
RGB-BASED DEEP SURFACE WATER CONTOUR DETECTION 
 

 

AbdulRahman Alsammana  , Mohammad Syed a * 

 
a Department of Electrical and Computer Engineering, University of New Orleans – (aalsamma, mbsyed)@uno.edu 

 

 

KEY WORDS: Surface Water Detection, Deep Learning, Waterbody Detection, Water Contour Detection, Data Collection 

 

 

ABSTRACT: 

 

The application of remote monitoring of surface water has focused primarily on the detection of water bodies using expensive multi-

spectral IR sensors. However, critical information about surface water bodies, particularly the dynamic behavior, is better derived from 

water contours. We show that water body detection is inadequate in accurately capturing the contours. Furthermore, we argue that 

RGB-based detection should be sufficient for accurate water detection. We present a new global dataset of remote sensing images 

obtained from Sentinel-2 and Landsat-8 missions and contour labeled to assist in this effort. We propose a unique UNet-style contour 

detection system that utilizes multiscale filters to detect contours accurately. Comparisons between our proposed system, existing 

water detection, and other segmentation and contour detection systems show the system's effectiveness in detecting water. 

 

 

1. INTRODUCTION 

 

Water is an important ecosystem and a critical resource for life, 

agriculture, commerce, and industry needs. Additionally, rapid 

changes in water levels through major weather events threaten 

life and economic developments in their proximity. Remote 

sensing can be used to provide accurate, continuous, automatic, 

and real-time monitoring of surface water bodies. Remote 

sensing technologies are typically deployed via satellites, 

aircraft, and drones and provide data at variable temporal 

resolution (hours/days), spatial resolution (<1m/pixel 

1km/pixel), and spectral channels (see (Huang et al. 2018) for a 

review).  

 

Early remote sensing solutions utilized multi-spectral satellite 

data to formulate rule-based metrics such as mNDWI (Xu, 

2006), WI (Fisher et al. 2016), AEWI (Feyisa et al. 2014), 

MBWI (Wang et al. 2108), each designed to account for 

variations in sensor accuracy, water temperature, turbidity, and 

cloud coverage. Improved water detection was further 

demonstrated with machine learning techniques involving 

decision trees (Friedl et al. 1997; Mueller et al. 2016), SVM 

(Aung et al. 2018), and clustering (Cordeiro et al. 2021) applied 

to the same multi-spectral satellite data. 

 

Deep learning based fully convolution networks (FCN) 

(Krizhevsky et al., 2012; Long et al., 2015) have been have 

proven to be extremely successful in applications of object 

detection and segmentation (see (Hoeser et al, 2020) for a review 

of techniques and applications to remote sensing). Deep water 

map (Isikdogan et al. 2017; Isikdogan et al. 2019) is a UNet 

(Ronneberger et al. 2015) based FCN water body detection 

system that is used for accurate detection of water bodies from 

multi-spectral satellite data. 

 

In this paper we focus on the detection of water contours using 

data in the visible range only (RGB). Water contours are more 

dynamic and allow for better analysis of changes that are 

happening at the surface and in the sediment. Our analysis shows  

that more accurate detection of water bodies doesn’t necessarily 

__________________________ 
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lead to the accurate detection of the contour. Contours are more 

difficult to detect due to the spectral blending that occurs at the  

boundary. Additionally, there is a need to address the huge  

imbalance between contour targets and the non-target to improve 

the detection of contour. 

 

Humans are very skilled at detecting water in the visible 

spectrum, so we propose that machines can be trained to do the 

same. IR-based detection of water from sensing data is 

complicated by the water body type and the surrounding 

environment. The movement, depth, and temperature of water, 

as well as shadows from structures and clouds affects the 

absorption of IR bands. IR sensing technologies are more 

expensive and require careful calibration and vary in sensitivity, 

number of spectral bands, and spatial resolution even within the 

same sensor system. For example, the Sentinel-2 mission 

provides data at 10m spatial resolution for the visible range, and 

the Near Infra-red (NIR) range only, the rest of the data is at a 

lower spatial resolution. 

