
* Corresponding authors

EFFECT OF TEXTURAL FEATURES FOR LANDCOVER CLASSIFICATION  

OF UAV MULTISPECTRAL IMAGERY OF A SALT MARSH RESTORATION SITE 

G. S. Norris 1,*, B. Leblon1, A. LaRocque 1, *, M. A. Barbeau2, A. R. Hanson3 

1Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada, E3B 5A3  

(gnorris1, bleblon, larocque)@unb.ca 
2Department of Biology, University of New Brunswick, Fredericton, NB, Canada, E3B 5A3 - mbarbeau@unb.ca 

3 Canadian Wildlife Service, Environment Canada, P.O. Box 6227, Sackville, NB, Canada, E4L 4N1 - al.hanson@canada.ca 

KEY WORDS: coastal restoration, UAV, Micasense Dual-Camera System, vegetation indices, textural features, Random Forests, 

Pix4D, Bay of Fundy 

ABSTRACT: 

Salt marshes are intertidal ecosystems valuable for services including coastal protection and carbon sequestration. Restoration of salt 

marshes is popular in this era of climate change and sea-level rise, especially in areas where marshes have been historically altered, 

including in the Bay of Fundy. Salt marsh restoration involves landcover change through time as a community of halophytic 

vegetation develops in the study area. Restoration sites are difficult to survey using traditional on-foot methods, and developing 

remote sensing methods to survey them would increase efficiency of monitoring. The purpose of our study was to assess the 

capability of UAV multispectral imagery to map landcovers in a salt marsh restoration site in the Musquash Estuary, New 

Brunswick, Canada. We used the Random Forests (RF) supervised classifier and validated our maps using field data. We also 

evaluated the importance of textural features by running two classifications, with and without textural features. The classification 

omitting textural features had lower classification and validation accuracies (96.29 % and 91.23 %, respectively) than the 

classification and validation accuracies obtained by including textural features (99.56 % and 96.84 %, respectively). Additional work 

is required to test our method in different locations and seasons. 

1. INTRODUCTION

Salt marshes are intertidal ecosystems found globally that 

provide valuable services, including coastal protection, carbon 

sequestration, and habitat for many species of birds, mammals, 

fish, and invertebrates (Gedan, Silliman, Bertness, 2009). In the 

past, salt marshes were converted for agricultural land, 

freshwater impoundments, or other anthropogenic use. An 

estimated 50 % of salt marshes worldwide and 85 % of those in 

the Bay of Fundy (in Atlantic Canada) have been lost or 

degraded. (Thomas, 1983; Barbier et al., 2011). There is interest 

in salt marsh restoration to increase ecosystem services that are 

becoming more valuable in an era of climate change and sea-

level rise (Roman, Burdick, 2012). Many dikes protecting 

converted salt marshland in the Bay of Fundy and beyond are at 

or near the end of their lifespan, and salt marsh restoration is a 

possible management option. 

Mapping salt marsh restoration sites is important to determine 

the restoration trajectory, assess the value of ecosystem services 

as they develop, model vegetation dynamics, and plan future 

projects. Without proper planning, a salt marsh restoration may 

fail, and the area is converted into a mudflat habitat, as seen 

elsewhere (French, 2006). Salt marshes can be challenging to 

survey with traditional field methods, especially when they are 

in restoration. Indeed, they can be very large, are characterized 

by halophytic vegetation on potentially unconsolidated soft 

sediment, show striking zonation, and have geomorphological 

features including creeks and salt pools that can be difficult to 

cross (Bertness, 2007). Because of this, field-surveying salt 

marsh restoration sites is time-consuming and has relatively low 

efficiency. Currently, available remote sensing technology, 

specifically images acquired with unmanned aerial vehicles 

(UAV), can be used to examine biological and geological 

features in environments that are time-consuming and difficult 

to monitor via field survey, such as salt marshes (Ridge, 

Johnston, 2020). UAV images have become increasingly 

popular as a tool for ecological monitoring thanks to 

advancements in UAV technology, compatible multispectral 

sensors, and computer software for processing large datasets 

(Fonstad et al., 2013; Larrinaga, Brotons, 2019). Vegetation has 

high reflectance in the red edge and near-infrared 

electromagnetic spectra, and using multispectral sensors with 

such wavebands makes it possible to discriminate plant species, 

density, and physiological state using UAV imagery (Lorenzen, 

Jensen, 1988; Elvidge, 1989; Peñuelas, Filella, 1998). UAV 

imagery has the additional advantage of a very high spatial 

resolution because UAVs can operate at much lower altitudes 

than conventional aircraft and spacecraft (Colomina, Molina, 

2014; Pajares, 2015). This is useful because salt marsh zonation 

and other vegetation changes typically occur at spatial 

resolutions of centimeters (Doughty, Cavanaugh, 2019).  

