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ABSTRACT:

The main objective of this study is the spatial downscaling of Soil Moisture Active Passive (SMAP) soil moisture (36 km) using the
Moderate Resolution Imaging Spectroradiometer (MODIS) and Shuttle Radar Topography Mission (SRTM) products. The study
was conducted over India during the post-monsoon (i.e., Rabi) season Daily SMAP soil moisture (SM) data was composited to 3
days to cover the entire study area. MODIS data for the Normalized Difference Vegetation Index (NDVI), Normalized Difference
Water Index (NDWI), Albedo, and Land Surface Temperature (LST) were similarly obtained by constructing a three day composite.
SMAP soil moisture was used as a dependent variable, whereas, MODIS NDVI, NDWI, Albedo, LST, and SRTM elevation were
used as independent variables in a regression analysis for downscaling of SMAP soil moisture. The coefficient of determination
(R?) was used to evaluate the performance of multi-variate linear regression (MLR), support vector regression (SVR), and random
forest regression (RFR). Each method was used to test the performance of monthly and seasonal models. RFR outperformed MLR
and SVR for monthly and seasonal models. Furthermore, a comparison of monthly and seasonal models revealed that the model
created on Jan. data performed best (R2=0.80), while R? of 0.73, 0.61, 0.75, and 0.76 were attained using RFR for seasonal, Dec.,
Feb., and Mar. models, respectively. In addition, in-situ soil moisture data was used to validate downscaled soil moisture (1 km).
Comparison between downscaled soil moisture and in-situ soil moisture showed good agreement with a difference ranging between

-9.3t07.4 %.

1. INTRODUCTION AND STATE OF THE ART

Soil moisture (SM) is an important variable in the climate sys-
tem that controls the exchange of water, energy, and carbon
fluxes between the land surface and the atmosphere (Ochs-
ner et al., 2013, Robock et al., 2000, Wagner et al., 2007).
Hence, SM datasets play a key role in a variety of application
domains such as water resource management (Bastiaanssen et
al., 2000), hydrology (Robinson et al., 2008), climatology (An-
derson et al., 2007), etc. A variety of techniques have been
developed in the past for the measurement and monitoring of
soil moisture. Laboratory-based methods like the Gravimet-
ric method (Vinnikov and Yeserkepova, 1991) is based on the
destruction of soil samples in the laboratory. These methods
are time-consuming, labor intensive and cannot be reproduced
(Seneviratne et al., 2010). Over the years, various sensors have
been developed for SM measurements. Techniques such as
Time Domain Reflectometry (TDR) (Ledieu et al., 1986), Ca-
pacitance based technique (Dean et al., 1987), neutron probes
(Chanasyk and Naeth, 1996) and gamma-ray scanners (Bac-
chi et al., 1998) have been developed for point-based measure-
ment of SM. However, since the sensors measure the SM at a
single point, they cannot be used as an indicator for regional-
scale studies (Zhang and Zhou, 2016).

In addition to this, Remote Sensing (RS) based methods
provide an alternative way to estimate the spatial soil mois-
ture content using the optical (Multispectral and Hyperspec-
tral), thermal, and microwave datasets of the electromagnetic
spectrum. Thermal infrared remote sensing has also been used
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for SM estimation, mainly due to the proven strong relation-
ship between the thermal properties of soil and SM (Zhang
and Zhou, 2016). However, the availability of the thermal in-
frared data is a challenge due to the high costs associated with
the sensor. Multiple attempts have been made to use the optical
data for SM estimation. However, the optical satellite observa-
tions have limited penetration into the soil, which limits the pre-
cision of soil moisture estimation. On the contrary, microwave
(active/passive) remote sensing has been used for SM estima-
tion due to its advantages of cloud penetration, all-weather cap-
abilities, etc. (Pandit et al., 2020). Several global microwave
SM products have been produced, such as the AMSR-E Land
Parameter Retrieval Model (LPRM) (Owe et al., 2008), the
ASCAT (Naeimi et al., 2009), the Soil Moisture and Ocean Sa-
linity (SMOS) (Jacquette et al., 2010, Kerr et al., 2001), and
the European Space Agency’s Climate Change Initiative (ESA
CCI) SM products (Liu et al., 2011, Wagner et al., 2012).

