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ABSTRACT: The Brazilian Savanna is the second largest biogeographical region in Brazil and present different vegetation types, 

consisting mostly of tropical savannas, grasslands, and forests. The forest types have different tree cover and floristic composition, 

which is associated to leaf deciduousness. Considering the importance of Cerrado to biodiversity conservation and the maintaining of 

environmental services, the development of methods to map the different forest types in Cerrado is important for conservation 

programmes, subsidize restauration plains, and to allow estimations of carbon sink and stock. Mapping heterogeneous tropical areas, 

such as the Brazilian Savanna, is very complex due to the natural factors and peculiarities of the vegetation types, and it's still 

particularly challenging to separate between different forest formations. In this study we tested machine learning approaches based on 

the use of dense image time series, in order to evaluate the separability Dry Tropical Forests and Savanna woodlands. We considered 

the Brazilian State of Tocantins as the study area, which is located in the Northern region of the country. RF classification of Landsat 

dense time series showed an overall accuracy of 0.85005, while the LSTM approach presented an overall accuracy of 0.88601, with 

the highest f1-score for the savanna woodlands class, suggesting the capability of the recurrent neural networks on handling complex 

long-term dependencies such as the EVI dense time series data. This study showed the potential for the development of a semi-

automatic method for discriminating the different types of forest formations in the Brazilian Savanna, based on remote sensing.  

 

 

 

 

 

1. INTRODUCTION 

Considered to be one of the richest and diverse savannas in the 

world, the Brazilian Savanna, also known as Cerrado, is the 

second largest biogeographical region in Brazil. It has different 

vegetation types consisting mostly of tropical savannas, 

grasslands and forests (Ribeiro and Walter, 2008), and it covers 

approximately 24% of the country (MMA, 2021).  

Furthermore, the Brazilian Savanna is considered a global 

biodiversity hotspot for conservation (Myers et al. 2000), and 

houses many endemic and threatened species (Colli et al. 2020). 

The Cerrado provide important environmental services such as 

climate regulation and water supply to different regions in Brazil 

(Oliveira et al. 2015; Strassburg et al. 2017). It also contributes 

to 43% of surface water outside the Amazon in Brazil (Strassburg 

et al. 2017). 

Despite that, the Cerrado has lost around 88 Mha (46%) of its 

native vegetation with a projection that 31-34% of the remaining 

biome is likely to be cleared by 2050 (Strassburg et al., 2017). 

While much attention has been placed on Amazon, the rate of 

conversion of native Cerrado vegetation can be up to 2.5 times 

the conversion observed in the Amazon (Rocha et al., 2011; 

Strassburg et al. 2017).  

Most of the native vegetation conversion tends to occur in areas 

with dense vegetation that have favourable climate and soil 

conditions and in flat terrains that are suitable for mechanized 

 
1 More information in: http://fip.mma.gov.br/projeto-fm  

* Corresponding author: hnbendini@gmail.com 

 

farming (Alencar et al., 2020). Therefore, the conversion of 

natural vegetation into agricultural land (e.g., soybean) and 

pasture is leading to major carbon emissions (Noojipady et al., 

2017) and biodiversity loss (Ratter et al., 1997) through the forest 

clear-cutting, stressing the importance of frequent mapping 

approaches that enable monitoring and assessing ongoing change 

processes.  

The Brazil Investment Plan (BIP) under the Forest Investment 

Program (FIP) seeks to promote sustainable land use and forest 

management improvement in the Cerrado Biome in order to 

reduce pressure on remaining forests, reduce greenhouse gas 

(GHG) emissions and increase carbon dioxide sequestration 

(Tuchschneider, 2013). As part of BIP, the project “Development 

of systems to prevent forest fires and monitor vegetation cover in 

the Brazilian Cerrado” aims to improve Brazil’s capacity to 

monitor deforestation, prevent the risk of forest fires and improve 

models for estimating greenhouse gas (GHG) emissions, making 

tools and data available to environmental agencies1. The project 

will provide the basis for improving the management of water, 

forest and soil resources in the Brazilian Cerrado, which, together 

with other projects financed by the FIP in Brazil, should promote 

the sustainable management of forests. In the context of this 

project, one of the activities it to modify the existing land cover 

classification system for the Cerrado developed by IBGE 

(Brazilian Institute of Geography and Statistics) on the basis of 

the Food and Agriculture Organization of the United Nations 

(FAO) Land Cover Classification System framework. Therefore, 

it will be possible to discriminate forest from non-forest 
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vegetation taking into account the spectrum of structural 

vegetation complexity in the Cerrado. However, mapping 

heterogeneous tropical areas, such as the Cerrado, is challenging 

due to the natural, climatic and topographic factors and the 

peculiarities of the characteristic physiognomies (Fonseca et al., 

2021). 

