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ABSTRACT:

Plastic is the third world’s most produced material by industry (after concrete and steel), but people recycle only 9% of plastic that
they have used. The other parts are either burned or accumulated in landfills and in the environment, the latter being the cause of
many serious consequences, in particular when considering a long-term scenario. A significant part the plastic waste is dispersed
in the aquatic environment, having a dramatic impact on the aquatic flora and fauna. This motivated several works aiming at the
development of methodologies and automatic or semi-automatic tools for the plastic pollution detection, in order to enable and
facilitate its recovery. This paper deals with the problem of plastic waste automatic detection in the fluvial and aquatic environment.
The goal is that of exploiting the well-recognized potential of machine learning tools in object detection applications. A machine
learning tool, based on random forest classifiers, has been developed to properly detect plastic objects in multi-spectral imagery
collected by an unmanned aerial vehicle (UAV). In the developed approach, the outcome is determined by the combination of two
random forest classifiers and of an area-based selection criterion. The approach is tested on 154 images collected by a multi-spectral
proximity sensor, namely the MAIA-S2 camera, in a fluvial environment, on the Arno river (Italy), where an artificial controlled
scenario was created by introducing plastic samples anchored to the ground. The obtained results are quite satisfactory in terms of
object detection accuracy and recall (both higher than 98%), while presenting a remarkably lower performance in terms of precision
and quality. The overall performance appears also to be dependent on the UAV flight altitude, being worse at higher altitudes, as
expected.

1. INTRODUCTION of 13 spectral bands from VNIR to SWIR. Their spatial res-
olution varies from 10 to 60 m (ESA - Sentinel Online, n.d.).

Given the high usability and versatility, plastics are commonly Such data have been exploited by (Topouzelis et al., 2020) and
used for many purposes. Plastics are lightweight, malleable, (Themistocleous et al., 2020) to investigate the detection of
inexpensive and easy to produce materials. Today, it is still large artificial plastic targets. Such detection of plastic waste,
not possible to dispose of most of the used plastics in a proper ~ and its separation from water or aquatic vegetation, is often
and sustainable way, and it is often dispersed on the environ- based on the use of spectral indices such as Normalized Dif-
ment, leading to a significant impact on flora and fauna (Plastics ~ ference Water Index 2 (NDWI2), Plastic Index (PI), Reversed
Europe, 2022, United Nations Environment Program, 2018). In Normalized Difference Vegetation Index (RNDVI) and Float-
particular, every year 20 million tons of plastic waste are dis- 10 Debris Index (FDI) (Biermann et al., 2020, Page et al., 2020,
persed in the aquatic ecosystem and if the trend is not reversed, ~ Lhemistocleous et al., 2020).

it is foreseen that there will be more plastic than fish in the seas
and oceans in 2050 (Jong, 2018). Most of the plastic pollution
in the oceans comes directly from coastlines or via rivers. The

plastic waste transportation through waterways is still not suf- ' | ) ! ¢
ficiently well investigated, but it has been estimated that more Since Unmanned Aerial Vehicles (UAV) allow the quite quick

than 2 million tons come from rivers every year (Meijer et al., and easy acquisition of high-resolution spatial data over relat-
2021, Tasseron et al., 2021). The study of plastic fluvial trans- Vel large areas, they appear as a quite ideal option for plastic
portation and sedimentation is important because in this context ~ detection in local areas, such as rivers, beaches, coastlines or

plastic waste can be detected and removed before it reaches the ~ 12kes, equipping the UAV with proper sensors, such as RGB and
marine environments. multispectral cameras (Martin et al., 2018). Plastic detection

in this imagery is typically done by means of machine learn-
ing tools, and, recently, with deep learning-based approaches
(Jakovljevic et al., 2020, Wolf et al., 2020).

Instead, the detection of smaller plastic objects, usually over
smaller areas, should be done by different instruments, ensuring
the representation of the region of interest at a higher resolution.

During the last twenty years, several efforts have been made by
the remote sensing community for the plastic pollution detec-
tion over large areas. More specifically, most of the research
works on this topic focus on the detection of floating litter in
seas and oceans through satellite images.

Given the important role of waterways in the plastic waste
transportation to the seas, this paper focuses on detection of
plastic objects in river environments. Similarly to the satel-
lite remote sensing approaches, this work aims at plastic litter
detection by properly employing multispectral information in
a machine learning approach (random forest-based detection),
((Belgiu and Drigut, 2016)), described in Section 3. The pro-
* Corresponding author posed approach has been tested on multi-spectral imagery, col-

To this aim, the use of the freely accessible Copernicus
Sentinel-2 mission data is currently a quite convenient option.
Sentinel-2 satellite data are multispectral images are made up
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lected by means of a proximity multi-spectral sensor, namely
the MAIA-S2 camera, mounted on a UAV, the DJI Matrice 300,
while flying over a portion of the Arno river (Italy). A more
detailed description of the case study is provided in Section 2,
whereas the obtained results are reported in Section 4, and some
conclusions are drawn in Section 5.