While datasets are available at global scales at daily temporal
resolution, the spatial resolution of the data is coarse, and lim-
its the usability of the data at a field or local scale. One
method for obtaining medium or high resolution SM data is
to spatially downscale the SM data. Detailed review of vari-
ous downscaling techniques was carried out in the past (Peng
et al., 2017). The authors grouped the downscaling techniques
into three categories, such as satellite based methods, methods
based on geoinformation data, and model based methods. Satel-
lite based methods mainly include those based on the fusion
of active-passive microwave datasets (Das et al., 2010), fu-
sion of optical/thermal-microwave datasets (Malbéteau et al.,
2016). Methods developed based on the geoinformation data
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consider the fact that SM is related to topographical, soil attrib-
ute, and vegetation characteristics (Busch et al., 2012, Coleman
and Niemann, 2013). However, these methods are dependent
on large in-situ observations. Modeling-based downscaling ap-
proaches mainly involve statistical downscaling (Kaheil et al.,
2008) or physical process based models (Ines and Droogers,
2002). Due to the limited availability of field level sensor ob-
servations needed for physical models, many researchers have
developed the machine learning based models (Liu et al., 2017,
Sheng et al., 2019).

In this work, SM downscaling has been attempted based on
the relationship between vegetation/land characteristics and soil
moisture. The main objective of this study is to use the MODIS
and SRTM products to downscale SMAP soil moisture (36 km)
to 1 km spatial resolution. The study was conducted across In-
dia during the post-monsoon (i.e., Rabi) season, starting in Nov.
and ending in Mar. The study considered Rabi seasons data for
the year 201718, 2018-19, 2019-20, and 2020-21.

2. MATERIALS AND METHODS

2.1 Study Area

This study was carried out on Indian geography. The geograph-
ical extent of India lies between 6° 44’ and 35° 30’ N latit-
ude and 68° 7° and 97° 25 E longitude. In India, agriculture
accounts for a significant contribution to the Gross Domestic
Product (GDP) (NPI, 2022). The study was carried out dur-
ing the post-monsoon cropping season. The season is locally
called the Rabi Season. Crop cultivation is carried out during
the three different cropping seasons. The main cropping sea-
son is followed by the South-West monsoon (locally called the
Kharif season). This season starts in Jun.-Jul. and harvesting is
completed in Oct.-Nov. month. The second season is the Rabi
season, during which we have carried out the study. This season
starts in Nov.-Dec. and ends in Mar.-Apr. month of subsequent
year. The third season, which starts in Mar.-Apr. and ends in
May-Jun., is locally called the Zaid or summer season. Both the
Rabi and summer season crops are dependent on supplemental
irrigation. Hence, precise and timely monitoring of SM at a
local or field scale is critical.

2.2 Datasets Used

This section describes the various datasets used and covers the
overall modelling approach followed in this study.

2.2.1 SMAP 36 km Soil Moisture The Level-3 (L3) SM
product provides a composite of daily estimates of global land
surface conditions retrieved by the Soil Moisture Active Passive
(SMAP) passive microwave radiometer (O’Neill et al., 2019).
Soil moisture data from SMAP are resampled to a global, cyl-
indrical 36 km Equal-Area Scalable Earth Grid, Version 2.0
(EASE-Grid 2.0). Daily data was downloaded from the NASA’s
Earthdata portal using the ‘smapr’ package developed in R
(Joseph et al., 2019). Further 3-days compositing was carried
out to seamlessly cover the study region.

2.2.2 MODIS Based Indices A 500 m spatial resolution
data available from MOD09GA and MYDO09GA version 6 sur-
face reflectance product was utilized in this study (Vermote and
Wolfe, 2015) . Considering the data from Red, Near-Infrared
and Shortwave-Infrared bands of these products, indices such as
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Figure 1. Study area

NDVI, NDWI were estimated. Moreover, Land Surface Tem-
perature (LST) has strong link with the soil moisture hence data
available from MOD11A1 and MYD11A1 version 6 products
was considered in this study (Schaaf and Wang, 2015). The
dataset was available at 1 km spatial resolution. In addition to
this, literature reported that, black and white sky albedo data
has strong association with SM (Sheng et al., 2019). The data
from MCD43A3 version 6 product on black and white sky al-
bedo available at 500 m spatial resolution was used in this study
(Wan, 2015). All the MODIS products are available on Google
Earth Engine (GEE) (Gorelick et al., 2017). Required data for
our study region was accessed from GEE which saved huge
amount of time and compute needed for data downloading and
processing.

2.2.3 SRTM Digital Elevation Data The Shuttle Radar To-
pography Mission (SRTM) datasets are the result of a collabor-
ative effort by the National Aeronautics and Space Administra-
tion (NASA) and the National Geospatial-Intelligence Agency
(NGA)—previously known as the National Imagery and Map-
ping Agency, or NIMA—as well as the participation of the Ger-
man and Italian space agencies. The SRTM digital elevation
dataset (SRTM90 V4), available at 90 m spatial resolution, was
used in this study (Jarvis et al., 2008). The data for the study
region was accessed from the GEE platform and analysis was
carried out.

