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ABSTRACT: 

The climatic gradient between the Judean Lowland and the Negev Desert in Central Israel represents a transition zone between dense 

shrublands in the North, and desert fringe Batha and Irano-Turanian vegetation in the South, characterizing wide Mediterranean 

Type Climate regions around the world. Understanding the expected response of these water-limited ecosystems to climate change 

presents a significant challenge due to the high geodiversity of Mediterranean environments. Studying relationships between 

vegetation patterns and climatic parameters is fundamental for this purpose, and remote sensing provides a valuable tool for 

investigating these relationships over large regions. This study aims at examining the relationships between NDVI extracted from 

Sentinel2 and rainfall and PET accumulated over 1 to 6 months. The analysis was first conducted for 38 sites (100x100 meters) 

across the climatic gradient for three years representing high (2016), low (2017), and average (2018) rainfall.  Results indicate that 

the highest correlation between NDVI and climatic parameters is achieved for accumulation interval of two months.  Least-squares 

analysis was then utilized for calculating the per-pixel regression coefficients between NDVI and corresponding rainfall and PET. 

Classification of the multi-temporal NDVI (2016-2018) and of the linear regressions’ coefficients between NDVI and rainfall and 

PET at accumulation interval of 2 months yielded both high accuracies. Since these slope and intercept coefficients can be perceived 

as representing the water-use regime at each pixel, the similarity between the classification results suggests that multi-temporal 

NDVI typologies correspond water-use regime typologies across desert fringe ecosystems at the margins of Mediterranean regions.  

1. INTRODUCTION

The climatic gradient between the Judean Lowland and the 

Negev Desert (Figure 1a) represents a transition zone between 

dense Mediterranean shrublands, open shrublands, desert fringe 

Batha, and arid ecosystems, which characterize wide desert 

margins in North Africa, the southern and eastern 

Mediterranean Basin, western Australia and south Africa, Chile 

and California. Understanding the expected response of these 

water-limited ecosystems to climate change presents a 

significant and important challenge (e.g., Malhi et al., 2020; 

Gouveia et al., 2017; Gordo and Sanz, 2010). Studying 

relationships between vegetation patterns and rainfall and PET 

is fundamental for this purpose, and remote sensing using 

spectral vegetation indices is instrumental for investigating 

these relationships over large regions. Examination of NDVI 

and rainfall relationships appears to be the main approach, 

implemented over desert and semi-arid regions (Nicholson et 

al., 1990; Nicholson and Farrar, 1994; Al-Bakri and Suleman, 

2004; Chamaille-Jammes et al., 2006; Chamaille-Jammes and 

Fritz, 2009; Shoshany and Karnibad, 2011;2015; Dagnachew et 

al., 2020). The inclusion of potential evapotranspiration was 

reported in a most limited number of previous studies (Dorman 

et al., 2013; Vicente-Serrano et al., 2013; Islam and Mamun, 

2015; Munson et al., 2016; Gouveia et al., 2017; Lamchin et al., 

2018). Few studies presented results regarding the time-lag 

response of NDVI to rainfall and PET. Additionally, the 

inclusion of PET was primarily reported in the studies using 

satellite imagery with low spatial resolution. 

Spatial heterogeneity of semi-arid and arid vegetation and soil 

patterns at low resolution due to topographic, lithologic, 

hydrologic, and human disturbance variations  is a source of 

confusion in the relationships between spectral indices and 

climatic parameters. The use of Sentinel imagery with improved 

spatial resolution allows for better expression of vegetation 

versus bare soil and rocks distributions and thus may improve 

the sensitivity of NDVI to climatic parameters.  

Thus, the aim of this study is to examine the relationships 

between NDVI extracted from Sentinel2 images with spatial 

resolution of 10 m/pixel and climatic parameters (rainfall and 

PET) at accumulation interval of 1 to 6 months for three years 

representing low (2017), average (2018) and high (2016) 

rainfall across the semi-arid to arid climatic gradient in Central 

Israel.  

