022). The red and near-infrared bands of Sentinel-2 were used
to estimate NDVI. The NDVI is computed as the difference
between near-infrared (NIR) and red (RED) reflectance divided
by their sum (equation 1). Also, we used the Quality Index
(QI) band from processing Level-2A (L2A) for cloud masking.
All Sentinel-2 satellite tiles from June to October 2021 were
processed for NDVI analysis.

NDV I =
NIR−Red

NIR+Red
(1)

2.2.2 Sentinel-1 Data Collection and Pre-processing
Sentinel-1 imagery is provided by two polar-orbiting satellites,
1-A and 1-B. Sentinel-1 provides continuous all-weather,
day-and-night imagery in the C-band (ESA, 2022a). The
observations are provided by the satellite on a six-day cycle.
The Sentinel 1 Ground Range Detection (GRD) product is
provided by AWS (AWS, 2022). We converted VV and VH
backscatter of Sentinel-1 from intensity values to decibels
and used for analysis. Also, the cross ratio (CR) using VV
and VH backscatter was calculated (equation 2). Sentinel-1
observations were resampled to 10 meter spatial resolution,
i.e., same as of Sentinel-2 resolution.

CR =
σV V

σV H
(2)
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2.2.3 MODIS Data Collection and Pre-processing The
250 meter surface reflectance product MOD09Q1 obtained us-
ing Terra satellite was used for the analysis (MOD09Q1, 2022).
For each pixel of MOD09Q1 8-day surface reflectance compos-
ite was created. The surface reflectance in RED and NIR spec-
trum was used to calculate NDVI (equation 1). Finally, MODIS
250 meter NDVI was resampled to 10 meter spatial resolution
to match Sentinel 2 spatial resolution. The fusion of MODIS
and Sentinel-2 NDVI was performed using L2A cloud prob-
ability as mask for cloudy pixels. These cloudy pixels were
replaced with 8-day MODIS NDVI at same spatial resolution.
The detailed methodology for MODIS Sentinel-2 NDVI fusion
is skipped for brevity.

2.2.4 Training Data Creation For cloud-free NDVI estim-
ation, we used Sentinel-1 SAR, MODIS NDVI, and Sentinel-2
multi-spectral observations. The six sentinel-2 tiles were used.
Based on the Sentinel-2 overpass date, we have downloaded the
Sentinel-1 tiles for the previous eight days. For example, if the
tile date for Sentinel-2 is July 11, 2021 then Sentinel-1 obser-
vations from July 4, 2021, to July 11, 2021 were downloaded
and 8-day maximum value composite of Sentinel-1 observation
for VV, VH and CR was created. Figure 2 shows overlay of
Sentinel 1 and 2 tiles and extraction of Sentinel 1 data for Sen-
tinel 2 extent. In case of MODIS, 8-days composite of nearest
previous date with respect to Sentinel-2 overpass date was con-
sidered. Further, stack of Sentinel-2 NDVI, Sentinel-1 VH, VV,
CR, and MODIS NDVI was created. Land use land cover mask
comprising of two classes (i.e., agriculture and no-agriculture)
was applied on the stack to consider pixels only from agricul-
tural areas. Sentinel-2 cloud mask provide the cloud probabil-
ity of each pixel, we considered pixels with cloud probability of
zero. Only cloud-free pixels were considered for model train-
ing. During the analysis 30 percent fields were removed for
validation. Figure 3 shows the location of some of the valida-
tion fields.

Figure 2. Sentinel 1 and 2 tile overlay

2.3 Machine Learning Model

In the proposed method, we plan to establish the relationship
between cloud free pixels of Sentinel-2 NDVI, Sentinel-1 VH,
VV backscatter, CR, and MODIS NDVI data at the local (tiles)
level using a machine learning algorithm. We used LR, RFR,
and SVR to estimate cloud free NDVI on agriculture area.
Sentinel-2 NDVI was considered as independent variable and
Sentinel-1 VH, VV, CR and MODIS NDVI were used as de-
pendent variables. Hyperparameter tuning was carried out to
find the best parameter for the machine learning model. Ran-
dom Forest was tuned for the maximum depth of tree which
was kept at 5, 10, 15, 20, 25 and number of tree at 50, 100, 150,
200, 250, and 300. Similarly, SVR was tuned with the model
parameter C ranging between (0.1, 1, 10, 100) and Gamma (1,

