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ABSTRACT: 
 
TELECER project is supported through Rural Development Programme regional action of EU CAP and is aimed at providing 
Precision Agriculture–devoted services for cereals monitoring in the Piemonte Region (NW-Italy) context. In this work authors 
explored some general and preliminary issues mainly aimed at demonstrating and formalizing those evident relationships existing 
between NDVI image time series and the main ordinary agronomic parameters, with special focus on phenology and thermal 
efficiency of crops as related to Growing Degrees Day (GDD). Winter wheat was investigated and relationships calibrated at field 
level, making possible to spatially characterise environmental and management effects. Two different analysis were achieved: (i) one 
aimed at mapping crop phenological metrics, as derivable from NDVI S2 time series; (ii) one aimed at locally modelling relationship 
linking GDD and NDVI to somehow test the thermal efficiency of crops in the different parts of the study area. The first analysis 
showed that the end of season appears to be the most constant phenological metric in the study area possibly demonstrating a time 
concentration of harvest operations in the area. Differently, the peak of season and the start of season metrics showed to be largely 
varying in the study, thus suggesting to be stronger predictors: (i) of crop development; (ii) of the effects induced by local 
agronomical practices. Several base temperatures were used to compute correspondent GDD. These were tested against NDVI and 
modelled by a parabolic model at field level. Model coefficients distribution were analysed and mapped the correspondent 
agronomic interpretation suggested. 
 
 
 
 

1. INTRODUCTION  

1.1 Sentinel-2 Data in Agriculture 

For the last years, Earth Observation (EO) data have been 
supporting many human activities including agriculture. In this 
context, the Sentinel-2 (S2) mission of the European Copernicus 
programme, providing high-resolution optical imagery for land 
monitoring purposes (Kuc and Chormański, 2019; Phiri et al., 
2020), plays a key role. Starting from the S2 imagery several 
spectral vegetation index (VI) can be computed able to retrieve 
vegetation-related information at the proper spatial scale. The 
Normalized Difference Vegetation Index (NDVI), that combine 
RED (S2 - band 4) and NIR (S2 - band 8) bands, is widely used 
in agriculture (Huang et al., 2021). In particular, NDVI-based 
applications in agriculture include: crop phenology monitoring 
(Boori et al., 2019; Misra et al., 2020; Testa et al., 2018); crop 
yield estimation (Parida et al., 2021; Rahman and Robson, 
2020; Zhao et al., 2020); crop nitrogen content estimation 
(Clevers and Gitelson, 2013; Sharifi, 2020); disaster events 
monitoring (Caballero et al., 2019; De Petris et al., 2021); risk 
management (Bacchini and Miguez, 2015); insurance activities 
for damage estimation (Sarvia et al., 2020; Shrestha et al., 
2017); CAP controls in agriculture (Kanjir et al., 2018; Sarvia et 
al., 2021c). Additionally, S2 VIs have been applied in precision 
agriculture (PA) (Epinat et al., 2001; Ma et al., 2006; Sarvia et 
al., 2021b, p. 2). It is worth to remind that PA is a business 
management strategy that uses new technologies (sensors, 
processing software, machinery actuators) to support farmers 
decisions. In particular, PA adopts remotely-sensed data for 
many applications like pre-growth soil fertility and moisture 