2. STUDY AREA

The study was conducted in Central Israel, which is located in 

the Eastern Mediterranean along a climatic gradient between 

Beit Guvrin in the Judean Lowland in the north, where the 

climate is semi-arid, with a mean annual temperature of 19.8 °C 

and 450 mm mean annual rainfall and Beer Sheva at the 

northern margins of the Negev Desert in the south, with a mean 

annual temperature of 21 °C and 200 mm annual rainfall 

(Figure 1a). Natural ecosystems along this transect change from 

dense Mediterranean shrublands with Quercus 

calliprinos, Pistacia lentiscus, Ceratonia silliqua, and Rhamnus 

palaestinus as dominant species, to open shrublands  with the 

same species mixed with dwarf shrubs (primarily with 

Sarcopoterium spinosum) and herbaceous growth (e.g., Naveh, 

1967, Danin and Orshan, 1990) to  desert fringe Bata mainly 

composed of Sarcopoterium spinosum and Thymelaea hirsuta 

(Sternberg and Shoshany, 2001), and arid ecosystems 

characterized by moderate and low cover of Sarcopoterium 

spinosum  with Phlomis brachyodon, Echinops polyceras, 
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Artemisia sieberi, Thymelaea hirsute and Noaea mucronate 

(e.g., Reisman-Berman et al., 2004).    

Human disturbance caused by grazing, woodcutting, fires, and 

urbanization highly impact vegetation cover, life-forms 

composition, productivity, and biodiversity in this region. In 

addition, there are large areas afforested by the Israel Forest 

Service of the Jewish National Fund (JNF), mainly with Pinus 

halepensis plantations. Similar vegetation communities 

characterized by high spatial heterogeneity and patchiness of 

vegetation, soil and rocks are found in many other semi-arid 

Mediterranean regions (e.g., Naveh, 1967).  

Following the experience gathered during a field study of 

plants’ biomass (Sternberg and Shoshany, 2001) and remote 

sensing studies of soil (e.g., Svoray and Shoshany, 2004) and 

vegetation conditions (Shoshany and Svoray, 2002) and their 

joint patterns (Shoshany and Kelman, 2006; Roitberg and 

Shoshany, 2017) representative research sites were selected 

along the climatic transect.  Utilizing air photographs and 

Google Earth high resolution (~2 meters) images we identified 

38 plot areas of the size of 100x100 meters (Figure 1b) 

representing the less disturbed areas.  

 
Figure 1: (a) Study area (adopted from Google Earth). (b) 

Examples of the research sites (adopted from 

https://www.govmap.gov.il/) 

 

3. METHODS 

The general methodology of the study is presented in Figure 2.  

The methodology starts with NDVI and climatic data 

preparation, continues with assessment of relationships between 

NDVI and rainfall and PET at different accumulation intervals 

for 38 sites across the climatic gradient zone, calculating per-

pixel regression coefficients representing those relationships for 

Sentinel2 images between 2016 and 2018, and finally compare 

between SVM classification of multi-temporal NDVI and of 

regression coefficients. 

 
Figure 2: Flowchart of the study methodology. 

 

 

3.1  Regression Analysis between NDVI and Climatic 

Parameters 

The relationships between NDVI and climatic parameters (CP) 

(i.e., rainfall and PET accumulated for 1 to 6 months) were 

assessed along three years representing high (2016), low (2017), 

and average (2018) annual rainfall level.   
Continuous maps of CPs were created from point data measured 

at sparsely located meteorological stations around the study 

area. For that purpose, several interpolation methods were 

compared based on cross-validation and tested on a synthetic 

dataset, representing the “truth” distribution of the mapped  

parameter. Following the results of cross-validation and 

synthetic data testing, the point monthly CPs were interpolated 

using Local Polynomials (LP) interpolation. 