The woody-dominated stratum of Cerrado can be divided in 

riparian forests, dry tropical forests and savanna woodlands. 

These forest types have different tree cover and floristic 

composition, which is associated to leaf deciduousness. The loss 

of leaf area corresponds to a physiological response to water 

shortages in dry seasons (Zalamea and González, 2008). 

Dry Tropical Forests are characterised by different levels of 

deciduous trees, depending on climatic conditions and mainly on 

the depth of the soil (Ribeiro and Walter, 2008). In the Cerrado, 

the Dry Tropical Forests can be divided according to the tree 

cover in different seasons. Both Semideciduous Forest and 

Deciduous Forest have a tree cover ranging from 70 to 95% in 

the wet season, however the tree cover of Semideciduous Forest 

ranges from 50 to 60% in the dry season, while the tree cover of 

Deciduous Forest ranges from 30 to 50%. Furthermore, the 

canopy height of Semideciduous Forest is about 16 meters, while 

in Deciduous Forest is about 10 meters (Ribeiro and Walter 

2008). In addition, Dry Tropical Forests were considered one of 

the most threatened tropical ecosystems (Miles et al. 2006). The 

savanna woodlands are forests with similarities to savannas due 

to species composition. The tree cover can range from 50 to 90%. 

Although it may contain evergreen plants, many species show 

deciduousness (Haidar, 2017).  

For these reasons, it's still a challenge to separate between these 

different forest formations (Ferreira et al., 2004; Sano et al., 

2010; Grecchi et al., 2013; Schwieder et al., 2016; Girolamo-

Neto et al., 2017; Neves et al., 2021; Bendini et al., 2020). 

Previous studies highlighted the benefits of dense remote sensing 

time series, derived land surface phenological metrics (here, also 

called as phenometrics) and analysed their relationship to the 

grassland-savanna-forest gradient of the Cerrado (Schwieder et 

al., 2016; Bendini et al., 2019b). They tried to separate between 

the different vegetation types using traditional machine learning 

approaches such as the Support Vector Machine (SVM) and 

Random Forests (RF), but accurately differentiating between dry 

forests and savanna woodlands still require more efforts. The 

Deep Learning approaches, such as the Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks approaches 

were already proved to be capable on learning patterns of 

different land-use and land-covers, for instance on the detection 

of deforestation on the Brazilian Amazon (Maretto et al., 2020) 

and Cerrado (Taquary et al., 2021; Matosak et al., 2022), and for 

vegetation mapping in the Cerrado (Neves et al., 2021; Bendini 

et al., 2021b).  

Considering the importance of Cerrado to biodiversity 

conservation and the maintaining of environmental services, the 

development of methods to map the different forest types inserted 

in Cerrado is important to create bases for conservation 

programmes, subsidize restauration plains, and to allow 

estimations of carbon sink and stock. In this study we tested two 

different machine learning approaches based on the use of dense 

image time series, RF and LSTM, in order to evaluate if it's 

possible to separate Dry Tropical Forests and Savanna 

woodlands. 

 

2. MATERIALS AND METHODS 

2.1 Study Area and Reference  

We considered the Brazilian State of Tocantins as the study area, 

which is located in the Northern region of the country and has a 

large area (277,423.63 Km² according to IBGE 2020), harbouring 

different ecosystems types. This state is covered by two 

biogeographic regions, the Cerrado (predominance of savannas) 

and the Amazon Forest (predominance of forests).  

According to Sano et al (2009), which divided the Cerrado into 

19 ecoregions that are unique in terms of landscape 

characteristics, the Cerrado in Tocantins is composed by eight 

ecoregions: Alto Parnaíba, Araguaia Tocantins, Bananal, Bico do 

Papagaio, Chapadão do São Francisco, Parnaguá, Planalto 

Central e Vão do Paranã.  