analyses, crop growth and yield forecasting (Sishodia et al., 
2020). In this framework, S2 data well fit PA requirements due 
to its spectral (13 bands in the range 350-2500 nm), temporal 
(nominally 5 days) and geometric (10 m GSD, Ground 
Sampling Distance) resolutions (Segarra et al., 2020). Besides 
spectral approaches, several other methods can be used to 
retrieve vegetation-related information. Specifically, thermal 
data could be useful to explore physiological plant response. In 
fact, plants require a specific amount of heat to develop; 
consequently, one of the main driving phenological indicators 
can be found in the heat accumulated by vegetation during its 
growing season. The amount of heat energy that an organism 
accumulates can be expressed through the Growing Degree Day 
(GDD) (Durand et al., 1967). Thanks to the increasing adoption 
of meteorological sensors (temperature, rain, etc.), GDDs are 
currently and widely used in agrometeorological models to 
describe plant phenology (Ghamghami et al., 2019). Currently, 
several services and platforms have been developed by private 
companies combining S2 data with meteorological and ground 
data aiming at supporting the agricultural context. These 
platforms are expected to simplify and optimize farmers’ work 
and to improve environmental and economic sustainability of 
their activities. Specifically, services concern: a) GIS-based 
field mapping, b) satellite-based crop monitoring, c) generation 
and delivery of crop disease prevention models, d) production 
and delivery of decision support systems; e) weather data 
analysis. The most of them are supplied by the Internet like 
OneSoil, Agrivi, FarmsLogs, Agrimap Crop Monitoring, 
Agricolus, Arvatec, FarmB.sat. Unfortunately, these services 
are not free of charge and the information they provide is 
uncertified. Moreover, they operate globally, with no neglecting 
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to adopt specifications related to local agronomic conditions and 
crop calendars. According to Aletdinova (Aletdinova and 
Lenski, 2021) main existing platforms releasing services, do not 
consider optimization models thus limiting farmers in obtaining 
possible solutions/suggestions based on real-time data. 
Moreover, these services suffer from two main limitations: (i) 
phenological metrics (PMs) are often neglected in data 
processing, when, differently, they can significantly improve 
data interpretation; in fact, PMs are able to summarize complex 
information about crop conditions, highlighting local anomalies 
that can be useful for crop management; (ii) data are processed 
through pre-trained models whose capability of generalization is 
hard to be demonstrated given the high variability of local 
conditions that can affect crop developments. These limitations 
raise some doubts about the general applicability of such 
services in heterogeneous agricultural contexts where spatial 
and temporal variability of meteorological, soil and agronomical 
conditions are significant. Consequently, they are difficult to be 
easily accepted by farmers. Given these premises, the 
TELECER (hereinafter called TELE) project titled “Productive 
and qualitative improvement of cereals cultivation within an 
advanced supply chain based on remote sensing” was launched 
in 2020 January. Within this project, Farmers’ Consortia 
(Piemonte Agricultural Consortium for Agri-Food and Cereals - 
CAPAC), Universities (Department of Agricultural, Forest and 
Food Sciences - DISAFA) and software companies were 
involved in developing and providing a shared, official and 
certified service for cereals (and maize) detection and 
monitoring. TELE is founded through the Regione Piemonte – 
PSR 2014-2020, 16.1.1 Action 2 (namely 2014IT06RDRP009: 
Italy - Rural Development Programme). TELE is in charge of 
developing a service combining satellite, meteorological and 
field data for crop monitoring (wheat, barley, corn and soybean) 
easy to be accessed by farmers. Information from the service is 
intended for addressing field agro-technical management 
practices like irrigation, fertilization and defence, with special 
focus on environmental conditions of the Piemonte region (NW 
Italy). Several local farmers were included in the project for a 
major sharing of problems, requirements and technical 
limitations that should guarantee a better compliance of the final 
service with robustness, reliability, effectiveness, simplicity and 
usability criteria. 
 
1.2 Goals 

This preliminary study is aimed at testing applicability of S2 
time series for phenology and crop thermal efficiency 
description of winter-wheat (WW) in Piemonte region (NW-
Italy) trying to figure out specific spatial patterns that could be 
related to environmental and management factors. In particular, 
starting from S2 and meteorological data, local models and 
phenological metrics were derived and calibrated for WW. Two 
different analyses were performed: (i) one aimed at mapping 
crop phenological metrics, as derivable from NDVI S2 time 
series; (ii) one aimed at locally modelling the well known 
relationship linking growing degree days (GDD) and NDVI 
(Borgogno-Mondino et al., 2020) somehow testing thermal 
efficiency of crops in the different parts of the study area. 
 