2. CASE STUDY AND MATERIALS

2.1 Study Area

The study area has been identified in the locality of Prulli
(Reggello, Florence, Italy) on the Arno river. A portion of the
river, approximately 100 meter long, has been selected for its
characteristics, such as the width, the depth of the stream bed,
and the possibility of reaching the centre of the watercourse via
some ruins of an ancient bridge (Ponte di Annibale).

Plastic samples (bottles, flacons and shoppers) were introduced
into the river, and tied to the ancient bridge through a transpar-
ent fishing line, in such a way to ease the object recovery at the
end of the data collection. The fishing line length was different
for each plastic object, and each of them had a limited freedom
of movement. Figure 1 shows the region of interest, i.e. where
the UAV flew (red rectangle) and the place where the fishing
lines were anchored (yellow circle).

Figure 1. Study area: Arno river in the locality of Prulli (Italy).

2.2 Dataset

The imagery has been acquired by means of the multispectral
camera MAIA-S2, developed by SAL Engineering (Modena,
Italy) and EOPTIS (Trento, Italy). This camera is provided
with nine different optical sensors, with the same bands of the
Sentinel-2 Satellite (Table 1) (SAL Engineering and EOPTIS,
2018). In particular, two are red edge bands (S5, S6), whereas
the last three are in the near infrared (S7, S8, S9). The native
camera resolution is 1208 x 960, the nominal focal length is
7.5 mm, and hence a field of view of 35° x 26°.

The MAIA-S2 camera was mounted on a DJI Matrice 300,
which flew at low speed over the area of interest, while col-
lecting one image per second. The UAV flew at different alti-

tudes, ranging from 20 m to 80 m from the ground, in order to
compare the plastic detection results varying the flight height.

Band | Start WL [nm] | Stop WL [nm] | Color
S1 433 453 Violet
S2 457.5 522.5 Blue
S3 542.5 577.5 Green
S4 650 680 Red
S5 697.5 712.5 Red Edge 1
S6 732.5 747.5 Red Edge 2
S7 773 793 NIR 1
S8 784.5 899.5 NIR 2
S9 855 875 NIR 3

Table 1. Wavelength (WL) intervals of MAIA S-2 bands.

Image locations were acquired by means of an external GNSS
receiver mounted on the UAV. This receiver worked in RTK
mode, exploiting corrections provided by a GNSS base-station
located approximately 100 m far from the area of interest.

An irradiance light sensor (ILS) was mounted on the top of the
DIJI Matrice 300 (as shown in Figure 2), enabling automatic
radiometric correction of the multispectral imagery.

Figure 2. MAIA-S2 multispectral camera, GNSS external
antenna and ILS sensor mounted on DJI Matrice 300.

Geometric corrections and co-registration of the bands were
computed by means of the MAIA image-processing software,
provided by SAL Engineering along with the camera. Overall,
the dataset is composed by 1268 images at different altitudes
(from 20 m to 80 m, as shown in Table 2). Nevertheless, this
work focuses on the comparison of the results obtained in the
30 m and 80 m cases.

Altitude [m] | # of images | GSD [cm]
20 205 1.0
30 119 1.6
40 895 2.1
60 44 3.1
80 35 4.2

Table 2. Number of collected images and Ground Sampling
Distance (GSD) as functions of the flight altitude with respect to
the ground.

3. METHOD

The proposed method for plastic detection is based on the use of
a multi-step random forest approach, where the final results are
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obtained by means of the cascade of two random-forest classifi-
ers (named classifier A and B hereafter) and of an area-based se-
lection criterion. It is worth to notice that the method proposed
in this work is an evolution of the one presented in (Cortesi et
al., 2021), in particular improving the previous results by in-
cluding the above mentioned two-step procedure.

Ideally, a unique classifier, as in (Cortesi et al., 2021), able to
properly distinguish “Plastic” from “Other” pixels would be
preferable. However, according to the experimental tests per-
formed with the collected data (see Table 2), the performance
of such a in certain cases is unsatisfying. Hence, a multi-step
classification procedure has been used, instead.

The analysis starts with a pixel-based classification, where
only two classes are considered in the classification process,
“Plastic” and “Other”, aiming at distinguishing pixels related to
plastic objects from all the others.

Both classifier A and B are pixel-classifiers: they receive as in-
put the co-registered nine bands of a single multispectral image,
and they analyse pixel by pixel the nine-band measurements,
aiming at distinguishing plastics from the other materials by
their peculiar spectral response.