Figure 3. Validation fields

0.1, 0.01, 0.001) with Radial Basis Function Kernel. We used
the grid search approach with 10-fold cross validation for RFR
and SVR. LR model was trained on 80 % data and remaining
20 % was used for model validation. We used 10-fold cross
validation for identification of LR model. The cross validation
helped to overcome the model overfitting and grid search helped
to identify the model parameters for higher accuracy.

Machine learning models were trained separately for each tile
and acquisition date. For each tile the data of cloud-free pixels
was extracted based on the Sentinel-2 cloud mask. For model
training, only cloud-free pixels were considered. Based on the
available cloud free pixels, maximum of 10000 pixels were se-
lected for model development. The pixels were further divided
into training data (80 %) and testing data (20 %). NDVI avail-
able for cloud free pixels was also used as a ground truth for
model validation. The LR, RFR and SVR models were evalu-
ated based on R2 and RMSE values. Model with lowest RMSE
value was considered as the best. The best model was used to
predict NDVI of cloudy pixels in Sentinel-2. Final cloud free
NDVI image was created using mosaic operation between the
sentinel-2 NDVI for non-cloudy pixels and the predicted NDVI
for cloudy pixels.

3. RESULTS AND DISCUSSION

For analysis, we have extracted the data based on sentinel-2 tile
coordinates. A tile-wise model has been developed for cloud
free NDVI estimation. We identified set of best LR, RFR and
SVR model for each tile and date. Table 2 and 3 shows the
performance of the LR, RFR, and SVR models for various tiles
on different dates. RFR mostly performed best compared to LR
and SVR. The RFR and SVR showed highest R2 of 0.73 and
RMSE of 0.12. For some instances due to limited availability of
cloud free observations regression models failed to generalize
yielding low R2 and high RMSE. There is a need for model fine
tuning and field level validation of obtained insights.

We performed visual analysis of NDVI time series for all fields.
Tile level NDVI estimates were used to extract field level es-
timated NDVI. Finally, the time-series graph was prepared for
each field using the mean of original NDVI (with cloud), pre-
dicted NDVI (cloud-free), and fusion NDVI (using MODIS and
Sentinel-2). Figure 5, 6, 7 and 8 shows the time series graph
for fusion approach (Red), proposed machine learning approach
(Blue) and original NDVI (Green). In all figures, black circle
depicts the drop in NDVI due to cloud cover and not follow-
ing the standard crop growth trend. Also, blue rectangle shows
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Figure 4. Overall analysis approach

very high value of MODIS-Sentinel-2 fused NDVI. Machine
learning approach output at field level showed good alignment
with the crop growth trend (blue line in the graph). Time series
graph show that impact of cloud is decreased after replacing the
NDVI of cloudy pixel with predicted NDVI.

In figure 5, blue rectangle shows that NDVI from fusion ap-
proach is very high at (t timestamp) compared to (t + δt) and
(t- δt) timestamp. Same trend is also visible in figure 6, 7 and
8. The coarse spatial resolution and value of MODIS NDVI at
time t dominates the field level mean NDVI.

Figure 8 shows that from Sep. to 10 Oct., 2021 NDVI is con-
tinuously decreasing compared to NDVI of 30 Aug., 2021 due
to dense cloud. For same time period fusion NDVI also shows
uneven values of NDVI. This shows that for the cloudy pixel
high or low MODIS NDVI dominates the fusion NDVI and res-
ults in uneven field level mean NDVI. However, for the same
time period model based NDVI follows a smooth increasing or
decreasing trend. This shows that proposed approach reduces
the impact of dense cloud and dominance of coarse resolution
MODIS NDVI.