2. MATERIALS AND METHODS 

2.1 Study Area  

Efficiency and robustness of crop monitoring by remote sensing 
strictly depends on the size of the observed field with respect to 
the image GSD (Meier et al., 2020; Vajsová et al., 2020). 
Consequently, only WW fields having a size > 0.1 ha (at least 

10 S2 pixels @10 m GSD) were selected. A total of 47 WW 
fields were provided as a vector map by CAPAC local 
consortium (TELE partner) and used as ground reference data 
where crop and management type were known. Reference fields 
are located in the flat area of Piemonte, spreading across the 
entire region (Fig. 1). Piemonte is highly devoted to cereal 
production, producing about 11% of Italian wheat (Borri and 
Trione, 2020). Since Italy shows a high climatic variability 
depending on latitude, crop phenology management calendars 
change significantly region by region. For this reason, the 
Piemonte agronomic calendar was acquired (Sarvia et al., 
2021c) showing that WW growing season starts in late October 
(sowing) and concludes on early July (harvesting) having its 
maximum phenological expression between April and May. 
 

 
Figure 1. Piemonte Region (red lined) location in Italy. 

Reference fields are represented by blue polygons. 
Orange/yellow/red squares border S2 tiles (Reference System: 

WGS84/UTM 32 N). 
 
2.2 Sentinel-2 Data  

In this work 22 S2 images were obtained ranging from 2nd 
November 2020 to 20th July 2021 (Figure 2). Images were 
obtained as Level 2A products (orthoprojected and at-the-
ground reflectance calibrated) from the Scientific Open Data 
Hub (https://scihub.copernicus.eu/). S2 data are provided as tiles 
of 100 x 100 km2. According to WW spatial distribution, 3 tiles 
were needed, namely T32TMR, T32TMQ and T32TLQ (Fig 1) 
to cover the entire area. It is worth to remind that S2 Level 2A 
data are supplied together with a scene classification layer 
(SCL) alerting about cloudy, shadowy and fault pixels that is 
often used to detect and remove bad observations from the 
processed image time series. S2 technical features are reported 
in Table 1. 
 

 
Figure 2. Acquisition date and DOY (day of the year) of the 

available S2 L2A images. 
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Spectral Band 
Central 

Wavelenght  
Band 
Width  

GSD 

 nm nm m 
B1 (Aerosol) 443 20 60 
B2 (Blue) 490 65 10 
B3 (Green) 560 35 10 
B4 (Red) 665 30 10 
B5 (Red Edge 5) 705 15 20 
B6 (Red Edge 6) 740 15 20 
B7 (Red Edge 7) 783 20 20 
B8 (Near Infrared) 842 115 10 
B8A (Near Infrared Plateau) 885 20 20 
B9 (Water Vapor) 945 20 60 
B10 (Cirrus) 1380 30 60 
B11 (Short Wave Infrared 1) 1610 90 20 
B12 (Short Wave Infrared 2) 2190 180 20 

Table 1. S2 MSI bands technical specifications: central 
wavelength, band width and ground sample distance (GSD). 

 
2.3 Meteorological data  

Since one of the goals of this work was to test and describe 
thermal efficiency of WW by relating GDD (eq. 3) with NDVI, 
the daily average air temperature was needed. Consequently, 
meteorological data were obtained from 11 meteorological 
stations (figure 3) belonging to the regional meteorological 
network (www.arpa.piemonte.it, last access 15th October 2021) 
located close to WW fields. Data were obtained for the period 
2nd November 2020 - 30th June 2021 with daily frequency for a 
total of 280 temperature values. 

 

 
Figure 3. Meteorological Stations taken into account for the 

study. (Reference System: WGS84/UTM 32 N). 
 

