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ABSTRACT:

For studies of urban development, it is an important method for obtaining the distribution of impervious surface (IS) areas and their
dynamic change from remote sensing data. The dilemma of the same spectrum for different features and different spectrums for the
same features, posed by the complexity of the IS objects, is the fundamental obstacle encountered in the extraction of urban IS areas.
In this study, an automatic extraction method for urban IS areas is proposed and analyzed, based on classification and regression
tree (CART) and ensemble learning strategies. The Sentinel-2 MSI data of 30 cities in China from 2018 to 2020 were selected for
IS extraction experiments. We perform temporal and spatial modeling of the splitting threshold offset in the classification model to
explore the effect of time and space on IS extraction. The obtained offset models show that the temporal variation is not significant,
while the spatial offsets have more obvious linear relationships.

1. INTRODUCTION

Impervious surface (IS) is a sort of artificial covering that does
not allow water to penetrate fast and is a common feature
of metropolitan settings. Building tops, walkways, highways,
squares, airports, parking lots, and other sorts of artificial build-
ing spaces are examples of the low permeability covered ground
features. Urban IS areas are the result of human activity, and
variations in the areas directly reflect the changing state of cit-
ies. IS makes it difficult for rain to penetrate the soil, reducing
local infiltration and soil moisture, while increasing IS areas in-
creases surface runoff. Furthermore, there is a strong positive
relationship between IS coverage and surface temperature, and
increasing IS coverage increases the urban heat island effect.
For studies of urban development, it is a vital method for obtain-
ing the distribution of IS areas and their dynamic change using
remote sensing data. The dilemma of the same spectrum for
different features and different spectrums for the same features,
posed by the complexity of the IS features, is the fundamental
obstacle encountered in the extraction of urban IS areas. Exist-
ing research has provided many strategies for the extraction of
IS areas from various angles.

Different definitions of indexes have been proposed by re-
searchers in the study of index-based approaches. Normal-
ized difference built-up index (NDBI), normalized difference
bare-soil index (NDBaI), and albedo are taken for improved lin-
ear spectral mixture analysis method was explored to estimate
urban IS areas (Fan et al., 2015). And the combinational build-
up index (CBI), principal component analysis, normalized dif-
ference water index (NDWI), and soil-adjusted vegetation in-
dex (SAVI), are proposed to extract IS (Sun et al., 2016) (Sun
et al., 2017a). Another index, the normalized IS index (NISI),
integrates DMSP-OLS and Moderate Resolution Imaging Spec-
troradiometer (MODIS) normalized difference vegetation index
(NDVI) data, was provided (Guo et al., 2017). A modified
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normalized difference IS index (MNDISI) is proposed, and a
Gaussian-based automatic threshold selection method is used
to identify the optimal MNDISI threshold for delineating IS
from background features (Sun et al., 2017b). For the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (AS-
TER) spectral data, a perpendicular IS index (PISI) was pro-
posed (Tian et al., 2018) for IS extraction. Considering the to-
pography of the target area, some scholars have proposed in-
dexes to extract IS areas and shaded areas separately (Luo and
Chen, 2021), even considering LiDAR data (Luo et al., 2018).

There are different ways to construct IS extraction models with
the proposed indexes. The MODIS NDVI and DMSP/OLS
nighttime light imageries are taken to establish regression mod-
els that estimated the fraction of IS area in urban green space
(Kuang, 2019). The random forest model is employed for dir-
ect and comprehensive IS extraction on subpixel estimation
(Deng et al., 2017). The IS extracting methods based on ma-
chine learning, fully convolutional neural networks (FCNN),
are provided at pixel level with high-resolution satellite imagery
(McGlinchy et al., 2019) (Lin et al., 2020). A method called
Continuous Subpixel Monitoring (CSM) was developed to map
and monitor urban IS area change continuously at the sub-
pixel level (Deng and Zhu, 2020). To alleviate the difficulties
in the conventional scheme, the geospatial distribution know-
ledge of IS areas at large scales was taken (Huang et al., 2021).
The combined use of the data from Sentinel-1 dual-polarized
Synthetic Aperture Radar (SAR) and Sentinel-2 Multispectral
Sensor Images (MSI) have been successfully applied in many
remote sensing applications. Scholars also propose a method
for IS mapping by synergetic fusion of dual-polarized SAR and
multispectral information (Sun et al., 2022), (Shrestha et al.,
2021), (Chen et al., 2021), (Feng and Fan, 2021), (Li et al.,
2021).