The State of Tocantins is situated in a climate transition area, and 

the climatic classification of Thornthwaite applied to this State 

pointed out the presence of three types: i) C1A’w2a’ (dry 

subhumid, megathermal, with large summer water surplus, and a 

temperature efficiency regime normal to megathermal) in the 

eastern end of the State; ii) C2A’wa’ (moist subhumid, 

megathermal, with moderate winter water deficiency, and a 

temperature efficiency regime normal to megathermal) in the 

central range; and iii) B1A’wa’ (humid, megathermal, with 

moderate winter water deficiency, and a temperature efficiency 

regime normal to megathermal), in the southwest of Tocantins 

(Souza et al. 2019). 

In order to build a relevant dataset for training and validation, we 

used reference data provided by the Secretariat of Planning and 

Budget of the Tocantins state (SEPLAN, 2013), which consists 

on a detailed map in a scale of 1:100,000, produced with Landsat 

imagery, supported by visual interpretation of high spatial 

resolution imagery (CBERS 2B), the SRTM (Shuttle Radar 

Topography Mission) elevation model geology, terrain and soil 

maps. 

 

 

Figure 1. Study area. 
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2.2 Data and Preprocessing 

We extracted a set of 40,041 EVI (Enhanced Vegetation Index) 

Landsat 7 and 8 point-based time series, using the GEE Time 

Series Explorer QGIS Plugin (Rufin et al., 2021), during the 

period of August-2014 to October-2015, involving the 3 classes 

obtained from the reference database, and considering the 

Ribeiro & Walter (2008) definition. The classes were: 1) Savanna 

Woodlands, 2) Deciduous and 3) Semideciduous Dry Forests. 

We made it compatible over time, removing the areas deforested 

after 2014 with the PRODES Cerrado deforestation mask (INPE, 

2019)2. The EVI was chosen because it is known to increase 

sensitivity for biomass estimation through a de-coupling of the 

canopy background from the signal and a reduction in 

atmospheric and soil reflectance influence (Huete et al., 2002). 

Then, we applied a weighted ensemble of Radial Basis Function 

(RBF) convolution filters as a kernel smoother to fill data gaps 

such as cloud cover and Scan Line Corrector (SLC)-off data 

(Schwieder et al., 2016, Bendini et al., 2019a). A total of 11 

phenometrics were derived using TIMESAT (Jönsson, Eklundh, 

2004), extracted for the seasonal cycle observed in the EVI time 

series. Phenometrics included day-of-the-year (DOY) of start, 

mid, end, length of crop seasons and phenological proxies like 

peak, base value, seasonal amplitude or rate of increase, decrease 

(Jönsson & Eklundh, 2004). and the polar features, which are 

based on the representation of the time series by projecting the 

values onto angles in the interval [0,2π] (Körting et al., 2013). 

 

2.3 Random Forest and LSTM classification 

The classification was done using the RF algorithm (Breiman, 

2001), with different sets of metrics (RBF fits, phenometrics, 

polar metrics and the combination of them). We randomly 

selected 70% of the samples to train and 30% for validation. RF 

is a non-parametric machine learning algorithm that is based on 

decision trees. As individual decision trees are prone to errors, 

RF uses an ensemble of many decision trees that were 

independently trained with random subsets of the input data to 

overcome this limitation (Breiman, 2001). The RF classifier 

works based on creating decision trees that are used to predict 

over data. The class with the majority of votes among all trees is 

chosen as the final prediction result. RF needs two parameters to 

be tuned including the number of trees to grow (ntree), and the 

number of variables randomly sampled as candidates at each split 

(mtry). Figure 2 shows a generalisation example for how a 

classification is made using the RF algorithm. The results were 

evaluated by the confusion matrix, which was used to derive the 

overall accuracy (Chinchor & Sundheim, 1993) and the class f1-

scores (Shapiro, 1999). The “randomForest” package in R was 

used for our classification tasks (R Core Development Team, 

2019).  

 

 
2  Available from http://terrabrasilis.dpi.inpe.br/download/dataset/cerrado-

prodes/vector/prodes cerrado 2000 2018 v20190405.zip (download date: 17-Dec-

19) 

Figure 2. Diagram example of a generalisation for the 

classification made over Data using the Random Forest 

algorithm. 

The algorithm implementation in R further allows to assess the 

variable importance of each input variable based on the Gini 

coefficient (Liaw et al., 2002). 

We also tested recurrent neural network models with Long-Short 

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) 

layers, which is a Recurrent Neural Network (RNN). The LSTM 

was proposed in order to solve problems related with loss of long-

term dependency and gradient vanishing present in previous 

RNN architectures. The LSTM cell is composed of a cell state 

and input, output, and forget gates, as it is shown in Figure 3. 