3. DATA PROCESSING  

 
3.1 NDVI Time Series  

According to its well-known capability of describing crop 
phenology and in order to guarantee the highest geometric 
resolution, in this work NDVI was considered. Consequently, 
starting from the native S2 tiles the correspondent image stacks 
of band 4 (red), band 8 (NIR) and SCL were generated. A self-
developed routine was implemented in IDL v4.8 (Harris 

Geospatial Solutions, Inc., Broomfield, CO, USA) (Chen et al., 
2004) to generate NDVI times series for the reference period 
according to the following steps operating at pixel level: (i) bad 
observations were masked out according to SCL classification 
code; (ii) local NDVI temporal profile was interpolated by 
spline (tensor = 5) to obtain a regularized NDVI stack (5 day 
time resolution) made of 52 interpolated NDVI maps (for each 
processed tile). Finally, resulting NDVI stacks were mosaicked 
and the WW vector layer used to compute by zonal statistics the 
average NDVI temporal profile for WW fields. 
 
3.2 Phenological Metrics Computation and Mapping 

PM are useful to detect key moments along the growing season 
of vegetation (Misra et al., 2020) able to synthesize the entire 
cycle. For this work the following PM were computed at field 
level with reference to the local average NDVI temporal profile: 
start of season (SOS, as DOY = Day of the Year); NDVI peak 
value (NDVIM) and the correspondent date (POS, as DOY); 
end of season (EOS, as DOY), length of season (LOS, as DOY 
difference), growing rate (GR, as ratio) and senescence rate 
(SR, as ratio). 
NDVIM corresponds to the maximum NDVI value reached by 
the crop during the considered period as derivable from the 
average and regularized NDVI temporal profile of the 
considered field; POS correspond to the DOY when NDVIM is 
reached; SOS and EOS were computed through a threshold-
based approach looking for the DOY when the local NDVI 
value reaches 0.5 before and after the NDVI peak respectively 
(Misra et al., 2020); LOS was computed as the difference 
between EOS and SOS informing about the length of the 
phenological season. Concerning GR and SR, they were 
computed according to Eq. 1 and 2. 

 

𝐺𝑅 =
ே஽௏ூெିே஽௏ூೄೀೄ

௉ைௌିௌைௌ
     (1) 

 

𝑆𝑅 =
ே஽௏ூಶೀೄିே஽௏

௉ைௌିாைௌ
     (2) 

 
where 𝑁𝐷𝑉𝐼𝑀 is the maximum NDVI value along the growing 
season; 𝑁𝐷𝑉𝐼ௌைௌ is the NDVI value at SOS; 𝑁𝐷𝑉𝐼ாைௌ is the 
NDVI value at EOS. Some statistics were finally computed to 
synthesize phenological behaviour of monitored fields. 
 
3.3 Computing GDD  

Plant growth is highly related to air temperature conditions. 
Growing Degree Days (GDD) is a metric that is known to 
describe biomass growth during the phenological season 
accounting for the temperature effects on crops, somehow 
related to its thermal efficiency. 
In this work daily GDD was computed according to eq. 3 
(Mcmaster, 1997). Daily temperature values were obtained from 
the meteorological station closest to the considered field and 
used to compute GDD. 
 

𝐺𝐷𝐷 = ∑ (𝑇௔௩௘
௜ − 𝑇஻஺ௌா)  ቊ

𝑖𝑓 𝑇௔௩௘
௜ > 𝑇஻஺ௌா → (𝑇௔௩௘

௜ − 𝑇஻஺ௌா)  

 𝑖𝑓  𝑇௔௩௘
௜ < 𝑇஻஺ௌா → (0)

    ௡
௜ୀଵ (3) 

