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ABSTRACT: 

 

Evidence suggests that plant traits, plant functional diversity, and species diversity are linked to ecosystem functions to different 

extents. However, these relationships are sometimes inconsistent because of the presence of environmental gradients (e.g. climate, 

topography, land use) and scale mismatches between sampling units and landscape processes. Relationships between satellite data 

and vegetation parameters seem to be also case-specific, which hinders the creation of generalizable models. We have built 

predictive models of structural parameters and species composition across a broad range of climatic and topoedaphic conditions and 

management practices across grasslands and forests in Germany. For that, we use Sentinel multitemporal imagery and neural 

networks. Our models manage to explain 50% of the data variability for structural parameters, show high stability, and can 

generalize well across environmental gradients and sites. We also found that prediction models of biodiversity parameters show 

lower predictive capabilities. Spatially continuous models of grassland and forest attributes provide vital information on ecosystem 

functions at landscape scale. Thus, they can contribute to studying the feedback mechanisms between biodiversity, ecosystem 

functions, and land management at the scales to which ecological processes occur. 
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1. INTRODUCTION 

New generations of remote sensing sensors and machine 

learning approaches can predict vegetation characteristics with 

varying accuracies. However, studies often fail to cover a 

sufficiently broad range of environmental conditions, and 

evidence suggests that prediction models are often case specific 

(Verrelst et al., 2019). Also, spatial dependencies are often not 

addressed, which translates into overly optimistic models 

(Meyer and Pebesma, 2021; Ploton et al., 2020). Radiative 

transfer models are in principle applicable broadly since they 

don’t depend on local training data. However, they might suffer 

from equiafinity (several input variables can yield the same 

spectral response).  

 

Deep learning algorithms, such as convolutional neural 

networks, can identify higher hierarchical patterns in the data 

and show a superior performance when compared to traditional 

machine learning algorithms such as decision trees. But they 

still need to be trained with representative data. While 

classification labelled data is often available from different 

sources (e.g. land cover data), continuous data about vegetation 

parameters is scarcer due to higher costs, which limits the 

applicability of models to the area they were trained. For 

instance, many researchers have used multispectral sensors to 

predict leaf area index (Schwieder et al., 2020), obtaining 

different relationships depending on the environmental 

conditions. Figure 1 shows the relationship between leaf area 

index (LAI) and biomass in grasslands for three sites across 

Germany in 4 consecutive years. Even though LAI is a good 

proxy for biomass, their relation is dependent on environmental 

conditions. 

 

To address these gaps, we have built a deep learning model to 

predict several structural and biodiversity parameters across 

heterogenous site conditions in temperate grasslands and forests 

across Germany. We test its generalization capabilities and 

accuracies, and discuss their potentials and limitations. 

 

 
Figure 1: Grassland above ground biomass vs. Leaf Area Index 

(LAI) derived with PROSAIL from Sentinel-2. 
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2. STUDY AREA 

The Biodiversity Exploratories (BE) is a research infrastructure 

project that hosts multiple researches in ecology and land 

management (Fischer et al., 2010). The BE are formed by a set 

of 300 plots (150 in grasslands and 150 in forests) spread over 

three regions that follow a North-South gradient, and are 

characterized by different soil types, topography, altitude, 

historical contexts, climatic conditions and management 

intensities (Figure 2). In grasslands the land management 

gradient involves extensive and intensive grazing, from none to 

high fertilization input, and different frequencies of mowing. In 

forests, the plots cover different development stages of various 

forest types, such as beech, pine and spruce mixtures, and 

different frequencies of harvesting.  

 

 
 

Figure 2: Location of the three BE: Schorfheire, Hainich, 

and Schwäbische Alb. 
 

3. METHODS 

3.1 Satellite data  

A synthetic cloudless time series of Sentinel-2 imagery was 

created using FORCE processing software (Frantz, 2019). For 

Sentinel-1, we created median multitemporal backscatter 

composites for summer and winter season in Google Earth 

Engine (Hoffmann et al., 2022). The study period is ranges from 

2017-2020 for grasslands, and 2014-2018 for forests. 

  

3.2 Field data 

Forest data was collected through several forest inventories 

from 2014 to 2018 (Schall and Ammer, 2018), and grassland 

data was collected every spring from 2017 to 2020 (Bolliger et 

al., 2021) (Figure 3, Table 1) .  

