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ABSTRACT:

Confronted with the climate change challenge and the territorial constraints, agriculture has to modernize itself. The use of georef-
erenced data and remote-sensing imagery is a major step in this direction. This precision mapping of crops requires powerful and
accurate acquisition systems, while remaining financially attractive. The development of multispectral sensors and low-cost GNSS
makes it possible to consider systems that will be able to map at the plant scale. However, these positioning systems do not yet guar-
antee a precise overlap of data acquired at different times. Thus, we propose in this paper a method to register terrestrial image data,
acquired on vineyard plots. Our method seeks to avoid image registration problems, such as illumination changes, by detecting the
vine stocks, reconstructing them in 3D, and registering them individually. The 3D detection method is based on an image-based object
detection method (Faster R-CNN) and a structure-from-motion reconstruction of object-masked images. The results that we obtained
on a vineyard plot, allowed us to validate the method, with a precision of less than 10 cm, making it possible to map the vine by stock.

1. INTRODUCTION

Precision agriculture is a major topic in the world today, aiming to
increase crop production while reducing the use of phytosanitary
products, and thus reducing the environmental impact of agricul-
ture. The use of positioning and geographic information systems
was cited as one of the 10 most useful technologies in this field
(Crookston, 2006). In particular, remote sensing, multi-spectral
imagery, deep learning, and positioning have together significant
potential (Martos et al., 2021).

Usually, crop analysis can be performed at different scales, rang-
ing from the use of satellite sensors to the drone (Khaliq et al.,
2019). A large part of the literature proposes to use UAV cou-
pled with lightweight multispectral sensors, which allow cover-
ing large areas at a low-cost (Maes and Steppe, 2019). In particu-
lar, in the field of vineyards, the recent development of extraction
methods by deep learning allows precise mapping of specific vine
diseases (Kerkech et al., 2020). However, the use of UAVs is sub-
ject to weather and legislative hazards, which makes flights often
complicated or impossible.

In addition, the use of onboard cameras on ground machines al-
lows for even more accurate crop mapping (Figure 1), without the
hazards of the drone. In particular, the fruits are usually located
at the bottom of the plant and are only visible in oblique images
taken from the ground. Some studies are already underway to
use such data for the detection of vineyard diseases (Rançon et
al., 2019). Nevertheless, such a system requires precise position-
ing solutions that are often expensive or difficult to implement
(GNSS-RTK, IMU sensor, and Kalman Filter...). These position-
ing solutions are even mandatory for systems coupling LiDAR
sensor (Moreno et al., 2020).

Several image-based positioning solutions exist, such as struc-
ture from motion (Rupnik et al., 2017) or visual-slam algorithms
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(Taketomi et al., 2017), both are based on founding matching
points between images. However, these methods suffer from
a positioning drift, especially in vegetation contexts that make
matching points calculations difficult. Either need external ob-
servation such as GNSS or Ground Control Point (GCP) to
avoid such drift and ensure global positioning accuracy (Lhuillier,
2011). An alternative to avoid these drift issues in SLAM algo-
rithms is loop detection, for instance by detecting and matching
the scene layout (Baligh Jahromi et al., 2018).

In recent years, advances in deep learning object detection have
led to the introduction of new methods based on semantic match-
ing (Duan et al., 2020). For instance, (Wang and Zell, 2018) pro-
poses to match only the interest points coming from the same type
of object in each image in order to gain in robustness. Similarly,
(Hu et al., 2019) apply Faster R-CNN convolution neural network
model to add semantic information over feature point, allowing
them to introduce a Bag-of-Words based similarity measure.

In this paper, we propose to show how an existing low-cost mul-
tispectral UAV-based camera (namely Parrot Sequoia) can be
turned into a terrestrial mobile mapping system, with high pre-
cision positioning capability thanks to an automatic registration
system using vine stocks detected by deep learning.

2. EQUIPMENT AND DATA ACQUISITION

2.1 Multispectral camera

Our acquisition was made with the Sequoia multispectral cam-
era from Parrot, which has 4 mono-band sensors (Green, Red,
Near-Infrared, and Red Edge), and an RGB camera (Table 1). It
is also interesting to notice that the RGB sensor is provided with
a rolling shutter, while the other sensors (monochromatic) use
global shutters. The rolling shutter will cause significant distor-
tions if the camera moves too quickly, for example in the case of
vibration.
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Figure 1: Comparison of a drone view (Kerkech et al., 2020) and
a ground view of vineyards. One can notice the fruits under the
plant on the terrestrial image.

The camera comes with a Sunshine Sensor which records the lu-
minance received by the sun during the capture of each image to
correct the differences in lighting between the images due to the
passage of clouds or others and to have equalized reflectances.
Such equalized reflectance is not used yet but would be very use-
ful for applications such as disease detection.

The Sunshine Sensor also includes a GNSS and an Inertial Mea-
surement Unit (IMU), providing a global location with metric
precision. Because of its low accuracy, the IMU does not pro-
vide interesting information for data orientation and will not be
used here.