The first studies using UAV imagery over salt marshes were 

about sedimentation/erosion (Delcourt et al. 2009; Hugenholtz 

et al., 2013), or mapping vegetation communities with images 

acquired in the red, green, and blue bands (RGB) alone (Wan et 

al., 2014) or with the near-infrared (NIR) band (Martin et al., 

2018). More recently, multispectral UAV imagery has been 

used to map vegetation communities (Dale et al., 2020; 

Villoslada et al., 2020; Nardin et al., 2021) or inundated areas 

(Sarira et al., 2020), quantify vegetation height (DiGiacomo et 

al., 2020) or biomass (Doughty, Cavanaugh, 2019), model wave 

attenuation (Mury et al., 2020), and assess ecosystem 

productivity (Diaz-Delgado, Cazacu, Adamescu, 2018). 

Most studies using multispectral UAV imagery over salt 

marshes have only considered the spectral information of the 

images, including vegetation indices. Adding textural 

information can also be helpful (Xu et al., 2020), particularly 

with high spatial resolution imageries (Mishra et al., 2018), 

such as UAV imagery. To date, few studies have been 
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conducted in salt marsh ecosystems investigating the potential 

of using textural features with multispectral UAV imagery for 

landcover mapping. Kelcey and Lucieer (2013) showed the 

benefits of using textural features when mapping salt marshes 

with UAV RGB imagery. In a freshwater wetland mapping 

study, Li et al. (2021) found that calculating textural features 

using multispectral bands, including those among the RedEdge 

spectrum, was as valuable as calculating them using visible 

RGB bands. 

 

The objectives of the present study were to use UAV 

multispectral imagery to classify a variety of landcovers in a salt 

marsh restoration site located in the Musquash Estuary, New 

Brunswick, Canada, and investigate the use of textural features 

during classification. We used Random Forests (RF), a non-

parametric supervised classifier (Breiman et al., 2001) that 

outperforms the Maximum Likelihood Classifier (MLC) (Ok, 

Akar, Gungor, 2012; He et al., 2015). Our study is an essential 

step for developing a methodology that we will use to monitor 

the critical stages of salt marsh restoration in Atlantic Canada. 

The following restoration stages were identified: previous 

vegetation die-off, establishment of Spartina alterniflora, and 

establishment of a high marsh (including S. patens, etc.), 

resulting in a salt marsh with distinct zonation (Boone et al., 

2017; Virgin et al., 2020). 

 

2. MATERIALS AND METHODS 

2.1 Study area 

The study area is in the Musquash Estuary (Latitude: 45°10’54” 

N, Longitude: 66°19’42” W; Figure 1), which drains into the 

Bay of Fundy, and has approximately 773 hectares of vibrant 

salt marsh. Since the study area is in the uppermost portion of 

the estuary (~10 km from the Bay), the salt marsh communities 

are comprised of a mix of halophytic and semi-halophytic 

(brackish) vegetation with varying inundation tolerances 

(Greenlaw, Schumacher, McCurdy, 2014; Norris et al., 2020), 

and are more diverse than salt marshes located directly on the 

Bay of Fundy (Virgin et al., 2020). Spartina (syn. Sporobolus) 

grasses (namely Spartina alterniflora, S. patens, S. pectinata) 

are key community members in most salt marshes of the region, 

including in the Musquash Estuary, and have been foundational 

during other restoration projects (Boone et al., 2017; Virgin et 

al., 2020). 

 

While considered to be one of the estuarine ecosystems in 

Maritime Canada least impacted by humans (Fisheries and 

Oceans Canada, 2017), lands in the Musquash Estuary (like 

most other salt marshes in the Bay of Fundy) were subject to 

anthropogenic impact after European colonization in the 17th 

century (Thompson, 2001). In addition, in the 1960s and 1970s, 

136 hectares of marsh were diked for cattle pasture (Thompson, 

2001). Ducks Unlimited Canada was given these diked pasture 

lands in the early 1980s and, after repairing the failing tidal 

gates, created freshwater impoundment and marsh habitat for 

waterfowl at that time (Greenlaw, Schumacher, McCurdy, 

2014). Plant communities in these freshwater impoundments 

include species of bulrush (cattails Typha spp. and soft stem 

bulrush Schoenoplectus tabernaemontani) and other brackish 

and freshwater plants (Mallik, Wein, 1986). 