NDVI was calculated for 38 sites (100x100 meters each) 

(Figure 1b) across the study area from 25 Sentinel2 images 

captured during 2016, 2017 and 2018. Linear regressions were 

then fitted between NDVI and cumulative rainfall (Equation(1)) 

and PET (Equation(2)), accumulated for 1 to 6 months, for each 

research site of 38 sites of natural vegetation. Consequently, 

there is a defined linear regression for each site and 

accumulation interval. Relationships between NDVI and 

cumulative PET were previously assessed to be non-linear with 

the best linear fit on logarithmic scale for PET axis.  

 

, , ,

s s s s

i i j i j i jNDVI a CR b=  +                                                     (1) 

 

, , ,ln( )s s s s

i i j i j i jNDVI c CPET d=  +                                         (2) 
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where NDVI is the index value for month i and research site s, s 

varying from 1 to 38; CR and CPET are cumulative rainfall and 

PET respectively, calculated for month i, number of cumulative 

months j, varying from 1 to 6, and research site s; a and b, c and 

d are slopes and intercepts of the regressions based on 

cumulative rainfall and PET respectively, calculated for month 

i, number of cumulative months j, and site s.   

The level of correspondence between NDVI and rainfall and 

PET at different accumulation intervals was assessed by 

calculating determination coefficients for each research site and 

accumulation interval (
2R ) and then generalizing the overall 

correlation per accumulation interval by averaging the 

determination coefficients. 

 

3.2 Mapping of the Relationships between NDVI and 

Climatic Parameters 

Further, the analysis of the relationships between NDVI and 

climatic parameters was extended from 38 sites to the whole 

study area by calculating linear regression coefficients between 

NDVI and CPs accumulated over the interval with the highest 

correlation to NDVI for each pixel in the Sentinel2 imagery 

using least squares technique. Two separate models were 

created, the first model based on the relationships between 

NDVI and rainfall (Equation(3)), and the second – on the 

relationships between NDVI and PET (Equation(4)).  

 

, ,p m p p m pNDVI a CR b=  +                                                   (3) 

 

, ,ln( )p m p p m pNDVI c CPET d=  +                                       (4) 

 

where NDVI represents the values of the index calculated for 

pixel p on a month m; CR and CPET are cumulative rainfall and 

cumulative PET respectively, accumulated over the number of 

months, leading to the highest correlation, calculated for pixel p 

on a month m; a and b are the slope and the intercept, 

respectively, of the rainfall-based model calculated for pixel p; 

and c and d are the slope and the intercept, respectively, of the 

PET-based model calculated for pixel p. The slope and the 

intercept values of both models represent relationships between 

NDVI and studied climatic parameters and can be calculated for 

each pixel p using least-squares technique. The following 

equations ((5) and (6)) present the generalized matrix form of 

the linear regression equations ((3) and (4)) describing the 

relationships between NDVI and climatic parameters.  
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where 
pL is a vector of NDVI values calculated for each pixel p 

and 25 dates corresponding to the dates of Sentinel2 images, 

pA is a matrix of partial derivatives of the unknown coefficients 

calculated for pixel p where 
pCP is a climatic parameter 

(cumulative rainfall or cumulative PET) estimated for pixel p, 

px is a vector of unknown coefficients ( ,p pa b ) and ( ,p pc d ) 

for the rainfall-based model and the PET-based model, 

respectively. Thus, the unknown coefficients for pixel p, which 

are the slope and the intercept of the linear models representing 

the relationships between NDVI and climatic parameters, can be 

calculated by the following equation (7):  

 
1( )T T

p p p p px A A A L−=                                                              (7) 

 

Afterwards, the calculated per-pixel coefficients of the 

relationships between NDVI and cumulative rainfall and PET 

were stacked into a 4-layer image, where each layer represents a 

single coefficient. 