This paper presents our work on IS extraction modeling and
temporal and spatial analysis using sentinel-2 satellite data,
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based on the ensemble learning model of classification trees.
The Sentinel-2 satellites deliver high-resolution multispectral
data, which is critical for IS studies. To create training
samples, we make a combination of existing land-cover data
and Sentinel-2 data. For classification and regression tree
(CART) learning, we use repeated sampling and training of the
IS extraction tree model for ensemble learning. IS extraction
experiments are conducted for 30 cities in China in different
periods of sentinel-2 data from 2018 to 2020. Then, the tem-
poral and spatial relationships of classification trees are studied
and analyzed.

2. IS EXTRACTION BASED ON CART

2.1 Data Sources

In the study, we used Sentinel-2 MSI acquisitions and global
land cover from Copernicus Global Land Service. Sentinel-
2 MSI delivers multi-spectral imageries with a wide field of
view that can be used to monitor plant, soil, and water cover, as
well as observe interior waterways and coastal areas. Sentinel-
2 MSI detects the Earth’s reflected brightness in 13 spectral
bands, ranging from visible and near-infrared (VNIR) to short-
wave infrared (SWIR). We select four bands (Green, Red, NIR
and SWIR1) from Sentinel-2 data for the study. The land cover
data provides a global dynamic land cover map at 100 m spa-
tial resolution, which includes a continuous field for all basic
land cover classes that provide proportional estimates for ve-
getation/ground cover for the land cover types. Band “urban-
coverfraction” of the Land Cover maps (v3.0.1) in 2019 over
the entire Globe, which reaches an accuracy of 80% at Level 1,
is taken for generating IS samples. Sentinel-2 and land cover
data are available on Google Earth Engine (GEE) platform.

2.2 Experimental Sites

N

0 2000 4000 6000

m

Figure 1. The sites (red points) of Chinese cities for IS
extracting experiments in the height map.

The national capital, municipalities directly under the central
government, and the capital cities of provinces and autonom-
ous regions in mainland China, Hong Kong, Macao, and Taipei
were selected as experimental cities for impermeable surface
extraction, as shown in Figure. 1. We use Sentinel-2 data from
January 2018 to December 2020, and corresponding land cover
data in 2019. Multispectral data with less than 20% cloud cov-
erage in the range of two months around January 1 (winter),
March 1 (spring), June 1 (summer), and September 1 (autumn)

were taken as experimental data. The Sentinel-2 data from Nan-
ning in Guangxi Province, Guiyang in Guizhou Province, Xin-
ing in Qinghai Province, and Lhasa in Tibet Autonomous Re-
gion were excluded from the experiment because their data did
not meet the requirements.

2.3 Decision Tree Base Learners

The method of decision tree for IS extraction is based on the
nonlinear relationship

h = T (ρ), (1)

where, ρ refers to attribute values form the description data,
namely the four bands form Sentinel-2 in the study, h refers
to the class labels, 1 for IS and 0 for non-IS. T refers to the
classification tree model. The class labels of samples are set by

hs =

{
1 ρc ≥ t
0 ρc < t

, (2)

where, t refers to the IS rate threshold, it is set to 30% in the
experiments. We combine class labels and the four band val-
ues at random positions to generate sample data for training IS
extraction models.

The decision tree model is taken for the base learners. A de-
cision tree can learn to split the training samples into subsets
based on attribute values. A decision tree is constructed top-
down by choosing an attribute at each step according to how
well the attribute splits the set into homogeneous subsets with
the same class label. Here we take the Gini purity as the meas-
ure.