Figure 3. Anatomy of a LSTM cell. 

 

For each input element, ht is computed with Equations 1 to 6: 

𝑖𝑡 = 𝜎 (𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)   (1) 

𝑓𝑡 = 𝜎 (𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)  (2) 
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𝐶�̃� = 𝑡𝑎𝑛ℎ (𝑊�̃�𝑥𝑡 + 𝑈�̃�ℎ𝑡−1 + 𝑏�̃�)    (3) 

𝑜𝑡 = 𝜎 (𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ
𝑡−1 + 𝑏𝑜)   (4) 

𝑐𝑡 = �̃�𝑡 ⋅ 𝑖𝑡 + 𝑐𝑡−1 ⋅ 𝑓𝑡    (5) 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ 𝑐𝑡     (6) 

where 

ℎ𝑡: is the hidden state at time t; 

𝑐𝑡: is the cell state at time t; 

𝑥𝑡: is the input at time t; 

ℎ𝑡−1: is the hidden state at time t-1 or the initial hidden 

state; 

𝑖𝑡: is the input gate; 

𝑓𝑡: is the forget gate; 

�̃�𝑡: is the cell gate; 

𝑜𝑡: is the output gate; 

𝜎: is the sigmoid function. 

The same samples used in the RF classifier were also used with 

the LSTM. In this case, five distinct sequential models were used. 

Regarding their composition, model number 5 had 5 LSTM 

layers, with 96, 48, 24, 12, and 6 units, respectively. Each LSTM 

was followed by a batch normalisation layer, and at the end there 

was a fully connected layer (Dense) with 3 units and SoftMax 

activation function. Model number 4 was similar to model 

number 5, but without the first LSTM and batch normalisation 

layers, and so on until model 1, which had only one LSTM layer 

with 6 units, the batch normalisation and fully connected layers. 

Table 1 shows details about the layers of each model. 

 

 Model 

 1 2 3 4 5 

Layers LSTM (6) 

BN 

Dense (3) 

LSTM (12) 

BN 

LSTM (6) 

BN 

Dense (3) 

LSTM (24) 

BN 

LSTM (12) 

BN 

LSTM (6) 

BN 

Dense (3) 

LSTM (48) 

BN 

LSTM (24) 

BN 

LSTM (12) 

BN 

LSTM (6) 

BN 

Dense (3) 

LSTM (96) 

BN 

LSTM (48) 

BN 

LSTM (24) 

BN 

LSTM (12) 

BN 

LSTM (6) 

BN 

Dense (3) 

Table 1. Layers used in each model evaluated in the tenfold cross 

validation procedure. LSTM (n): Long-short term memory 

(number of units); BN: Batch normalisation; and Dense (n): 

Dense fully connected layer (number of output units). 

 

The models were trained with the Categorical Cross Entropy loss 

function, Adam optimizer with a learning rate of 0.00001, batch 

size of 256 samples, and 1000 epochs. 

 

3. RESULTS AND DISCUSSIONS 

Our best RF model was built with the dataset composed by RBF 

fits, in which we empirically determined the parameters mtry of 

5 and ntrees of 500, and reached an average overall accuracy of 

0.85005, while the F1-Scores for the classes Savanna 

Woodlands, Deciduous Dry Forest, and Semideciduous Dry 

Forest were 0.68261, 0.70348, and 0.90273, respectively. Figure 

4 shows the confusion matrices.  

 

Figure 4. Confusion matrices. 

 

Table 2 present the variable importance analysis results based on 

the Mean Decrease Gini (MDG). The mean decrease in Gini 

coefficient is a measure of how each variable contributes to the 

homogeneity of the nodes and leaves in the resulting RF. The 

higher the value of mean decrease Gini, the higher the importance 

of the variable in the model (Han et al., 2016). 

Variable Mean Decrease Gini 

Fitted EVI in 2014-09-26 235.72 

Fitted EVI in 2014-10-04 197.26 

Fitted EVI in 2014-10-12 191.20 

Fitted EVI in 2014-08-01 153.99 

Fitted EVI in 2015-09-05 157.90 

Table 2. Variable importance analysis results based on the MDG. 