 

 
Figure 1. Location of the study area and limits of the area 

imaged by the UAV imagery over a Google Earth 

image. 

 

Given the now acknowledged benefits of salt marshes (Gedan, 

Silliman, Bertness, 2009) and the protected status of the 

Musquash Estuary (Greenlaw, Schumacher, McCurdy, 2014; 

Fisheries and Oceans Canada 2017), there is interest in reverting 

the freshwater impoundments back to natural salt marshes. The 

restoration of Musquash’s northwestern freshwater 

impoundment (Figure 1) began on 29 January 2019 when the 

dike was mechanically breached in at least 2 locations, allowing 

the impoundment to drain (Norris et al., 2020). At the time of 

our study, the restoration was in its second year. 

 

2.2 Image acquisition 

Multispectral images were acquired using a MicaSense Dual 

Camera System (MicaSense, 1300 N. Northlake Way, Suite 100, 

Seattle, Washington, 98103, USA) mounted to a DJI Matrice V2 

UAV (DJI, No.18 Gaoxin South 4th Ave, Nanshan District, 

Shenzhen, 518057, China). The camera has ten bands covering 

the visible and near-infrared spectra (Table 1). Images were 

acquired with 80 % front and side overlap between them along 

with a grid pattern over the sites at 100 m altitude using DJI 

Pilot mission planner software. The images were taken on 5 

July 2020 (Table 2), after vegetation had been growing for a 

few months. Each image had a spatial resolution close to 7 cm. 

 

Table 1.  Spectral characteristics of the ten bands acquired by 

the MicaSense Dual-Camera system. 

Band 

number 
Band name 

Center 

wavelength 

(μm) 

Bandwidth 

(μm) 

1 Blue444 444 28 

2 Blue475 475 32 

3 Green531 531 14 

4 Green560 560 27 

5 Red650 650 16 

6 Red668 668 14 

7 RedEdge705 705 10 

8 RedEdge717 717 12 

9 RedEdge740 740 18 

10 NIR842 842 57 
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Table 2.  Characteristics of the UAV imagery used and related 

environmental conditions during acquisition. 

Variable Value 

Acquisition date: 2020/07/05 

Flight commencement time: 14:40 

Tidal height (m) 5.3 

Cloud cover (Type: % coverage): Stratus: 100 

Solar azimuth (°): 218 

Solar elevation (°): 63 

Air temperature (°C): 12 

Relative humidity (%): 100 

Wind speed (km h-1): 6 

Wind direction: SE 

UAV altitude (m AMSL*): 100 

UAV speed (m s-1): 10 

UAV course angle (°): 116 

Overlap between adjacent images (%): 80 

Imaged acquired (number): 9162 

Image spatial resolution (cm): ~7 

(*) AMSL = Above Mean Sea Level (2) Weather data collected 

from Point Lepreau weather station (Latitude: 45°4’12” N 

Longitude: 66°27’0” W) 

 

2.3 Field data 

Ground truth observations were obtained on 28 June 2020 using 

stratified random sampling with three transects and 15 quadrats 

(0.5 m x 0.5 m) per transect. Observations were also made in 

several focus locations along the site's perimeter. In each 

quadrat, the landcover class was determined. Quadrat locations 

were marked with GPS coordinates using a Garmin GPS 73 

handheld navigator (Garmin Ltd., 1200 E 151st St, Olathe, 

Kansas, 66062, USA). These GPS ground-truthed locations 

were used to validate the resulting map in ArcMap® (ESRI, 380 

New York Street, Redlands, California, USA). We used a total 

of 285 validation points of 14 classes (19¬22 points/class; Table 

3, Figure 2). 

 

Table 3.  Number of training areas and validation points per 

landcover class. 