where 𝑇௔௩௘
௜  is the daily average temperature for the i-th 

observation; 𝑇஻஺ௌா is the nominal base temperature (crop 
dependent) defining the minimum temperature value activating 
the phenological development of vegetation (Salazar-Gutierrez 
et al., 2013). 𝑇஻஺ௌா selection is a largely discussed topic in 
literature (Gill et al., 2014; Miller et al., 2001; Salazar-Gutierrez 
et al., 2013; Shaykewich, 1995). 𝑇஻஺ௌா is a very complex factor 
depending on both the plant species and the cultivar (Salazar-
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Gutierrez et al., 2013). Moreover, while working with winter 
cereals 𝑇஻஺ௌா is known to vary along the phenological stages. 
For winter wheat 𝑇஻஺ௌா  ranges from 0°C to 5°C (Boogar et al., 
2013; Fraisse and Paula-Moraes, 2018; Salazar-Gutierrez et al., 
2013; Shaykewich, 1995), making this choice not unique. 
Consequently, in order to assess the most suitable TBASE for 
WW, three TBASE were considered: (a) TBASE = 0; (b) TBASE = 5; 
(c) TBASE = 0 before heading while TBASE = 5 after heading until 
harvest. Thus, with reference to the available meteorological 
data, three different GDD profiles (namely GDD_0, GDD_5, 
GDD_05) were generated for each WW field corresponding to 
the three above mentioned TBASE values. Depending on the 
different TBASE, GDD profiles of crops show different growing 
rates. Specifically, lower TBASE correspond to crops that grow 
along the winter season; higher TBASE reflect a phenological 
stop in winter time and a slower overall growth.  

3.4 NDVI vs GDD  

Literature refers about a high correlation between GDD and 
NDVI (de Beurs and Henebry, 2004) being the former related to 
the cause and the latter to the effect of vegetation growing. In 
particular, a parabolic model demonstrated to well fit this 
relationship (eq. 4), assuming NDVI as predicted variable and 
the correspondent GDD as predictor one.  
 

𝑁𝐷𝑉𝐼𝐺 = 𝑎 ∙ 𝐺𝐷𝐷𝐶ଶ + 𝑏 ∙ 𝐺𝐷𝐷𝐶 + 𝑐  (4) 
 
where a, b and c are the model coefficients estimated by 
ordinary least squares. 
Consequently, the parabolic model of eq. 4 was calibrated 
separately for each of the available WW fields. Model 
calibration was obtained including only those observations 
showing, contemporarily, an NDVI value > 0.3 (i.e. active 
vegetation) and a  𝑇௔௩௘

௜ > 𝑇஻஺ௌா . The calibrated local model was 
used to obtain the expected NDVI value (NDVIG) related to 
thermal effects. Was then calculated as reported in Equation (4) 
(Borgogno-Mondino et al., 2020; de Beurs and Henebry, 2004; 
Walker et al., 2015) for each WW and considering the 3 
different 𝑇஻஺ௌா . Models related to the different 𝑇஻஺ௌா  were 
compared and their performance evaluated by the standard error 
of estimates (SEE, (Gonçalves and White, 2005)) and the mean 
absolute errors (MAE, (Willmott and Matsuura, 2005)). 
 
Subsequently, a new index called 𝑁𝐷𝑉𝐼𝐺ெ஺௑ was computed 
(eq.5) in order to better describe the phenological peak as 
predicted by temperature data. 
 

𝑁𝐷𝑉𝐼𝐺ெ஺௑ = 𝑐 −
௕మ

ସ௔
   (5) 

 
where 𝑁𝐷𝑉𝐼𝐺ெ஺௑ is the maximum NDVIG as predicted by the 
quadratic model. 
Finally, the differences between NDVIGMAX and NDVIM were 
calculated at field level. 
 

4. RESULTS  

4.1 Phenological Metrics 

Once PM were computed at field level, statistical distribution 
(Fig. 4) of SOS, EOS, POS, LOS and NDVIM from WW fields 
were analysed in order to qualify and characterize fields within 
AOI. Based on boxplots following considerations can be carried 
out: (a) average WW SOS is placed at 6th observation with a 
fairly high variability, which means that SOS starts around at 
27th November fitting expected local agronomical calendar 

(Sarvia et al., 2021b); (b) average WW EOS is placed at 46th 
observation with a low variability, which means that EOS ends 
at 15th June in almost all cases; (c) average WW LOS is equal to 
39 observations with a fairly high variability, which means that 
LOS persist around 195 days. (d) average WW POS is placed at 
35th observation with a fairly high variability, which means that 
POS occurs around 21st April. (e) average WW NDVIM is 
equal to 0.83 with a fairly high variability.  
 