Sensor Size (px) Bands (nm) Shutter
RGB 4608 x 3456 - Rolling
Green 1280 x 960 550 ± 40 Global
Red 1280 x 960 660 ± 40 Global

Red edge 1280 x 960 735 ± 10 Global
Near infrared 1280 x 960 790 ± 40 Global

Table 1: Multispectral sequoia camera (Parrot) sensors specifica-
tions.

To use this camera on a terrestrial platform, a 3D printed box was
designed, allowing to mount the camera looking towards the vine
with the Sunshine Sensor on top facing the sun (Figure 2).

2.2 Data acquisition

A first calibration dataset has been acquired on the calibration site
of the HEIG-VD. This site is composed of 18 targets, distributed
in 3D and measured with a total station. Images were taken from

Figure 2: Sensor mounted on a tractor using a 3D printed adapter.

7 viewpoints, located on two lines at two different distances from
the calibration site. From each of the positions, 4 views have been
shot by varying the orientation of the camera (Figure 3), resulting
in 28 views (each composed of 1 RGB image and 4 mono-band
images).

Figure 3: Calibration site at the HEIG-VD composed of 18
GCPs.

Experiments were carried out on a vineyard in the region of
Yverdon-les-Bains, Switzerland, which was chosen as the study
site because of its proximity, the availability and interest of the
owner for the project, and the good condition of the vineyards
(Figure 4). The vineyard has a surface of about 2.5 ha.

On this experimental site, several acquisitions have been made on
different dates. In this paper, the following two acquisitions were
used:

1) Reference dataset was acquired, together with several tar-
gets measured with a GNSS-RTK;

2) Target dataset was acquired at the same place, a few weeks
later, without targets.

3. PROPOSED METHOD

The main idea of our method is to match low-accuracy data from
a low-cost sensor with high-accuracy reference data previously
acquired (for example in the leaf-off condition in winter). Such
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Figure 4: Vineyard chosen as a case study (red box).

high accuracy dataset can come from a GNSS-RTK sensor, or by
introducing manual GCPs.

Since major changes in luminosity and vegetation states do not
allow the application of conventional methods (such as key-points
extraction and matching), we propose to extract objects of interest
(namely vine stock) and register such objects in 3D (Figure 5).

Due to the low accuracy of GNSS data and the bundle adjustment
process, a non-rigid registration method is necessary (Figure 12-
Top).

Figure 5: Overview of our non-rigid registration method.

3.1 Camera calibration

Before starting the acquisitions, the camera was first calibrated on
a known site previously presented. This calibration allowed us to
determine the parameters of each sensor of the Parrot Sequoia
camera (focal length, principal point, radial (Ki), and tangential
(Pi) distortion parameters), as well as the lever arms and boresight
matrix of the sensors in respect to each other. All these compu-
tations were performed with the commercial software Metashape
Agisoft.

The resulting residuals are shown in Table 2. The image residuals
are a bit high (about 2 pixels), while one could expect subpixel
values, this can be explained in part by the presence of a slight
blur in the images and the weak quality of the monochromatic
images.

X Y Z XYZ Image
(cm) (cm) (cm) (cm) (pixel)
1,84 1,42 0,94 2,51 1,72

Table 2: Terrestrial and images residuals on GCPs after camera
calibration.

3.2 Bundle adjustment

Once the acquisitions were made, the data has been separated by
vine row. Then, each line was computed separately: a bundle ad-
justment was performed by specifying the camera’s parameters
previously determined during the calibration (intrinsic calibra-
tion, boresight...). Fixing the parameters helps to robustify the re-
sults and reduce errors in these difficult vegetation conditions. At
this step, a sparse cloud was obtained. This sparse cloud is com-
posed of matching keypoint from the bundle adjustment, roughly
georeferenced from GNSS data for the target dataset (with an ac-
curacy of the order of one meter). The reference dataset has been
treated similarly, by adding GCPs in the bundle adjustment, in
order to guarantee centimetric georeferencing.

3.3 2D/3D stocks extraction

The next step is to extract the stocks of vines by a deep learning
method. This step is done in two stages (Figure 6):

1) Stocks are extracted in 2D on each individual image;

2) 2D objects from the images are reprojected in 3D.

Objects extraction was done with the Detectron2 library (Wu et
al., 2019). Nearly 500 examples of vine stocks were manually
labeled on RGB images from the Sequoia camera, collected from
different vineyard plots in Switzerland. Then, a vine detection
algorithm has been trained from a pre-trained model. The model
used (Mask R-CNN), is based on ResNet-50 with Feature Pyra-
mid Network (FPN).

An average precision of 76% was obtained on the training dataset.
Such a model made it possible to extract the stocks from the im-
ages of our two datasets presented above (Figure 7).

To project previously detected 2D objects in 3D, we applied
masks from the object detection on each image. Then, masked
images are used to perform a 3D reconstruction by dense corre-
lation in Metashape Agisoft (Figure 6). Thus, only points from
vine stock are reconstructed in 3D: which allowed us to have a
3D reconstruction of all vine stocks in the current vine row (Fig-
ure 8-Top) and Figure 12-Top). One can notice in this Figure that
one stock is well adjusted (red circle), but that the others are less
and less so, which is due to the poor quality of the georeferencing
of the target dataset.