2.2.4 In-situ Soil Moisture Data Demo farm which is
maintained by Tata Consultancy Services (TCS) Limited, is loc-
ated in Pune, Maharashtra, India. The location map of the TCS
Demo Farm is given in Figure 2. The KDS-042 sensor, de-
veloped by Komoline Aerospace Limited, was deployed on the
demo farm for in-situ SM measurement and monitoring. Data
from node 3 was collected by the sensor at an hourly interval.
We have utilised the data collected on selected dates during the
period of December 2017 to March 2018 for validation of the
models developed in this study.
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TCS demo farm located in Pune, India

SN | Dataset Variable | Spatial Temporal
Resolu- Resolution
tion (m) (Days)

1 MODO09A1 NDVI 500 1

2 MODO09A1 NDVI 500 1

3 MODI11A LST 1000 1

4 MCD43A3 Albedo 500 1

5 SRTM Elevation | 90 -

6 SMAP Soil 36000 1

Moisture
6 GFSAD Agri 30 -
Mask

Table 1. Description of datasets used in the study
2.3 Overall Approach

Figure 3 depicts the overall framework used in this work.
Machine learning-based regression modelling was carried out
where SMAP-based L band data at 36 km spatial resolution
was used as the dependant variable. Variables obtained from
MODIS data such as NDVI, NDWI, LST, Black and White sky
albedo, and SRTM based elevation data were used as independ-
ent variables. We have resampled all the independent variables
to 36 km to match the spatial resolution of the dependant vari-
able. The entire India geography is considered as study area for
downscaling of soil moisture. However, the SMAP data was not
available for the entire study area on a daily basis. Hence, 3-day
composites were created from dependant and independent vari-
ables for the study period, i.e., 1 December to 31 March. Fur-
thermore, the composite stack (CS) was created by stacking all
the layers together. We considered the data from the Rabi sea-
son of 2017-18, 2018-19, 2019-20, and 2020-21. As the study
was focused on the agriculture areas, we masked out the non-
agriculture areas of the study region. Random 100 points were
drawn from the agriculture area of the study region and data for
those 100 points was extracted from each of the CS available
during the study period. The total number of CS created during
the study period was 39 (10 CS each from Dec., Jan., and Mar.,
and 9 from Feb.). The total sample size for the study seasons
was 15600 (4 seasons x 100 points x 39 CS). We evaluated the
performance of various well known regression techniques, such
as Multiple Linear Regression (MLR), Support Vector Regres-
sion (SVR) and Random Forest Regression (RFR), using the
data extracted. In the first scenario, we considered all the data
together, and random data was selected for model training and
testing. However, in the second scenario, models were trained
on three seasons (2018-19, 2019-20, and 2020-21) and tested
on the remaining season, i.e., 2017-18. For each scenario, mod-

els for individual months were developed along with a model
based on all months’ data. Model performance was measured
based on the coefficient of determination (R?) value obtained
for the test dataset. Further, validation using the in-situ sensor
data from Demo Farm, Pune, India was also performed.
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Figure 3. Overall analysis framework

3. RESULTS AND DISCUSSION

This section covers results obtained using various regression
models and the validation performed using in-situ SM observa-
tions.

3.1 Performance of Various Regression Models

Data for SM, NDVI, NDWI, LST, black sky albedo, white
sky albedo, and elevation were extracted from each compos-
ite stack. As mentioned in subsection 2.3, 100 samples were
extracted from each CS, which totals 15600 samples for the
four seasons (2017-18, 2018-19, 2019-20, and 2020-21). In
the first scenario, data from all the seasons is considered and
divided into two parts, i.e., training and testing. 80 % of the
data was used for model training, and the remaining 20 % data
was used for model testing. However, in the second scenario,
we have used data from three seasons, viz., 2018-19, 2019-20,
and 2020-21. Model training was carried out on 80 % of the
data, and 20 % data was used for model training. In this scen-
ario, independent validation was also carried out using the data
from the 2017-18 season. This was done to check the feasib-
ility of the models in an independent season. Random Forest
(RF) and Support Vector Machines (SVM) have various user
defined parameters which can be tuned to get the best perform-
ance. The RF was tuned for number of trees (ntree). Value of
ntree was varied from 50 to 500 in the interval of 50. Moreover,
SVR was tuned for C and Sigma. The parameter C was kept
at 0.1, 1, 10, 100, and Sigma at 1, 0.1, 0.01, 0.001, and the
types of kernel were set as radial basis function. Table 2 shows
the performance of models for the first scenario. A comparison
between the models shows that RFR performed best in terms of
R? among all the models, across monthly as well as seasonal
level. The comparison of different models of RFR shows that
all the models are performing well, with small variation in the
R? value.