Despite being similar in terms of the general goal (i.e. detecting
plastic pixels), classifier A and B differ for their specific clas-
sification ability, which have been achieved by using different
trainings.

To be more precise, classifier A is well suited for ensuring an
optimal performance in terms of avoiding false negatives (i.e.
pixels incorrectly classified as “Other”) in the pixel plastic de-
tection. Differently, classifier B ensures a better performance in
terms of reducing the number of false positive pixels, i.e. pixels
incorrectly classified as “Plastic”.

Since plastic objects may not visible in many images, and since
the number of plastic pixels in an image is usually small in an
image, the total number of “Other” pixels is huge with respect
to the total number of “Plastic” pixels. Consequently, the direct
use of classifier A and B on the multispectral images typically
lead to a much worse performance of A, due to the much higher
number of false positives.

Examples of the results obtained by classifier A and B on one
of the images acquired at 30 m height can be seen in Figure 3 -
6: Figure 3 and Figure 5 show the results obtained on the image
by using classifier A and B, respectively, whereas 4 and 6 are
the zooms of the previously mentioned figures on one of the
plastic objects. These figures compare the data inputted in the
classifier (shown as RGB-like images, obtained by bands S4,
S3 and S2, see Table 1) with the obtained results (plastics are
shown in white, whereas “Other” pixels in blue).

By comparing the results in Figure 3 - 6, the better ability of
B in avoiding false negatives is quite apparent, whereas A re-
duces the amount of false positives (usually appearing as salt
and pepper-like noise), as expected.

The different classifier behaviors derive from a different train-
ing:

A: 500 trees have been used in the random forest classi-
fier, trained by randomly extracting from the dataset 100k
“Plastic” and 500k “Other” pixels. The use of unbalanced

training datasets for the two classes is motivated by: 1) the
quite small amount of plastic pixels available in the im-
ages, which limits the maximum number of plastic train-
ing pixels, and 2) the need of a reasonably large number
of “Other” pixels to decently represent the characterist-
ics of the huge amount of pixels in this class. The use
of balanced training classes is foreseen in the future de-
velopments of this work in order to yield to a more robust
classifier performance.

B: Random forest classifier B has been set and trained sim-
ilarly to A, but inserting an additional set of 90k pixels
in the “Other” training dataset, randomly extracted from
certain critical areas (rocks, sunglint, foam, etc.). These
additional pixels allow classifier B to improve its ability in
properly recognizing the pixels of such critical areas.

Figure 3. Example of results obtained with classifier A:
RGB-like image (bottom) and classification results (top).

Figure 4. Zoom of Figure 3 on one the plastic samples.

Given the peculiar characteristics of the above presented classi-
fiers, B appears to be a reasonable first step for a plastic detec-
tion procedure, allowing the identification of most (but not all)
of the plastic pixels, while keeping the number of false positives
lower with respect to A.

Once some plastic pixels have been found by B, A is used in or-
der to improve the plastic pixel detection just in the neighboring
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Figure 5. Example of results obtained with classifier B:
RGB-like image (bottom) and classification results (top).

Figure 6. Zoom of Figure 5 on one the plastic samples.

area of the already found pixels. In practice, the pixels in a spa-
tial buffer around any previously detected plastics are inputted
in classifier A. Then, the results of A and B are merged: B out-
come is used in the “Other”-only areas, whereas A outcome is
used to better discriminate “Plastic” and “Other” pixels where
plastic is present.

For instance, this procedure leads to the substitution of the B
results shown in Figure 6 with the A outcome in Figure 4 thus
ensuring a more effective identification of the plastic boundar-
ies. The results obtained by using classifier B, A and the cas-
cade B+A can also be compared in Figure 7 and, once zoomed,
in 8.

Given the pixel Ground Sample Distance (GSD) size (Table 2),
once entered in the fluvial environment usually the area of a
floating macro-plastic object is quite larger than a pixel. Since
the classification errors resulting from the cascade of B and A
are often salt and pepper-like noise, an area-based selection of
the detected plastic areas can be used in order to reduce the
number of false positives.

First, the image regions associated to different plastic objects
are identified by computing the connected regions, by means
of a flood-fill algorithm (Fishkin and Barsky, 1985). Then,

Figure 7. Comparison of the results obtained with classifier
B+A, A, and B (from top to bottom).

Figure 8. Zoom of Figure 7: comparison of the results obtained
with classifier B+A, A, and B (from top to bottom).

the plastic objects with areas lower than a certain threshold,
to be defined as a design parameter of the procedure, are dis-
carded. The overall procedure is summarized in the block dia-
gram shown in Figure 9.