For the following, the vine stocks will have to be individualized,
in order to be able to adjust them separately. Thus, after the 3D
extraction of stocks, we applied the DBSCAN method to segment
the 3D point cloud into a set of points per stock. The DBSCAN
algorithm groups the points from near to near in the same cluster
if they are closer than a given distance (epsilon).
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Figure 6: Details of 2D/3D object extraction method.

Figure 7: Stocks extraction on one individual image. One can
notice that tests have also been conducted on the extraction of
grape bunches.

This method allows us to easily segment the stocks by choosing a
value of epsilon a little smaller than the average distance between
the objects (here we chose eps = 30 cm). Lastly, stocks were
numbered in ascending order along the vine line (on color per
stock in Figure 8-Center).

3.4 3D registration

A non-rigid 3D registration is done in this step (Figure 10): the
idea is to estimate many small rigid registrations, by founding
matching vine stocks from the reference and target dataset, and
computing 3D transformation (rotation and translation) for each
of them.

Even if the GNSS system of the camera provide meter accuracy
positioning, since the orientation from the IMU is not used, and
the GNSS points are aligned along the vine line, the reconstructed
3D point cloud from the target dataset may have offset greater
than 10 meters with the reference data (Figure 12-Top). Indeed,
the reconstructed points can be placed in any direction around the
acquisition axis, so in the worst case, one cloud could be three
or four meters to the left of the axis and the other at the same
distance but to the right.

Thus, to solve the problems of significant offset between the
reference and the target acquisitions (greater than the distance
between two vine stocks), vine stocks from the target data are

Figure 8: (Top) 3D reconstructed stocks, (Center) individualized
objects (one color per stock), (Bottom) and the result of the 3D
registration (greeen : reference, and red : target datasets).

grouped by 3, then each target group is aligned successively with
the 3 closest groups of the reference data set (current one, previ-
ous and next ones in the row), see Figure 9.

Figure 9: Neighborhood stock matching candidate details: refer-
ence data in green, and target data in red, each objects represents
a vine stock.

An approximate transformation is founded by computing differ-
ences between reference and target objects’ barycenters. Then,
the fine matching process is based on the Iterative Closest Point
algorithm (Chetverikov et al., 2002, Gressin et al., 2013). The
best-fitting group from the reference data set is selected on the
criterion of the highest number of matching points.

Computation of DBSCAN clustering and ICP registration have
been computed with the open3D library (Zhou et al., 2018).

We thus obtain a list of correspondence between the newly ac-
quired vine stocks and those of the reference data, and for each
matching the associated 3D rigid transformation. By applying
those 3D transformations to each vine stock of the target dataset,
we are able to properly align both datasets.

4. RESULTS

As indicated in Section 2.2, the experiments were carried out on
two datasets acquired at different dates, a reference, and a target
dataset. At first, the data were processed by row of vines.
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Figure 10: Details of the 3D non rigid registration method.

The data from the same row of vines were selected from both the
reference and the target datasets, then processed separately to re-
construct each vine in 3D (Figure 12-Top): 201957 points and 16
clusters have been extracted from the target dataset, respectively
183401 points and 18 clusters from the reference dataset (Fig-
ure 12-Center). This difference in the number of stocks detected
has two explanations: one of the two acquisitions covers a slightly
larger area, and with the leaves some vines can be grouped by
two, without impacting the results presented below. Thus, a fine
and precise 3D reconstruction of the vines has been produced.

After the matching step, 16 individual rigid transformations have
been computed (one for each vine stock extracted in the target
dataset), all with inliers RMSE smaller than 1 cm (Figure 11).
Details of vine stocks after registration can be seen in Figure 8-
Bottom.

Figure 11: Individuals per vine stocks 3D registration RMSE.

The final result of the alignment of the target dataset on the ref-
erence data is shown in Figure 12-Bottom. On this dataset, we
observed residuals after the alignment of less than 10 cm, thus
opening up the possibility of mapping at the level of each vine
stock.

In our current dataset, there were no unmatched stocks in each
dataset. This is a limitation that will have to be taken into account
in our further work.

5. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a method to register newly ac-
quired images from a low-cost multispectral camera on an exist-
ing reference dataset, by automatically extracting the vine stocks
and registering those objects.

The proposed method has been successfully tested on a small
real data set acquired on a vineyard. The results obtained on this
dataset showed a clear improvement of the georeferencing of the
dataset, allowing to switch from a metric accuracy to an accuracy
better than 10 cm, in a fully automatic manner.

Such precision makes it possible to consider the precise mapping
of vineyards, in particular at the scale of the vine stock, allowing
to answer questions such as: which vine stock is sick? or which
vine stock produces which quantity of grapes?

In the future, we would like to evaluate the robustness of our
method on a larger dataset: what will be the problems of scal-
ing up? what is the sensitivity of our method to the change of
illumination?

Although the method was developed for vineyards, it could be
generalized to different types of objects, such as fruit trees, salad
plants in agriculture, or urban materials for various applications,
such as introducing global positioning on the visual-slam algo-
rithm.
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