Class 

# 
Class name 

Training 

areas 

(pixels) 

Validation 

points 

1 Deep estuary water 1,150 20 

2 Submerged bare mud 675 21 

3 Submerged vegetated mud 1,171 20 

4 Bare mud 1,289 19 

5 Green algae 817 20 

6 Dwarf spike rush 2,890 20 

7 Deep salt pool water 928 22 

8 Dead vegetation 1,264 21 

9 Cattail roots 2,424 20 

10 Cattail stems 1,356 20 

11 Soft stem bulrush 3,236 20 

12 Terrestrial vegetation (light) 1,570 21 

13 Terrestrial vegetation (dark) 836 20 

14 
Halophytes and semi-

halophytes 
1,720 21 

  Total 21,326 285 

 
Figure 2. Ground photographs for the following landcover 

classes: a) deep estuary water, b) bare mud, c) green 

macroalgae (Chlorophyta), d) dwarf spike rush 

(Eleocharis parvula), e) cloudy standing water, f) 

dead vegetation, g) cattail (Typha spp.) roots and 

stems, h) soft stem bulrush (Schoenoplectus 

tabernaemontani), i) terrestrial vegetation (light), 

and j) low elevation halophytes and semi-halophytes 

(1: Bolboschoenus maritimus, 2: Spartina pectinata, 

3: Spartina alterniflora). 

 

2.4 Pre-classification image processing 

The processing workflow of the images (Figure 3) first included 

georeferencing and mosaicking together the individual UAV 

images corresponding to similar bands using Pix4Dmapper 

software (Pix4D, Route de Renens 24, 1008 Prilly, Switzerland). 

The resulting image mosaics were used to compute vegetation 

indices and textual features using an EASI script in the PCI 

Geomatica Banff® software (PCI Geomatics Group Inc., 50 

West Wilmot Street, Richmond Hill, Ontario, Canada). The 28 

vegetation indices used in our study were selected because they 

have been valuable in previous vegetation mapping studies. 

Textural features contain information about the spatial 

distribution of tonal variations within an image. Textural 

features are calculated in a variety of different manners by 

relating the spectral tone of one pixel in the imagery to its 

nearest neighbors using gray-level co-occurrence matrices 

(GLCM) (Haralick, Shanmugam, Dinstein, 1973). The 

reflectance values of each MicaSense image mosaic were 

represented by gray levels, with zero corresponding to “black” 

and higher values corresponding to lighter shades. The GLCM 

examines the spatial relationship among pixels within a defined 

kernel size. For our study, the kernel size was set to 9. The 

kernel moves iteratively across the image, covering each pixel. 

A matrix is derived from the frequency of gray level (pixel 

value) pair co-occurrence at each pixel location. From each 

GLCM, several different measures of texture can then be 

extracted. In our study, we calculated ten textural features per 

MicaSense band for a total of 100 (Table 4). 
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Figure 3. Flowchart of the method used for processing the 

UAV images. 

 

Table 4. Textural features calculated for each of the ten 

MicaSense bands (adapted from Haralick et al., 

1973).  

Textural feature Formula 

Homogeneity 
 

Contrast 
 

Dissimilarity 
 

Mean 
 

Standard deviation 
 

Entropy 
 

Angular second 

moment 
 

Angular correlation 
 

GLDV angular 

second moment 
 

GLDV entropy 
 

N = number of grey levels. P(i,j) = probability of values i and j 

occurring in adjacent pixels in the original image within the 

window defining the neighbourhood. i = DN value of a target 

pixel, j is the DN value of its immediate neighbour, μ = mean, σ 

= standard deviation, V= value of the pixel. 

 

2.5 Image classification and accuracy assessment 

Training areas were delineated for each landcover class over the 

imagery. A total of 21,326 pixels were delineated for the 14 

classes (Table 3). Training areas typically had a size of 5 by 5 

pixels, although there were exceptions due to heterogeneous 

landcovers. The PCI Geomatica Banff® software was used to 

compute the Jeffries–Matusita (J-M) distance between class 

pairs, which measures class spectral separability. J-M distance 

values range from 0 to 2, with values of 2 representing classes 

that are entirely separated (Richards, Jia, 1999). The J-M 

distance computations included only the ten MicaSense band 

reflectance values. The training areas were input into the 

Random Forest (RF) classifier. Two classifications were done: 

one omitting textural features (38 input features including 

MicaSense bands and vegetation indices), and one including 

them (138 input features). The RF classifiers produced 

classification accuracies (based on the training areas), the 

classified images, and the importance rankings of the input 

features (including the MicaSense bands, vegetation indices, 

and textural features) (Waske, Braun, 2009; Louppe et al., 2013; 

Gislasson, Benediktsson, Sveinsson, 2006; Strobl et al., 2008). 

Rankings are based on each variable's mean decrease accuracy 

or Gini during the classification. The mean decrease in accuracy 

expresses how much accuracy the model loses by excluding 

each variable; the more accuracy suffers, the more important the 

variable is (Han, Guo, Yu, 2016). The mean decrease Gini 

coefficient measures how each variable contributes to the 

homogeneity of the nodes and leaves in the Random Forest 

(Han, Guo, Yu, 2016). Validation accuracies were computed by 

comparing the classified images to the validation points. 