Figure 10 compares the areas of the plastic objects and of the
false positives (just after applying the B+A cascade) in the 30 m
height case. The quite remarkable area difference in this data-
set partially justifies the adoption of the area-based selection,
as explained above. This choice can clearly have a negative im-
pact on the detection performance when the size of the plastic
objects dispersed in the considered region is smaller than the
considered threshold area.

4. RESULTS AND DISCUSSION

Table 3 shows the numerical classification results, obtained by
applying B and A, at two different flight altitudes, i.e. 30 m and
80 m from the ground. This comparison aims at highlighting
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Figure 9. Block diagram of process of classification.

the dependence of the classification results with respect to the
GSD value.

Despite the obtained accuracy and recall are good at both the
altitudes, the high number of detected false positives leads to
an unsatisfactory performance in terms of precision and qual-
ity. Realizing the main causes of such false positives is of key
importance to determine how to improve the overall approach
performance. To such aim, Fig. 11 compares the spectral signa-
tures of:

(a) a transparent sample, visible in more than 450 images,
(b) water, assessed by around 1 M pixels from just one image,

(c) sunglint, extracted from about 20 images.

The characterization of the spectral signatures in Fig. 11 re-
sembles those presented in (De Giglio et al., 2021), even though
using different bands, i.e. different portions of the electromag-
netic spectrum.

While water and transparent plastic signatures are quite differ-
ent (Fig. 11(a) and (b)), hence justifying the use of multispectral
information to detect plastics in fluvial/maritime environment,

| 30m |  80m

Accuracy [%] 100.0 98.8
Precision [%] 3.1 7.3
Quality [%] 3.1 7.3
Recall [%] 100.0 98.8

Table 3. Object detection performance of the cascade of
classifier B and A.
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Figure 10. (a) plastic object and (b) false positive (after applying
the B+A cascade) areas in the 30 m height dataset.

the latter is apparently similar to the sunglint one (Fig. 11(a) and
(c)). Being sunglint hardly distinguishable from certain plastics
in the considered portion of the electromagnetic spectrum, such
similarity can be considered as the main cause of the previously
mentioned false positives.

Although sunglint and certain plastic samples have very sim-
ilar spectral signatures, their size is usually quite different: Fig-
ure 10 compares the distributions of the areas (in the multispec-
tral images acquired at 30 m altitude) of the plastic objects (a),
and of the sunglint (b).

The above consideration motivated the introduction of an area-
based object selection step, i.e. selecting only those objects
with an area above a certain threshold (which should be prop-
erly set in order to ensure a satisfying performance of the ap-
proach), leading to a remarkable reduction of the false posit-
ives(see Table 4), in particular in the 30 m altitude case, while
only moderately reducing accuracy and recall.

| 30 m | 80 m

Accuracy [%] 95.1 929
Precision [%] 89.7 33.9
Quality [%] 85.8 33.1
Recall [%] 95.1 92.9

Table 4. Object detection performance of the proposed approach.
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Figure 11. Examples of spectral signatures (a) transparent
plastic object, (b) water, (c) sunglint.

Despite improving the performance at both the considered alti-
tudes, such improvement is clearly much less apparent in the
80 m case. This is because the sunglint effect causes the false
detection of areas of similar values in pixel at both the altitudes,
whereas the plastic object area reduces significantly with the

increase of the flight altitude (and hence of the GSD), making
them less distinguishable.

Consequently, the effectiveness of the implemented area-based
selection step reduces when increasing the flight altitude. As a
side effect, plastic objects smaller than the used area threshold
cannot be detected: hence, such threshold should be carefully
chosen, and, in general, it cannot be used when the plastic ob-
jects to be detected are of size comparable with the pixel size.

Given the presence of rather indistinguishable plastic objects
and sunglint in the acquired multispectral images, overcoming
the need of an area-based selection step requires the introduc-
tion of some different information. For instance, in analogy
with (Topouzelis et al., 2020), the use of different bands in the
infrared spectrum are expected to be useful: this will be invest-
igated in our future work.

5. CONCLUSIONS

This paper presented a multi-step approach macroplastic detec-
tion in river ecosystems, by exploiting multispectral imagery
acquired by an UAV. The main step of the proposed method is
based on the combination of two machine learning classifiers
(i.e. the cascade of two random forest classifiers).

The obtained results proved to be quite promising, especially
for images acquired at quite low altitudes, whereas a degrad-
ation of the performance has been shown when increasing the
acquisition altitude.

In accordance with similar works for plastic detection from
satellite imagery, the introduction of information at certain ad-
ditional bands in the infrared spectrum are expected to improve
the overall detection performance of the algorithm, for instance
making plastics more distinguishable from sunglint. This as-
pect will be considered in our future investigations, along with
the use of other machine learning tools, such as deep learning
approaches, in order to improve the plastic detection results.
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