 

An extensive literature review revealed several datasets (Carroll 

et al. 2009; Homer et al. 2004; Lehner et al. 2004; Prigent et al. 

2012; Verpoorter et al. 2014; Yamazaki et al. 2015) with labeled 

water bodies. However, these were not useful mainly due to 

inaccurate contour labeling due to the use of polygons, or 

aggregate/cumulative water labeling, low resolution of satellite 

images (>60m/pixels), and difficulty in recognizing the satellite 

source image used for labeling.  

 

As such we developed our own dataset based on Landsat-81 and 

Sentinel-22 missions. The dataset contains of over 1M images for 

Landsat and over 400K for Sentinel of which 14K have been 

hand selected for the purpose of fully supervised training. We 

also present a unique Fully Convolutional Network (FCN) UNet-

style network for automatic and accurate detection of water 

contours from aerial RGB images. Our network outperforms 

other architectures in contour detection, even though it has fewer 

parameters compared to the other architectures. We also show 

that existing waterbody detection systems like Deep water map 

(Isikdogan et al. 2017; Isikdogan et al. 2019) and water detect 

(Cordeiro et al. 2021) that use RGB+IR channels even with an 

F-score > 0.98 do not translate into accurate contour detection.  
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The use of visible bands (RGB) makes it a cost-effective 

detection system that can be deployed for all remote sensing 

solutions (fixed camera, drones, etc.). Rest of the paper is 

organized as follows. Section 2 details the data collection and 

labeling process. Section 3 has the UNet style architecture used 

for contour detection. Section 4 contains the results of the 

proposed system and comparative results to other systems in the 

literature, and section 5 has the concluding remarks. 

 

2. DATA COLLECTION AND LABELLING 

 

Data for both Landsat and Sentinel satellites were acquired 

from locations around the globe. Both Landsat and Sentinel 

satellite locations were obtained from (Pekel et al. 2016) and 

downloaded via Google Earth Engine (GEE) (Gorelick et al., 

2017). Additional Sentinel satellite locations were obtained 

from bluedotwater3; data was acquired using Sentinel's API4. 

The dataset was created using the following process. 

1. Machine-label the water using a successful waterbody 

labeling technique. 

2. Apply image processing to extract the contour. 

3. Split the images into smaller sets. 

4. Hand-select the tiles with the best accuracy. 

5. Generate meta-data about each tile, including satellite 

image source and water content percentage. 

 

For step 1, we used the normalized difference water index 

(NDWI) (Gao, 1996) as it was most successful in producing 

accurate and continuous contours when applied to various water 

bodies from around the globe. To extract the contour (step 2), 

each image was then binarized to show only water, and 

subtracted from its morphological dilation to yield a contour. 

While this method generated good contours generally, it also 

created bad contours within the same image. To improve the 

yield of good contours, the images were split into 128 × 128 

tiles and visually inspected (steps 3 and 4). Tiles with heavy 

cloud coverage as well as bad contours were removed. 

 

Our current repository5 contains over 1M tiles for Landsat- 8 data 

and 400K+ tiles for Sentinel-2 of visually unconfirmed data. The 

hand-selecting process is extremely time consuming with a very 

low yield. After visually inspecting 100K tiles, we created two 

datasets each with 7K+ accurately labeled tiles for both Landsat 

and Sentinel. The datasets were "balanced" to prevent the 

overabundance of tiles with little to no contours. The data also 

contains JRC (Pekel et al. 2016) water labels for each Landsat 

tile for reference. Each tile in the dataset is stored with 6 channels 

(16- bit raw satellite data), organized in the following order: blue 

(b1), green (b2), red (b3), NIR (b4), SWIR1 (b5), SWIR2 (b6). 

Though our work emphasizes RGB detection we included the IR 

bands in the dataset for others to use freely. Additionally, 

metadata containing the image source file/satellite, cloud 

coverage, and approximate water content in each tile is also 

provided. 