Next, SVM supervised classification was implemented once on 

the image representing the distribution of the regression 

coefficients and then on a multi-temporal image, combining 25 

layers of NDVI corresponding to the dates of the Sentinel2 

images utilized in the study. SVM classification was used to 

classify the two types of data into 9 classes, while training and 

validation areas were carefully selected using air photographs 

with spatial resolution of 20 cm/pixel 

(https://www.govmap.gov.il/). Accuracies of both 

classifications were assessed by confusion matrices.  

 

 

4. RESULTS AND DISCUSSION 

4.1 Regression Analysis between NDVI and Climatic 

Parameters 

The results of the determination coefficients (
2R ) of the linear 

regression analysis between NDVI and rainfall and PET at 

accumulation intervals of 1 to 6 months (statistically significant) 

calculated per each of the 38 research sites and their average 

value for all the research sites in the last row are presented in 

Table 1 and Table 2. The results suggest that the highest 

correlation between NDVI and studied climatic parameters, is 

obtained for the accumulation interval of two months for both, 

rainfall and PET. This finding is consistent with the results of 

previous studies (e.g., Nicholson et al., 1990; Nicholson and 

Farrar, 1994; Chamaille-Jammes et al., 2006;  Vicente-Serrano 

et al., 2013; Chen et al., 2014; Dagnachew et al., 2020), which 

conclude that vegetation indices have lower correlation with 

climatic parameters accumulated for more than 3 months.  

The slope and intercept coefficients of the linear regressions 

calculated between NDVI and climatic parameters at 

accumulation interval of 2 months present the spectral 

reflectance response to changes in climatic and habitat 

conditions along the studied climatic gradient. The slope and 

intercept coefficients are expected to assist in mapping of 

vegetation conditions along the semi-arid to arid climatic 

transect.  

 

4.2 Mapping of the Relationships between NDVI and 

Climatic Parameters 

The linear regression coefficient layers and the multi-temporal 

NDVI layers were classified into 9 classes (Figure 3) using 

SVM supervised classification. Table 3 presents the description 

of the classes.   

Figure 4 presents the results of SVM multi-temporal 

classification of the 25 layers of NDVI corresponding to the 

dates of Sentinel2 images (Figure 4a) and the results of SVM 

classification of the extended regression analysis between 

NDVI and rainfall and PET accumulated for 2 months (Figure 

4b). 
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R-Squared of NDVI-Rainfall 