Both grassland and forest datasets can be accessed from the 

Biodiversity Exploratories Platform (BexIS 

https://www.bexis.uni-jena.de/).  

 

Two parameters were analysed for each ecosystem; a structural 

parameter and a biodiversity parameter.  

 

In forests, the structural information is given by the standard 

deviation of the diameter at breast height (DBH_std). This 

parameter acts as a proxy of habitat heterogeneity, not only for 

plants, but also for bird and insect species. The species 

information is given by the tree species richness within the 

surveyed plots. 

 

 
Figure 3: a) UAV false color image of a grassland plot, 

50x50 m. b) Planet Dove false color image of three forest 

plots of different types and mixtures of species and age 

class (100x100 m). 
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 Table 1: Number of observations available in each 

exploratory for grasslands and forest plots. 
 

 Grasslands Forests 

Schorfheide-Chorin 152 50 

Hainich-Dün 179 50 

Swaibian Alb 171 50 

 

 

In grasslands, the structural information is given by the plant 

height, a proxy for biomass productivity and habitat type. The 

biodiversity information analysed was the Shannon index, 

which measures the diversity of species in a community. 

 

 

3.3 Analysis 

A feed-forward neural network was built in Python using Keras 

and Tensorflow (Figure 4) (TensorFlow Developers, 2021). 

Hyperparameters were determined using Keras-Tuner 

(O’Malley et al., 2019). A k-fold target-oriented validation was 

set up to ensure independence between training and validation 

data.  

 

 
 

Figure 4: Simplified representation of the feed-forward 

neural network used. 
 

The importance of the different predictors was obtained using 

shap python package (Lundberg and Lee, 2017) in the case of 

grasslands. Shap measures the importance of each predictor in 

relation to the model, rather than the true importance of that 

predictor. In the case of forests, the importance of each 

predictor was evaluated using ablation analyses. 

 

The absence of spatial autocorrelation was corroborated with 

Morans’I. 

 

4. RESULTS 

4.1 Grasslands 

4.1.1 Structural parameters 

 

Vegetation height models achieved coefficients of 

determination (r2) of 0.43 and Relative Root Mean Squared 

Errors (RRMSE) of 0.36 (Figure 5). The predictions were quite 

robust and showed a low bias, especially considering the broad 

range of grassland types included (wet pastures, meadows, 

highly fertilized plots, extensive mountain grasslands on 

slopes…). A few observations of high height values tended to 

be underestimated. These corresponded to organic rich and 

swampy grasslands with nettles and other rather uncommon 

vegetation compositions in temperate grasslands and pastures. 

 

 
Figure 5: Scatter plot of predicted vs. in situ vegetation 

height in grasslands. 
 

4.1.2 Biodiversity parameters 

 

The models performed poorlier at predicting species diversity. 

Shannon index models returned r2 = 0.23 and RRMSE = 0.20 

(Figure 6). The results showed some prediction capabilities, but 

with high bias at high and low values. For conservation 

applications, this bias is suboptimal since we are particularly 

interested in mapping the highly diverse areas for conservation, 

and the lowly diverse areas for forage production. 

 

 
Figure 6: Scatter plot of predicted vs. in situ Shannon 

index in grasslands.  
 

4.1.3 Interpretability analysis 

 

The Shap analysis indicated that red-edge1 and 2, near-infrared 

1 and 2, blue and swir1 bands were most important for 

predicting plant height.  

 

For predicting diversity indices, near-infrared 1 and 2, red-edge 

2 and swir2 were the most important predictors, although shap 

values varied across the time series (Figure 7).  
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Figure 7: Shap analysis of the importance of each 

predictor relative to the model. Horizontal axis is unitless. 
 

Images from October tended to show the highest importance in 

all relevant bands. Peaks of importance were also observed in 

spring (April-May, depending on the band, Figure 7). This is 

likely due to spectral and timing differences in the greening and 

browning phases, reflecting the effects of species composition 

and land management practices. Land management practices are 

the main driver of biodiversity in grasslands (Felipe-Lucia et al., 

2020). In other words, grassland plots with different 

biodiversity characteristics will look more different around 

April and October, when the greening and senescence phases 

starts. 