 

Figure 5 shows the averaged EVI phenological profiles for each 

class in the season 2014–2015. We found that the EVI values 

were higher during the early of wet season (i.e., December and 

January) and lower during the end of the dry season (September 

and October). A higher amplitude can be observed in the EVI 

time series for the Deciduous Dry Forest class, while the Savanna 
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Woodlands presented lower amplitude with a higher length of 

season.   

 

 

Figure 5. Averaged EVI phenological profiles for each class in 

the season 2014–2015 (black lines), with their respective 

standard deviations (blue margins) 

 

Figure 6 shows the boxplots of the two most important variables 

for each class in the season 2014–2015, based on the variable 

importance analysis by the MDG, provided by the RF algorithm. 

 

 

Figure 6. Boxplots of the two most important variables for each 

class in the season 2014–2015. 

 

We found that the EVI values during the end of the dry season 

were the most informative variables for separating among the 

different vegetation classes, suggesting that there are significant 

differences between their seasonal dynamics during this period 

(Figure 6). This result suggests that the leaf cover is lowest in the 

end of the dry season. Therefore, it is the best period to acquire 

satellite images to separate the different forest types of Cerrado. 

Haidar (2017) analysed the leaf phenological cycles of the 

remnants of dry forests, using vegetation indexes time series and 

phenological metrics. The author determined four phenological 

groups with trends that vary from deciduous to evergreen canopy 

species, as well as meaningful differences in the cycles of the 

remnants. The existence of these different phenological groups 

can explain the high variance within the semideciduous forests 

class, which may present a gradient varying between deciduous 

and evergreen forests. This high variance led to confusions 

between the semideciduous forests and savanna woodlands, in 

which pixels of savanna woodlands were misclassified as 

semideciduous forests. The variation of the phenology is related 

to the differences in the soil physical and chemical properties and 

the average temperature, which can vary across the Tocantins 

state.  

Bendini et al. (2020) used Landsat Analysis Ready Data (ARD) 

in combination with different environmental data for a modelling 

exercise for classifying the vegetation in the Cerrado in two 

different hierarchical levels. In the second level, the authors also 

reported the complexity of classifying in details the forest classes. 

Bendini et al. (2021a) spatialized the results from the mentioned 

model producing a map for the whole Cerrado, and reported a f1-

score of 0.658 and 0.611, for Savanna Woodlands and Dry 

Forests, respectively. Neves et al. (2021) also used a Deep 

Learning technique, based on the adaptation of Convolutional 

Neural Network architecture, the U-Net (Ronneberger et al., 

2015), to process a WorldView-2 image with 2-m spatial 

resolution to hierarchically classify the physiognomies of a 

Cerrado protected area (Brasilia National Park), reaching a f1-

score of 0.86 for the Savanna Woodlands class, although they 

didn´t account for the Dry Forests. 

The Model 4 of the LSTM approach presented the highest 

accuracy during training, and therefore was used to predict over 

the test samples. The test samples overall accuracy was 0.88601, 

while the F1-Scores for the classes Savanna Woodlands, 

Deciduous Dry Forest, and Semideciduous Dry Forest were 

0.86999, 0.69604, and 0.92294, respectively. LSTM approach 

presented a higher accuracy for the savanna woodlands class, in 

comparison to the RF approach. For this reason, the LSTM model 

reached the highest overall accuracy, showing its potential for 

automatically separating the different types of forests in the 

Cerrado. This result suggests the suitability of the recurrent 

neural networks on handling complex long-term dependencies 

such as the EVI dense time series of forest vegetations, finding 

patterns that were not captured by a traditional machine learning 

approach such as the RF. 

 

3.1 Final Considerations 

In this work, we tested two different machine learning 

approaches, RF and LSTM, based on the use of dense image time 

series, in order to evaluate if it's possible to separate Dry Tropical 

Forests and Savanna woodlands. LSTM approach presented a 

higher accuracy for the savanna woodlands class, in comparison 

to the RF approach, reaching the highest overall accuracy. In 

general, it was possible to separate between the different forest 

classes. Although the results are motivating, there´s still the 

potential for improving the accuracy with other deep learning 

approaches, such as the convolutional Long-Short-Term-

Memory (ConvLSTM), and also, testing different spectral bands, 

other spectral indices and data from Synthetic Aperture Radar 

(SAR), such as the Sentinel 1. The combination of these image 

time series with auxiliary data, such as terrain and soil type, can 

also add value to this classification task. This study showed the 

potential for the development of a semi-automatic method for 

discriminating the different types of forest formations in the 

Brazilian Savanna, based on remote sensing.  
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