Regressions 

  Cumulative Months 

Area 1 2 3 4 5 6 

1 0.59 0.70 0.71 0.49 0.30 0.20 

2 0.57 0.67 0.69 0.48 0.30 0.21 

3 0.48 0.69 0.83 0.64 0.47 0.36 

4 0.67 0.86 0.78 0.51 0.29 0.19 

5 0.64 0.84 0.81 0.55 0.33 0.22 

6 0.64 0.86 0.80 0.53 0.32 0.22 

7 0.68 0.80 0.71 0.46 0.25 0.16 

8 0.69 0.79 0.68 0.41 0.22 0.14 

9 0.67 0.80 0.70 0.43 0.24 0.15 

10 0.60 0.81 0.81 0.58 0.38 0.27 

11 0.66 0.82 0.77 0.52 0.31 0.20 

12 0.51 0.69 0.79 0.63 0.45 0.35 

13 0.62 0.86 0.80 0.55 0.35 0.25 

14 0.61 0.86 0.80 0.54 0.33 0.22 

15 0.69 0.89 0.80 0.52 0.31 0.21 

16 0.66 0.84 0.82 0.57 0.36 0.26 

17 0.65 0.91 0.81 0.52 0.31 0.21 

18 0.64 0.85 0.77 0.48 0.28 0.18 

19 0.68 0.82 0.68 0.40 0.21 0.12 

20 0.67 0.83 0.73 0.45 0.26 0.17 

21 0.72 0.89 0.77 0.49 0.30 0.20 

22 0.67 0.86 0.76 0.50 0.30 0.20 

23 0.71 0.86 0.72 0.46 0.27 0.18 

24 0.65 0.86 0.79 0.53 0.33 0.23 

25 0.67 0.89 0.77 0.48 0.28 0.18 

26 0.68 0.89 0.75 0.46 0.26 0.16 

27 0.67 0.87 0.73 0.44 0.25 0.16 

28 0.66 0.87 0.76 0.49 0.31 0.19 

29 0.65 0.87 0.75 0.47 0.28 0.17 

30 0.70 0.84 0.71 0.43 0.24 0.15 

31 0.66 0.85 0.71 0.43 0.24 0.15 

32 0.56 0.81 0.75 0.48 0.28 0.19 

33 0.64 0.86 0.74 0.46 0.26 0.17 

34 0.63 0.86 0.75 0.48 0.29 0.19 

35 0.69 0.86 0.75 0.47 0.28 0.18 

36 0.65 0.86 0.74 0.46 0.26 0.16 

37 0.60 0.83 0.83 0.57 0.35 0.24 

38 0.64 0.85 0.78 0.51 0.29 0.19 

Mean 0.64 0.83 0.76 0.50 0.30 0.20 

 

Table 1: Determination coefficients of the linear regression 

analysis between NDVI and rainfall accumulated for 1 to 6 

months. 

 

  R-Squared of NDVI-PET Regressions 

  Cumulative Months 

Area 1 2 3 4 5 6 

1 0.75 0.75 0.61 0.38 0.18 0.06 

2 0.72 0.72 0.59 0.37 0.18 0.06 

3 0.61 0.71 0.67 0.50 0.31 0.16 

4 0.84 0.86 0.68 0.40 0.18 0.05 

5 0.82 0.86 0.70 0.44 0.21 0.07 

6 0.81 0.86 0.71 0.44 0.21 0.07 

7 0.84 0.81 0.62 0.36 0.15 0.04 

8 0.83 0.78 0.57 0.31 0.12 0.02 

9 0.82 0.79 0.59 0.33 0.14 0.03 

10 0.79 0.85 0.73 0.49 0.26 0.10 

11 0.82 0.83 0.66 0.40 0.19 0.06 

12 0.68 0.77 0.70 0.52 0.32 0.16 

13 0.77 0.82 0.68 0.44 0.22 0.08 

14 0.72 0.77 0.64 0.41 0.19 0.06 

15 0.79 0.83 0.67 0.41 0.18 0.05 

16 0.78 0.82 0.68 0.43 0.22 0.08 

17 0.75 0.81 0.66 0.41 0.19 0.05 

18 0.79 0.82 0.66 0.40 0.18 0.05 

19 0.83 0.81 0.60 0.33 0.12 0.02 

20 0.80 0.80 0.61 0.35 0.14 0.03 

21 0.80 0.83 0.65 0.38 0.17 0.04 

22 0.79 0.81 0.64 0.38 0.17 0.05 

23 0.80 0.80 0.61 0.35 0.15 0.04 

24 0.77 0.81 0.66 0.41 0.20 0.06 

25 0.80 0.84 0.68 0.41 0.18 0.05 

26 0.80 0.83 0.65 0.38 0.16 0.04 

27 0.81 0.82 0.64 0.37 0.16 0.04 

28 0.75 0.78 0.63 0.39 0.18 0.06 

29 0.77 0.80 0.65 0.39 0.18 0.05 

30 0.78 0.78 0.60 0.34 0.13 0.02 

31 0.75 0.76 0.59 0.34 0.14 0.03 

32 0.74 0.80 0.67 0.43 0.21 0.07 

33 0.78 0.81 0.65 0.39 0.17 0.04 

34 0.74 0.79 0.64 0.39 0.17 0.05 

35 0.80 0.82 0.65 0.38 0.17 0.04 

36 0.78 0.81 0.65 0.38 0.16 0.04 

37 0.80 0.82 0.67 0.43 0.21 0.07 

38 0.82 0.81 0.63 0.37 0.16 0.04 

Mean 0.78 0.81 0.65 0.40 0.18 0.06 

 

Table 2: Determination coefficients of the linear regression 

analysis between NDVI and PET accumulated for 1 to 6 

months. 