Generating samples

Choosing best attribute

Calculating Gini purities

Spliting sample set

Spliting continue?

Spliting end

Figure 2. Flow chart of CART base learner training.

The Gini impurity is calculated for different spectral data of the
sample data as follows,

IG = 1− (p20 + p21), (3)

where p0 refers to the fraction part of hs = 1 and p1 refers to the
non-IS part with hs = 0. The minimum Gini impurity is taken
as the priority classification attribute. The optimal bisection
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Figure 3. Extracted IS data of Taiyuan City, Shanxi Province, in 2018, (a) for January, (b) for March, (c) for June, (d) for September,
and in 2019, (e) for January, (f) for March, (g) for June, (h) for September.

parameter of the classification tree is determined as shown in
Figure. 2.

This process is repeated on each derived subset recursively.
When subsets all have a same class label, or when there is no
gain to the prediction, recursion is done. When the splitting
recursion is completed, a decision tree has been built up. An
IS extracting result example in 2018 of Taiyuan City in Shanxi
Province is shown in Figure. 3.

However, due to the limitations of accuracy as well as resolu-
tion, there are imperfect or incorrect labels inevitably exist in
the training samples. The quality of the extracting results can
be compromised from multiple trees. As shown in Figure 1, the
marked area in (a) is significantly different from the other sub-
plots. We employ the ensemble learning model to reduce the
impact.

2.4 Ensemble Learning Based on Decision Trees

Ensemble learning is the process of combining the outputs of
multiple learners to give the final result. To keep the samples
highly differentiated for each learner, samples are generated in a
repeated random sampling mode. Each sampling brings about
a 1000-sample set, including 500 IS samples and 500 non-IS
samples in our experiments. Each sample set is used to train
a decision tree. These decision trees are used to vote for the
results of classifying. The voting results H can be calculated as

H =

{
1 s ≥ 0.5
0 s < 0.5

, (4)

where

s =

n∑
i=1

hi
n
,

and hi refers to the output form decision tree i.

Since the definition of classification trees is usually based on
the attribute values, it is not convenient to handle the splitting
thresholds when performing classification tree synthesis. To
simplify the operation, we convert the splitting-based continu-
ous tree structure model into a discrete model based on a regular
grid. The discrete attribute values are defined as

ρ ∈ {ρ0 + n ·∆ρ | n ∈ Z} , (5)

where, ρ0 refers to an attribute reference value, ∆ρ is the attrib-
ute grid interval, andZ refers to the integer set. The discretized
tree models are synthesized according to Equation. 4, i.e., the
extraction model corresponding to ensemble learning. The flow
is described as shown in Figure. 4.

Build tree statistics

Classication tree1 Build grid1

Classication tree2 Build grid2

Classication tree... Build grid...

Classication treen Build gridn

Figure 4. The flow of classification trees in ensemble learning.

In our experiments, based on the statistics of the four bands of
the sample data, we define the discrete attribute ρi in range of
five times the standard deviation as

ρi ∈
{
µi + n · 5σi

N
| n = −N,−N + 1, · · · , N

}
,
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where, i refers to the band index, µi refers to the mean value of
samples from band i, and N refers to dimension radius of the
grid (N = 100 in the experiments).

We consider that there is no significant change in IS in urban
cities within three years, and the classification tree models for
the same period are combined as an integrated model for that
time. For example, a part of the tree models for January 2018,
2019, 2020, and the integrated model are shown in Figure. 5.

(a) (b) (c) (d)

Figure 5. A part of the tree models of Taiyuan City, Shanxi
Province, for January 2018 (a), 2019 (b), 2020 (c), and the

integrated result (d). The horizontal and vertical axes correspond
to two bands, respectively.