 
Figure 4. Boxplots of PMs. Bottom-up: 5th, 25th, 50th, 75th and 
95th percentiles. Cross is the PM mean value. Dots are outliers. 

 
These results appear to be consistent and supported by the local 
climatic, environmental and agricultural conditions. SOS high 
variability can be interpreted as related to farmers' technical 
choices and, in particular, with the sowing date of each field. 
Conversely, EOS low variability can be associated to the 
ripening and maturity stages that usually occur at similar dates 
(June) in AOI. Consequently, LOS high variability can be 
associated mostly to the one that SOS suffers from. The high 
variability of NDVIM and POS are probably due to WW 
different agricultural, meteorological and environmental local 
conditions that can positively, or negatively, affect crop 
development. It is worth to remind that the most relevant drivers 
that could influence NDVI (and therefor crop development) are: 
soil type, nutrients, pathologies, water availability and terrain 
aspect (Neenu et al., 2013). As far as GR and SR are concerned, 
the correspondent statistical distributions were computed and 
summarized in the boxplots of figure 5. Averagely, GR was 
found to be 0.12 with very low variability; this means that WW 
growth tends to be quite similar in the monitored fields. This 
result is consistent with winter crop phenological development 
which is characterized by slower growth (GR), probably due to 
winter low temperatures within AOI. Conversely, the average 
SR value was found to be -0.04 with fairly high variability. This 
result can still be related to crop reaction to environmental 
conditions, leading to significant variations within crop 
development and maturity. 

 
Figure 5. GR and SR metrics for WW fields. Bottom-up: 5th, 

25th, 50th, 75th and 95th percentiles. Cross is the PM mean value. 
Dots are outliers. 
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4.2 GDD Computation 

As previously stated, GDD profiles strongly depend from TBASE. 
Figure 6 shows the average GDD profiles corresponding to the 
three considered TBASE values, as computed with reference to 
the whole WW dataset. 
 

 
Figure 6. GDD profiles (GDD_5, GDD_0, GDD_05) as 

computed with reference to the three considered TBASE values. 
NDVI and GDD profiles are the average ones from the whole 

WW dataset. 

Looking at figure 6 it can be noted that GDD_0 profile 
continues its growing even in winter time without long pause 
periods. Conversely, GDD_5 profile appears to stop its growing 
from December to early March. As far as GDD_05 profile is 
concerned it looks similar to the GDD_0 one in its early phase 
(until April); after, it slows down assuming a slope similar to 
the GDD_5 one. These differences highlight that a high degree 
of uncertainty is present depending on the selected model. A 
more objective way for selecting the proper model is therefore 
mandatory. The possibility of testing NDVI vs GDD 
correlations is certainly one of the possible tool for obtaining 
the answer to this question (see next section).  
Furtherly looking at figure 6, on 30th June (last observation) the 
following thermal sums can be found: 1294, 2309 and 1926 for 
GDD_5, GDD_0 and GDD_05, respectively. These values 
appear to be consistent with the ones from literature. Both 
GDD_0 and GDD_5 show final values similar to those reported 
in (Salazar-Gutierrez et al., 2013) for  Georgia, USA and in 
(Gill et al., 2014) for the Punjab region, India. Concerning 
GDD_05, no study was found in literature to support or 
contradict our results. 
 
4.3 NDVI as a function of GDDC 

To find which TBASE was more suitable for the AOI fields, the 
three GDD profiles were tested against NDVI. According to eq. 
4, a parabolic model was calibrated for each WW field (47) and 
for all the three considered GDD profiles. A total of 47 × 3=141 
models were calibrated. Correspondent SEE were computed and 
separately analysed for the three GDD profiles (Fig 7). 
 

 
Figure 7. SEE statistics as computed from the calibrated 

parabolic models relating local NDVI and GDD. They refer to 
the GDD_5, GDD_0 and GDD_05 profiles. Bottom-up: 5th, 
25th, 50th, 75th and 95th percentiles. Cross corresponds to the 

mean value. 
 