In second scenario the model testing and independent valida-
tion was performed on independent season. Table 3 shows the
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Model Data sub- | SVR RFR MLR
set

Season Test 0.68 0.73 0.41

Dec. Test 0.59 0.61 0.35

Jan. Test 0.72 0.80 0.48

Feb. Test 0.72 0.75 0.49

Mar. Test 0.64 0.76 0.4

Table 2. Performance of the regression models in Scenario 1

Model Data sub- | SVR RFR MLR
set
Season Test 0.71 0.73 0.44
Season Validation | 0.67 0.67 0.38
Dec. Test 0.54 0.59 0.34
Dec. Validation | 0.51 0.60 0.31
Jan. Test 0.69 0.77 0.42
Jan. Validation | 0.54 0.69 0.41
Feb. Test 0.65 0.75 0.47
Feb. Validation | 0.62 0.69 0.37
Mar. Test 0.73 0.79 0.49
Mar. Validation | 0.69 0.70 0.45

Table 3. Performance of the regression models in Scenario 2

performance of the various models for the second scenario. We
can observe the higher R? values on the testing data as com-
pared to the validation data. This was due to the fact that testing
data was from the same set of seasons as that of training data,
so variations were well captured by the models. The valida-
tion data was from the independent season, which caused the
slight decline in the R?. Furthermore, a comparison of monthly
and seasonal models revealed that the model created on Jan.
data performed best, with an R? of 0.80, while R* of 0.73, 0.61,
0.75, and 0.76 were attained using RFR for seasonal, Dec., Feb.,
and Mar. month models, respectively. This demonstrates that
both monthly and seasonal models can be used to downscale
SM spatially.

3.2 Visual analysis of Original and Downscaled Soil Mois-
ture

A visual comparison between the original 36 km SM and the
model downscaled 1 km SM was carried out. The RFR model
trained on the seasonal data was applied to the composite stack
of India from the 2017-18 season. For comparative analysis, we
chose the first composite stack of each month, i.e., Dec., Jan.,
Feb., and Mar. months. Figure 4 shows the side by side view
into original 36 km MS and 1 km downscaled SM. It should be
noted that, data was not available for continuous red areas from
Jammu and Kashmir state of India. We can observe the granu-
larity and detailed variation of SM in the 1 km downscaled SM
data compared to the 36 km SM data. There is a considerable
variation in the SM (refer to the blue circle in Figure 4) in the
1 km downscaled SM, whereas such variation was not captured
in the 36 km SM data. This shows that 1km downscaled SM
can be useful to perform local i.e., sub-district or village level
studies, which is not be possible only using the 36 km SM data.

SN | CS End Date ASM DSM Difference
1 3 Jan. 2018 26.3 23.4 -6.1

2 13 Jan. 2018 29.2 30.2 -1

3 3 Feb. 2018 28.8 22.1 6.7

4 23 Feb. 2018 31.1 23.7 7.4

5 6 Mar. 2018 27.5 31.9 -4.4

6 16 Mar. 2018 25.5 34.8 9.3

ASM-Actual Soil Moisture, DSM-Downscaled Soil Moisture

Table 4. Comparison of actual and downscaled soil moisture

3.3 In-Situ validation using soil moisture sensor Data

We have deployed soil moisture sensors on one of the demo
farms located in Pune, maintained by Tata Consultancy Ser-
vices Limited. The data collected by the sensors (node 3) during
the period of December 2017 to March 2018 was used for the
validation. Models were trained considering the 3 days com-
posite stacks hence, data available from the sensors was aver-
aged to 3 days to match with frequency and duration of compos-
ite stack. Table 4 shows the comparison between actual in-situ
SM and downscaled SM estimated by the model for a particu-
lar model selection. The comparison table shows that deviations
between actual and downscaled soil moisture vary between -9.3
to 7.4 % which is within the acceptable limits. This shows the
good agreement between actual and downscaled SM.

4. SUMMARY AND CONCLUSIONS

In this work, we have proposed a machine learning-based
soil moisture downscaling approach using the various MODIS
products along with the elevation data from SRTM. SM data
available at 36 km from SMAP was downscaled to 1 km using
the regression-based models. Two scenarios were tested using
various regression techniques such as random forest regression,
support vector regression, and multivariate linear regression.
The results showed that random forest regression-based models
performed the best in both scenarios. The performance of vari-
ous seasonal and monthly models was comparable, with little
change in terms of R?. Visual comparisons of the original 36
km of SMAP soil moisture and the model downscaled 1 km of
soil moisture revealed that the downscaled SM provided finer
details of SM, which is useful for field or local level studies
involving the use of soil moisture, such as drought analysis,
hydrological studies and water management decision support.
Comparison between downscaled SM and in-situ SM shows the
good agreement between the two. The difference in soil mois-
ture between in-situ and downscaled SM was between -9.3 and
7.4 %.

5. FUTURE WORK

As a part of future work, we plan to extend this approach to the
Kharif season. We have used indices based on optical satellite
observations which gets affected by clouds during the Kharif
season. Attempts are being made to assess the model perform-
ance for cloudy conditions of the Kharif season.
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Figure 4. SMAP 36 km vs downscaled 1 km soil moisture maps for India
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