 

 

4.2 Forests 

4.2.1 Structural parameters 

 

Sentinel-1 metrics showed a good predictive capabilities of 

forest structural parameters, (DBH_std), with an r2 = 0.51 and a 

RRMSE of 0.33. The results showed no systematic bias (Figure 

8). Isolated poorer predictions might be caused by forest 

changes undergone within the inventory and study period 

(2014-2018), creating mismatches between the image and the 

field data (trees falling or harvested, bark beetle outbreaks, 

etc…). 

 
Figure 8: Scatter plot of predicted vs. in situ standard 

deviation of diameter at breast height (DBH_std) in 

forests 
 

4.2.2 Biodiversity parameters 

 

Like in the case of grasslands, tree species was not predicted 

accurately, with large underestimations at high species counts. 

The highest r2 was 0.2 and RRMSE was 0.61. 

 
 

Figure 9: Scatter plot of predicted vs. in situ species 

diversity in forests, given by Shannon index. 
 

4.2.3 Interpretability analysis 

 

Ablation and leave one out analysis suggested that Sentinel-1 

features (especially VV and VH backscatter from winter) were 

the most effective predictors of structural parameters, in 

agreement with the results of other researchers (Bae et al., 

2019). Since the error rates and bias were so high in the 

Shannon index predictions, the interpretability of the predictors 

used could not be evaluated with enough reliability. 

 

 

5. DISCUSSION 

Spatially explicit models of vegetation attributes can improve 

our understanding of the effects of land management on 

biodiversity and ecosystem functions at regional scales. 

Although several studies have modelled species distributions 

using climatic and geomorphologic data, these are often at a 

resolution incompatible with land management practices, or for 
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monitoring ecosystems under the rapidly changing conditions of 

the Anthropocene (Randin et al., 2020).  

 

Creating remotely sensed based models of species composition 

or other biodiversity metrics in seminatural environments is 

challenging. Some authors have been successful at mapping 

floristic compositions of rather pristine natural forests at 

landscape scale (Pérez Chaves et al., 2018), but most studies are 

successful only at local scale, making models not replicable to 

other areas. 

 

Monitoring structural parameters such as biomass, LAI, 

vegetation height, stand density, trunk diameter heterogeneity, 

or canopy gaps can be a much more reliable predictor of 

vegetation conditions and changes at regional or continental 

scales, and be applicable for land management and monitoring. 

 

For instance, plant height in grasslands can be monitored at 

farm scale (Figure 10). Field data can be conveniently collected 

using a raising plate meter, and it is a good proxy for standing 

biomass, and in consequence, for primary productivity if data 

for the whole season is available. 

 

Leaf area index can be used to study the patterns that govern the 

global leaf economics spectrum, and field data can also be 

collected fairly easily, for forests as well as for grasslands. For 

other parameters, such as stand density, an r2 of 0.47 and 

RRMSE of 0.33 were achieved when fusing Sentinel-1 and 

Sentinel-2 predictors (see Hoffmann et al., (2022) for further 

details). 

 

 
Figure 10: Plant height in grasslands during mid May 

2020, modelled with Sentinel-2. 
 

 

Other forest structural parameters such as gap frequency of 

DBH_std cannot be mapped at the finest spatial resolution of 

the satellite, since they vary with area in a non-linear way. In 

our case, the forest plots were 100 x 100 m, and the DBH_std 

map has to be given at that resolution, lowering the resolution 

by one order of magnitude. Despite of that, and despite the salt 

pepper effects produced by the radar imagery that were used as 

predictors, the boundaries between different forest types are 

visible in our results (Figure 11). Conifer plantations showed 

patterns of low structural diversity, while surrounding 

deciduous forests exhibited a larger structural diversity. 

 

 
Figure 11: Standard deviation of diameter at breast 

height (DBH std) in forests, modelled with Sentinel-1 

multitemporal features. 
 

6. CONCLUSSIONS 

Deep learning models can identify higher hierarchical patterns 

from time series of satellite imagery, and create scalable maps 

of vegetation structural parameters, essential for monitoring and 

studying the consequences of land management practices or 

environmental disturbances (e.g. drought, pest outbreaks) in 

ecosystem functions and services. Biodiversity indices, on the 

other hand, might require of different approaches to be mapped 

such as classifications with convolutional neural networks 

(rather than regressions, as we have done). The availability of 

dense and multi-temporal in-situ observations on various 

vegetation parameters at fine resolution is an important 

prerequisite of such analysis. 
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