4. SUMMARY AND CONCLUSIONS

The NDVI time series has been widely used for crop monit-
oring. However, cloud cover results in the noise and obscure
further applications of NDVI time series. We proposed use of
the machine learning model to reconstruct a high-quality cloud-
free NDVI image for the agriculture area. Using the ML model,
we established the relationship between Sentinel-2 NDVI and

Figure 5. Comparison between actual, estimated, and fused
NDVI for field 1

Figure 6. Comparison between actual, estimated, and fused
NDVI for field 2

Figure 7. Comparison between actual, estimated, and fused
NDVI for field 3

Figure 8. Comparison between actual, estimated, and fused
NDVI for field 4

other satellite observations for non-cloudy pixels. The de-
veloped models were used to estimate the NDVI on the cloudy

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-813-2022 | © Author(s) 2022. CC BY 4.0 License.

 
816



Algorithm LR LR LR RFR RFR RFR SVR SVR SVR

Date/Tile ID T45QWG T45QWF T45QXF T45QWG T45QWF T45QXF T45QWG T45QWF T45QXF

2 Aug 0.06 0.41 0.31 0.17 0.50 0.41 0.16 0.50 0.39

12 Aug 0.08 0.31 0.08 0.08 0.49 0.17 0.01 0.45 0.14

22 Aug 0.04 0.12 0.08 0.09 0.19 0.10 0.07 0.15 0.09

6 Sep 0.04 0.01 0.05 0.03 0.02 0.07 0.02 0.01 0.07

16 Sep 0.05 0.04 0.07 0.10 0.08 0.15 0.09 0.06 0.13

26 Sep 0.06 0.08 0.07 0.10 0.13 0.10 0.08 0.08 0.08

6 Oct 0.11 0.52 0.20 0.19 0.57 0.26 0.14 0.56 0.26

11 Oct - 0.65 0.36 - 0.73 0.37 - 0.73 0.36

16 Oct 0.19 0.22 0.19 0.20 0.29 0.24 0.18 0.25 0.22

Table 2. R2 for all models (LR-Linear Regression, RFR-Random Forest Regression, SVR-Support Vector Regression)

Algorithm LR LR LR RFR RFR RFR SVR SVR SVR

Date/Tile ID T45QWG T45QWF T45QXF T45QWG T45QWF T45QXF T45QWG T45QWF T45QXF

2 Aug 0.02 0.18 0.16 0.02 0.17 0.15 0.02 0.17 0.15

12 Aug 0.04 0.14 0.19 0.04 0.12 0.18 0.04 0.12 0.19

22 Aug 0.20 0.23 0.22 0.19 0.22 0.22 0.20 0.23 0.22

6 Sep 0.16 0.16 0.20 0.16 0.16 0.19 0.16 0.16 0.20

16 Sep 0.26 0.17 0.20 0.26 0.16 0.19 0.26 0.17 0.19

26 Sep 0.14 0.16 0.20 0.14 0.16 0.20 0.14 0.16 0.20

6 Oct 0.24 0.23 0.20 0.23 0.22 0.19 0.24 0.22 0.19

11 Oct - 0.22 0.12 - 0.19 0.12 - 0.19 0.12

16 Oct 0.12 0.13 0.17 0.12 0.12 0.17 0.12 0.13 0.17

Table 3. RMSE for All Models (LR-Linear Regression, RFR-Random Forest Regression, SVR-Support Vector Regression)

pixels. Comparative assessment of various models showed that
RFR performed best with lowest RMSE for most of the in-
stances during the cropping season. Further, temporal compar-
ison between estimated NDVI using proposed approach, NDVI
generated from fusion and the original Sentinel-2 NDVI (with
cloud) was carried. Results showed that, NDVI estimated using
the proposed approach was able to capture the trend of NDVI
for a typical crop growth season as compared to fusion NDVI
and original Sentinel-2 NDVI.

5. FUTURE WORK

In the existing work, we have only considered backscatter from
VV, VH and Cross Ration. In future we plan to consider the
impact of incident angle and indices such as Normalized Ratio
Procedure between Bands (NRPB) along with the backscatter
values. We have also planned to collect the ground truth data
from different agro-climatic zones of India to evaluate spatial
scalability of the proposed approach.
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