Figure 7 shows that the lowest SEE mean value (0.043) 
corresponds to the model that uses the GDD_05 profile as 
NDVI predictor. A similar performance in terms of SEE mean 
value was achieved with reference to the GDD_0 profile 
(0.047). Differently, GDD_5 proved to be a worse predictor 
determining a SEE mean value of 0.079.  
As far as representativeness of SEE mean value is concerned, it 
was possible to note that the one associated to GDD_0 was the 
higher one (lower standard deviation = 0.009855) even if 
weakly better of the one from GDD_05 (standard deviation = 
0.010056); additionally, GDD_0 SEE distribution appeared the 
be less skewed (skewness = -0.148) than the one from GDD_05 
(Skewness = 0.309), having a favourable skewness compacting 
higher SEE values against its mean value. On the other side, 
unreliability of NDVI prediction by GDD_5 is confirmed by the 
correspondent highest standard deviation (0.023). Taking care 
of these evidences, it can be stated that, in AOI, a TBASE of 5 °C 
has to be absolutely, avoided. Some doubts persist about the 
performances given by GDD_0 an GDD_05 profiles, that 
globally appear to be very similar. Nevertheless, a preliminary 
evaluation based on the above mentioned criteria, addressed us 
to consider GDD_0 as the best choice, in spite of the slightly 
higher SEE mean value. A final and decisive selection could 
however come by comparing the performance (Mean Absolute 
Error – MAE, figure 8) of the GDD_05 and GDD_0 in the last 
part of the growing season where the two profiles diverge (16th 
April - 30th June). 
 

 
Figure 8. MAE of the GDD_0 and GDD_05 models (MAE_0 
and MAE_05 respectively) in the period 6th April - 30th June. 

 
Figure 8 showed that GDD_0 model leads to lower mean and 
standard deviation MAE values (0.052 and 0.015 respectively) 
than GDD_05 (0.056 and 0.021 respectively), denoting a slight 
difference between the two models; consequently, TBASE=0 was 
chosen as the reference one for this work.  
Once the optimal TBASE was defined, GDD_0-based model 
coefficients distributions (a, b and c) were analysed (Fig. 9). It 
is worth to remind that: c coefficient defines the model offset; b 
is mainly related to function maximum/minimum and slope in 
the variable space; a majorly conditions both slope and 
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concavity (higher absolute values correspond to a narrower 
concavity). As previously reported in Eq. (5), a and b concur in 
determining the model maximum/minimum. 
 

 
Figure 9. Boxplots representing the statistical distribution of the 

three GDD_0-based model coefficients (a, b, c) and the 
NDVIGMAX predicted by the model. From bottom-up: 5th, 25th, 
50th, 75th and 95th percentiles. Cross is the mean value. Dots are 

outliers. All coefficients are multiplied by 10000. 

 
Figure 9 shows that mean values were 3500, 8.7 and -0.004 for 
c, b and a respectively; it is worth to remind that all coefficients 
are multiplied by 10000. 
In particular, c value is consistent with the NDVI value 
corresponding to the begin of WW development (0.3); b values 
result to be quite low due to long growth period and low winter 
temperatures; a values result to be always negative confirming 
that NDVI decreases after reaching its peak (Sarvia et al., 
2021a). 
Concerning the possible agronomic meaning of model 
coefficients, the following interpretation can be given: (i) c, 
being related to the initial NDVI values could depend on several 
agronomical drivers like crop seeding and emergence time, 
local pedological features and genetic differences of cultivars; 
(ii) a and b, defining the increase of NDVI as a function of 
GDD, could be used to summarize the strength of WW 
development and, consequently, its thermal efficiency. 
Additionally, a refers about length of vegetation activity before 
harvesting.  Summarizing, it can be stated that the c coefficient 
is completely related to the early stages of development and in 
particular, mainly influenced by the sowing period. Conversely, 
a and b seem to be related to the growing season and in 
particular to the growing rate. To give an operational 
demonstration of the generated information a small focus area 
(FA) was chosen and mapped. In particular the spatial 
variability of coefficients (Figure 10), NDVIGMAX, NDVIM and 
their difference (Figure 11) were mapped. Distribution of 
coefficients showed a great variability within FA, suggesting 
that they can be adopted for WW characterization according to 
the previously provided interpretation keys. For example, 
concerning the c coefficient of figure 10a, it can be noted that 
some fields showed values lower than 1000 suggesting that in 
November no vegetative activity was on and, therefore, that 
WW was not still in its emergence phase. Conversely, other 
fields showed values greater than 5000, proving that a weak 
vegetative activity was on and, therefore, that WW had already 
started its emergence phase. Concerning other coefficients, in 
FA high b and a absolute values were located where WW 
showed low c values. This suggest that a rapid growth rate 
occurred in these fields trying to compensate emergence delays. 
Additionally, some fields showed intermediate values of b and a 
suggesting that crop development was more constant.  
 