3. TEMPORAL ANALYSIS OF CLASSIFICATION
TREE MODELS

3.1 Temporal Tree Offset Modeling

The classification tree model is built based on attribute splitting
values. The study here focuses on the analysis of the variation
of attribute splitting thresholds in time and space dimensions.
It is assumed that the model of the classification tree is largely
consistent, which can be ensured by the quality of the experi-
mental results. The analysis of the temporal dimension focuses
on the changes in the offsets of the splitting points between peri-
ods. For analysis purposes, we define a measure of the IS dis-
tance of attributes, S, as follows,

S(ρ) =

{
d(ρ) H(ρ) = 1
−d(ρ) H(ρ) = 0

, (6)

where, d(ρ) = ||ρ − ρt||2 refers to the distance from ρ to ρt,
and ρt refers to the nearest attribute splitting point. S represents
the signed distance from the target to the splitting point, taking
a positive sign in the IS areas and a negative sign in the non-IS
areas.

Based on the IS distances of the attributes of different decision
tree models, we define the IS distance difference δS between
models as follows,

δSi(ρ) =

 S0(ρ)− Si(ρ) S′0(ρ) > 0, S′i(ρ) > 0
Si(ρ)− S0(ρ) S′0(ρ) < 0, S′i(ρ) < 0

0 others
, (7)

where, S0 refers to the distance to the reference model, S′ refers
to the gradient. δS describes the distance difference between

the attributes of the target model and the reference model. This
distance difference will be more accurate if the two models are
more similar. The distance difference is directly related to the
offset of the splitting point, namely,

δSi(ρ) = ρti − ρt0

As shown in Figure. 6, the offsets a and b are related to the area
of the difference part.

A B

a b

Figure 6. Tree model offset and attribute IS distances. The red
and green lines refer to attribute IS distance for the two different

tree models, and the blue line refers to the zero distance
reference. Offset a and b between the models is related to the

area A and B.

We obtain by integrating the model over the defined range of
attribute, f , namely

fi =

∑N
n=−N Si(ρn)∆ρ∑N

n=−N ∆ρ
, Si(ρn) 6= 0. (8)

For each city, we obtained the IS distances for the attributes
during the four different periods of the year. If the attribute
IS distances changes over time, there is a corresponding offset
in their corresponding classification tree splitting points. We
consider the relationship between the corresponding offsets of
different bands and periods and establish the following function

f(τ) = α+ βτ + γτ2, (9)

where, τ refers to the temporal variable defined in 1, 2, 3, 4 for
the four periods, α, β, γ refer the offset model coefficients to be
determined.

3.2 Temporal Tree Offset Analysis

Based on the offset observation data and the quadratic model,
the residual equation can be constructed as follows,

V = BX̂ −L, (10)

where B = coefficient matrix consisting of 1, τ , τ2

X̂ = parameter vector consisting of α, β, γ
L = attribute offset values f at different times
V = residual vector of the offset model.

The solution of the equation can be obtained as follows,

X̂ = (BTB)BTL. (11)
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We calculate the average of IS distances for the four bands of
data for each city as the reference model. The offset values for
four different times for thirty cities were calculated according to
Equation. 8. These offset values are brought into the equation
as data to solve the parameters of the offset model for each of
the four bands. The obtained offset model parameters are listed
in Table. 1.

Band α β γ
Green -0.0067 +0.0649 -0.0246
Red +0.0064 -0.0091 +0.0002
NIR -0.0145 +0.0162 -0.0020

SWIR1 -0.0280 +0.0430 -0.0113

Table 1. Temporal offset model parameters of classification
trees.

The continuous curves of the temporal offset corresponding to
the four bands are shown in Figure. 7. The figure shows that
among the four bands, the trend is not obvious in the other three
bands, except for the Green band which has significant negative
growth.
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Figure 7. Temporal offset model of classification trees for band
Green, Red, NIR, SWIR1 of Sentinel-2 MSI.

The covariance of the estimated parameters,D, is calculated as
follows,

D =
V TV (BTB)−1

r
, (12)

where r refers to the degrees of freedom. The standard devi-
ation information of the parameters is extracted from D and
listed in Table. 2.