 

 
Figure 3: Land-cover classes for SVM classification. 

 

 

Herb. Herbaceous vegetation 
B. Areas Buildings, quarry, military complex 
Asphalt Asphalt (highways)  
Forest Planted Pine Forest 
D. Veg. Dense Vegetation 
M. Veg. Medium Vegetation 
S. Veg.  Sparse Vegetation 
Batha Dwarf Shrubs 

Fire Areas 
Areas that were set on controlled 

fires by the military  
 

Table 3: Description of the land-cover classes. 
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Figure 4: Results of SVM supervised classification: (a) SVM 

multi-temporal classification; (b) SVM classification of linear 

regression coefficients.  

Accuracy assessment of both classifications was performed by 

creating confusion matrices using ground truth data, carefully 

selected for validation for the land-cover classes listed in Figure 

3. Table 4 and Table 5 present a confusion matrix and accuracy 

measures for SVM multi-temporal classification and SVM 

coefficients classification respectively. According to the overall 

accuracy and Kappa coefficient measures, the SVM multi-

temporal classification (overall accuracy of 91.35%, Kappa 

coefficient of 0.9007) slightly outperforms the SVM 

coefficients classification (overall accuracy of 84.21%, Kappa 

coefficient of 0.8186). The values of Kappa coefficients indicate 

that both, SVM multi-temporal classification (Kappa coefficient 

of 0.9007) and SVM coefficients classification (Kappa 

coefficient of 0.8186), are in good agreement with the ground 

truth.  

SVM coefficients classification’s confusion matrix (Table 5) 

shows that most of the inaccuracies come from the confusion 

between the classes representing forest and dense vegetation 

(omission error of 34.87% for the forest class), between the 

classes representing sparse vegetation and batha (omission error 

of 30.04% for the sparse vegetation class), and between the 

classes representing asphalt and built areas (omission error of 

66.51% for the asphalt class).   

Confusion between forest and dense vegetation classes in the 

SVM coefficients classification can be explained by similar 

water-use regime of these types of vegetation. Confusion 

between sparse vegetation and batha can also be explained by 

similar water-use regime, as well as by mixture of the two 

classes in some areas.  

Confusion between built areas and asphalt can be explained by 

the following instances: (1) there are asphalt areas inside built 

areas, and (2) similar relationships with climatic parameters, 

hence similar regression coefficients.  

 

 

 

Table 4: Confusion matrix and accuracy measures of SVM 

multi-temporal classification. 

Table 5: Confusion matrix and accuracy measures of SVM 

coefficients classification. 

Although SVM coefficients classification is less accurate, it 

incorporates climatic information beside spectral data, 

integrating water-use regime influence on land-cover, while 

SVM multi-temporal classification consists entirely of the 

spectral data, therefore we can assume that they contain 

different information. Comparative analysis of information 

content indicated that SVM multi-temporal classification mostly 

produced much more homogeneous and generalized patterns of 

the landscape units, even in cases, where the surface represented 

a mixture of several surface cover types. While SVM 

coefficients classification provided higher spatial sensitivity to 

the variation of these cover types across the climatic gradient. 

 

5. CONCLUSIONS 

The aim of this study was to examine and map the relationships 

between NDVI and climatic parameters (rainfall and PET) over 

desert fringe ecosystems of high geodiversity of vegetation and 

soil patterns. The results of the regression analysis reveal that 

variations in NDVI over the studied period are best described by 

the locally fitted linear regression between the index and rainfall 

and PET accumulated for two months. Since the slope and 

intercept coefficients can be perceived as representing the water 

use regime at each pixel, the broad similarity between the 

classification results suggests that multi-temporal NDVI 

typologies correspond water use regime typologies across desert 

fringe ecosystems at the margins of Mediterranean regions. 
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