 

 
Figure 10. a, b and c coefficients’ spatial variability within a 

focus area in Piemonte Region. (Reference System: 
WGS84/UTM 32 N). 

 
As far as the relationship between PM and GDD-related 
estimates is concerned, NDVI peak is known to be a good 
predictor of crop yield (Sultana et al., 2014). Therefore, 
interesting outcomes can come by comparing NDVIGMAX and 
NDVIM. Surprisingly, the two peaks showed different values 
and a different pattern in FA (Fig. 10). It is worth to remind that 
NDVIGMAX is estimated through the GDD-based model, and it 
somehow refers about WW expected thermal efficiency. 
Differently, NDVIM is the NDVI maximum as seen by satellite 
and therefore it absorbs all environmental and agronomic 
factors affecting crop growth (soil, cultivar, water availability, 
agronomic management). Since differences between 
NDVIGMAX and NDVIM ranged between 0.04 and 0.09 NDVI 
points (Fig. 11c), they can be retained significant (Borgogno-
Mondino et al., 2016)). Consequently, they can be used to 
somehow recognize anomalies in thermal efficiency of WW that 
can be related to possible differences in yield.  
 

 
Figure 11. NDVIGMAX, NDVIM and NDVIGMAX – NDVIM 

spatial variability within a focus area in Piemonte Region. 
(Reference System: WGS84/UTM 32 N). 

 
Due to the preliminary nature of this work, future developments 
will be conducted in order to relate these deductions to the 
yields and over other crops pertaining TELE (corn, barley, 
soybean, etc). The possibility of locally map this values, could 
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drive to interesting information useful for a proper and more 
sustainable management of crops in the area. 
 

5. CONCLUSIONS 

This work was developed within the TELECER project that is 
aimed at improving and supporting the cereal sector within the 
Piemonte region (NW Italy), through the adoption of 
Copernicus Sentinel-2 data. Presented results are preliminary 
and concern the characterization of winter wheat fields in the 
area managed by the CAPAC. To characterize winter wheat 
development, two different procedures were proposed: a) one 
based on phenological metrics derived by NDVI time series; in 
particular SOS, EOS, LOS, POS, NDVIM, GR and SR were 
computed at field level for winter wheat; b) one based on 
modelling of local relationships between growing degree days 
and NDVI to investigate local thermal efficiency of WW. The 
first analysis proved that EOS is the less variable phenological 
metric in AOI, suggesting a common WW behaviour during its 
maturity/harvesting. Differently, POS and SOS appeared to be 
the most variable phenological metrics in AOI, able to 
characterize WW development and agronomical practices 
(sowing) respectively. According to the second analysis, several 
TBASE values were tested demonstrating that a TBASE of 0°C is 
the most proper in AOI and that a parabolic model well fits the 
relationship between GDD and NDVI. It was also proved that 
model coefficients can be used to summarize local thermal 
efficiency of WW. Some agronomic interpretations were 
proposed about model coefficients; moreover, since they can be 
locally computed at field level, they can also be mapped giving 
new spatial information for a more proper sustainable 
management of WW in the area. This is a remarkable 
consideration especially when WW fields are 
managed/monitored unitarily through agronomic strategies 
based on Consortia, like CAPAC. 
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