 

3. DEEP CONTOUR DETECTION 

 

3.1. Preprocessing 

 

The datasets are 16-bit data and require sensor-specific 

preprocessing to convert them into regular true-color RGB data 

(TCI). For Landsat, this involved subtracting the min and 

dividing by the max for each color channel of every image, while 

for Sentinel, the RGB channels were clipped at 3558. 

__________________________ 

(3) www.blue-dot-observatory.com/ 

(4) github.com/sentinelsat/sentinelsat  

 
(a)  

 

 
(b) 

 

     
           (c)                              (d)                              (e) 
 

Figure 1. UNET Architecture, (a) full architecture and (b) 

encoder, (c) decoder, (d) bottleneck, and (e) conv blocks. The 

⊕ operator represents the channel concatenation operation. 

__________________________ 

(5) github.com/mbsyed/Deep-Surface-Water-Contour-Detection
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Model Data 
Waterbody Detection Contour Detection 

Precision Recall F-score Precision Recall F-score 

Pre-trained 

DWM 

Landsat 

(RGB+IR) 
0.9929 0.9980 0.9955 0.6757 0.6508 0.6631 

Sentinel 

(RGB+IR) 
0.9831 0.9879 0.9855 0.7416 0.6298 0.6811 

WaterDetect 

Landsat 

(RGB+IR) 
0.9976 0.9677 0.9824 0.5734 0.6353 0.6028 

Sentinel 

(RGB+IR) 
0.9652 0.9539 0.9764 0.6471 0.4745 0.6436 

Table 1. Contour detection as a function of waterbody detection. 

 

 

Model 
Time 

(per epoch.) 

Param 

(M) 

Landsat (RGB) Sentinel (RGB) 

F-score AP F-score AP 

DeepLabV3+ 21.4 26.68 0.4801 0.3616 0.5739 0.5125 

Unet-Resnet 23.5 32.52 0.6450 0.6391 0.6683 0.7068 

PAN 20.7 24.26 0.4483 0.3376 0.5297 0.4677 

Unet++ 60.7 48.99 0.6579 0.6559 0.6634 0.7059 

DWM 17 37.21 0.5529 0.4797 0.6237 0.5806 

WaterDetect N/A N/A 0.6028 N/A 0.6436 N/A 

Unet (Ours) 44 22.85 0.6920 0.7106 0.7379 0.7980 

Table 2. Comparison of UNet Multiscale(Ours) against the state of the art models. 

 

3.2. Architecture 

 

Our proposed UNet-based water contour detector model with 

unique specifications can be seen in Figure 1. Only RGB 

channels are used as input. The encoder/decoder layers rely on 

multiscale convolution layers using sizes of 1x1, 3x3, 5x5, and 

7x7 filters. The 1x1 filters are useful in controlling the size of the 

parameters and help provide weights for each channel. The other 

size filters are successful in capturing edges at various scales. 

Bach-normalization (BN) with each convolution was also found 

to improve contour detection. Also unique to our design is the 

use of strided convolution for down-sampling in the encoder 

network and transpose convolution for up-sampling in the 

decoder network. While this adds parameters to the model, it 

barely affects processing time and improves the contour 

detection compared to (un)pooling. "Skip" connections between 

corresponding encoder and decoder blocks are a general attribute 

of UNet systems that have been shown to improve training and 

provide better localization in the output. A sigmoid output is 

used to classify each pixel output as a contour or non-contour 

(i.e., 1 or 0). 

 

3.3. Loss Function 

 

Binary cross entropy (BCE) was used to capture the pixel-level 

loss in the image. Intersection over union (IoU) and Dice losses 

were used to capture the object-related loss.  

 

Due to the significant imbalance between contour and non-

contour pixels, the pixels are first weighted by the ratio of non-

water pixels to the number of pixels in a 𝑛 × 𝑛 border around the 

labeled contour. The weighing makes errors closest to the 

contour count more heavily than those outside the 𝑛 × 𝑛 border. 

We found a border of 9 × 9 to be optimum. 

3.4. Training  

 

The training was done separately for Landsat and Sentinel 

datasets. Adam optimizer was used with an initial learning rate 

of 0.003; default beta1 and beta2 values were used. Each 

iteration had a mini-batch of 32 images. All the weights in the 

network were initialized using Kaiming He's initialization 

method. No augmentation was applied to the training images. 