Band σα σβ σγ
Green 0.0951 0.1527 0.0488
Red 0.0078 0.0125 0.0040
NIR 0.0099 0.0158 0.0051

SWIR1 0.0094 0.0150 0.0048

Table 2. The standard deviation of the estimated temporal model
parameter values.

From the standard deviation data in the table, we can find that
the confidence level of the model parameters being non-zero is
not high. The effect of spatial factors could be mostly ignored.

4. SPATIAL ANALYSIS OF CLASSIFICATION TREE
MODELS

We relate the offsets of the tree model to the spatial locations,
expressed in the expression as follows,

f(ϕ, λ) = c0 + c1ϕ+ c2λ+ c3ϕ
2 + c4λ

2 + c5ϕλ, (13)

where, ϕ, λ refer to centered longitude and latitude coordinate
values, ci refers to the model coefficients to be determined. ϕ, λ
can be expressed as follows,

ϕ = ϕ1 − ϕ0, λ = λ1 − λ0,

where, ϕ1 and λ1 refer to the original longitude and lat-
itude coordinate, ϕ0 and λ0 refer to the reference longit-
ude and latitude coordinate. In the experiment, we select
the latitude and longitude of Xi’an City in Shaanxi Province,
(108.936899◦, 34.278453◦), as the reference. We obtain the
parameters of the spatial offset model, which are listed in Table.
3.

Index c0 c1 c2 c3 c4 c5
τ1bG 38.90 -5.89 -1.61 0.58 -0.17 0.37
τ1bR 5.81 -0.83 5.32 0.08 0.07 -0.10
τ1bN -54.08 0.14 1.65 0.15 0.22 -0.10
τ1bS 13.98 -0.33 0.68 -0.15 -0.11 0.08
τ2bG 28.68 7.66 14.36 -0.90 0.69 -0.20
τ2bR 0.33 -0.20 0.41 -0.13 0.32 -0.04
τ2bN -25.66 -0.56 -0.09 -0.02 -0.02 0.01
τ2bS 25.06 -2.01 2.18 -0.10 0.26 0.14
τ3bG 32.46 -9.63 1.40 -0.31 1.46 -0.30
τ3bR -10.48 -0.06 1.05 0.01 -0.05 -0.02
τ3bN 17.79 -0.63 -0.94 0.08 -0.32 0.05
τ3bS 29.79 -0.95 2.20 -0.02 0.20 0.04
τ4bG 91.93 -0.64 2.49 -0.44 -0.86 -0.26
τ4bR -17.49 -0.23 0.83 0.03 -0.03 0.02
τ4bN 1.40 0.24 -1.18 0.03 -0.24 0.08
τ4bS 15.30 -1.46 2.72 -0.11 0.29 -0.07

Table 3. Parameters (×10−3) of the spatial offset model, τ for
period index and b for band index.

From the comparison of the model parameters in the table, it
can be found that there is a certain regularity in the value of c0 at
different bands, with the band order decreasing before increas-
ing. c1 and c2 tend to have larger values in b1 and b4, indicating
that the spatially correlated linear shifts are more pronounced in
these two bands. c3, c4 and c5 do not have large values, indicat-
ing that the spatial quadratic feature is not significant. These 16
spatial offset models are plotted as shown in Figure 8. The lin-
ear variation characteristic of the offsets can be found visually.

5. CONCLUSIONS

We employed CART to achieve automatic IS extraction with
sentinel-2 MSI and land cover classification data for 30 cities
in China from 2018 to 2020, and analyze the temporal and spa-
tial offsets of the classification model splitting thresholds. To
reduce the sensitivity of the classification model to imperfect
data, we ensemble the three models for the same period of three
years. The temporal and spatial offset models were built up by
linear regression. The results show that the offsets are not sig-
nificant in the temporal dimension, while the linear variations
in the spatial dimension are relatively more pronounced.
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Figure 8. The spatial offset model of the experimental cities. The first row refers to January, the second row to March, the third row to
June, and the fourth row to September. The columns from left to right refer to the bands Green, Red, NIR and SWIR1.
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