 

4. RESULTS 

 

Each of the 7K+ Landsat and 7K+ Sentinel datasets were 

randomly split into 5K training tiles and 2K testing tiles and used 

for experimentation. 

 

4.1. Evaluation Metrics 

 

There are two evaluation metrics that we use. F-score, and the 

Average Precision (AP).  

 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (1) 

where precision and recall are defined as below 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (3) 

 

F-score gives us an idea of the model's accuracy for the data, it 

is the harmonic mean of the precision and recall. The AP is a 

measure of the accuracy of the prediction of true positives. It is 

calculated using the precision recall plot's area under the curve 

(AUC). 
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Figure 2. Results from Landsat test data. The F-score for each image is at the top. The first row contains the original RGB image. 

The second row has the ground truth for each corresponding image. The bottom row has the predictions from the model trained on 

Landsat data. 

 

 
Figure 3. Results from Sentinel test data. The F-score for each image is at the top. The first row contains the original RGB image. 

The second row has the ground truth for each corresponding image. The bottom row has the predictions from the model trained on 

Sentinel data. 

 

 

4.2. Numerical Analysis 

 

In Table 1, we demonstrate that successful detection of water 

bodies does not translate into accurate detection of water 

contours. The contour detection measures were derived by 

performing edge detection on the detected water bodies. We 

compare our model to the pre-trained DeepWaterMap (Isikdogan 

et al. 2019) (DWM) model, and Waterdetect model. The pre-

trained DeepWaterMap is a UNet style deep waterbody detector 

that is trained on RGB+IR Landsat data. Waterdetect (Cordeiro 

et al., 2021) is another waterbody detection tool that applies 

hierarchical clustering on RGB+IR data. Even with extremely 

high F-scores (>0.97) both models fail to accurately capture the 

contour accurately even with IR channels available as input. 

Compared to this our model has superior performance only using 

RGB channels for contour detection. This further emphasizes the 

need for a contour detection system, which will be necessary in 

water resource management. The table includes performance 

measures for waterbody detection and contour detection.  
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Performance metrics for our proposed contour detector are 

compared to popular image segmentation or waterbody detection 

systems in the literature, the results are summarized in Table 2. 

DeeplabV3+ (Chen et al. 2018), UNet-Resnet (Ronneberger et 

al. 2015), UNet++ (Zhou et al. 2018), and PAN (Li et al. 2018) 

are popular DL-based segmentation techniques. DWM is a DL 

waterbody detection model that was retrained on our data 

specifically for contour detection. Waterdetect (Cordeiro et al. 

2021) is also a water body detector but relies on hierarchical 

clustering of rule-based metrics. As such, it does not have a 

training phase. The results show that our model outperforms 

several popular segmentation architectures with the least number 

of parameters. This can be attributed to the multiscale nature of 

the convolution block and the weighting of each channel that 

only keeps the most relevant information. Our system uses fewer 

parameters, has a faster training time, and is more accurate at 

detecting water contours than other systems. 

 

4.3. Qualitative Analysis 

 

We present some output results of our proposed system in Figure 

2 and Figure 3 to show that a low F-score does not necessarily 

indicate bad output. Visually, the prediction of contours on the 

RGB images in Figures 2 and 3 are mostly accurate, but the F-

scores are low. This can be attributed to a minute misalignment 

between the prediction and the ground truth. Due to the ground 

truth being an extremely thin contour, even minor misalignment 

can cause a low F-score. 

 

5. CONCLUSION 

 

Existing and state-of-the-art remote sensing systems rely on 

water body detection that does not necessitate accurate contour 

detection. Additionally, there is a need for inexpensive RGB 

based detection. Due to the lack of accurate water contour data, 

we presented a technique for collecting and labeling data from 

Sentinel and Landsat missions. We also proposed a unique UNet-

style detector that is very effective in water contour detection. 

We demonstrated a system that can train faster using fewer 

parameters by focusing on contours. 
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