 

3. RESULTS 

3.1 Landcover class spectral separability 

The landcover classes used in the classifications were well 

separated, indicated by an average J-M distance of 1.98 between 

class pairs (Table 5). The highest separability values of 2.00 

were between 61 of the 91 landcover class pairs (67.0 %), 

indicating that they were completely separated. The deep 

estuary water, bare mud, dead vegetation, and halophytes and 

semi-halophytes classes were very well separated (J-M distance 

values > 1.98) from all other classes. Relatively low separability 

values were computed for class pairs including different types 

of vegetation. The lowest separability (1.77) was between the 

cattail stems and soft stem bulrush classes. Other class pairs 

with low separability (< 1.90) included soft stem bulrush and 

dark terrestrial vegetation (1.78), and the two terrestrial 

vegetation classes (1.88). 

 

 

Table 5. Fifteen (of 91) lowest Jeffries–Matusita (J-M) 

distances for landcover classes computed using the 

ten bands of the UAV imagery. 

Class#1 Class #2 
J-M 

Distance 

10 11 1.77 

11 13 1.78 
12 13 1.88 

10 12 1.90 

3 5 1.90 
6 9 1.94 

3 6 1.95 
6 10 1.95 

9 10 1.95 

10 13 1.95 
2 3 1.96 

5 6 1.96 
3 7 1.96 

6 11 1.96 

1 7 1.98 

Overall mean 1.98 

 

3.1 Classification 

Classifications were executed with and without textural 

features. Both classifications achieved excellent overall 

accuracies, with the classification omitting texture achieving a 

lower accuracy (96.3 %; Table 6) than the classification 

including texture (99.6 %; Table 6). For the classification 

omitting textural features, the lowest User’s (UA) and 

Producer’s accuracies (PA) corresponded to the cattail stems 

(UA: 87.8 %, PA: 89.7 %) and the low elevation halophytes and 
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semi-halophytes (UA: 89.9 %, PA: 87.3 %). The cattail stems 

class also corresponded to the lowest UA and PA for the 

classification that included textural features (UA: 98.2 %, PA: 

98.5 %). The low accuracies of these classes are due to 

confusion with the other vegetation classes. Confusion between 

vegetation types has been common in previous salt marsh 

classifications (Belluco et al., 2006; Hladik, Alber, 2014; van 

Beijma et al., 2014; Gray et al., 2018; Meng et al., 2018). 

 

Table 6. Classification and validation accuracies for each 

landcover class when omitting and including textural 

features.  
Classifier Texture omitted Texture included 

Class Classification Validation Classification Validation 

 UA PA UA  PA UA PA UA PA 

1 99.7 100 90.9 100 100 100 95.2 100 

2 100 99.9 100 95.2 100 100 100 100 

3 99.1 98.5 100 90.0 99.7 100 95.0 95.0 

4 99.8 99.5 100 100 99.9 99.9 100 100 

5 98.5 98.7 81.8 90.0 99.9 99.6 100 95.0 

6 96.8 97.5 78.3 90.0 99.6 99.5 95.0 95.0 

7 99.6 100 100 94.5 100 100 100 95.5 

8 99.6 99.5 100 95.2 99.9 99.8 100 100 

9 98.4 97.2 95.2 100 99.7 99.6 100 100 

10 87.8 89.9 81.8 90.0 98.2 98.5 100 95.0 

11 96.0 95.4 83.3 75.0 99.7 99.6 100 100 

12 94.7 97.0 95.0 90.5 99.4 99.8 90.9 95.2 

13 92.0 93.1 85.0 85.0 98.8 100 100 85.0 

14 89.7 87.3 89.5 81.0 99.3 98.6 84.0 100 

OA 96.3 91.2 99.6 96.8 

UA = User’s Accuracy (%); PA = Producer’s Accuracy (%); 

OA = Overall Accuracy (%). 

 

The most important input features for the classification omitting 

texture included the ten MicaSense bands in the top 14 and 18 

out of 38 when ranking the highest mean decrease accuracy and 

mean decrease Gini values, respectively. The MicaSense bands 

with the greatest mean decrease accuracy values were the 

RedEdge705, RedEdge717, and Red668. The bands with the 

greatest mean decrease Gini were the Red668, Green531, and 

NIR842. The vegetation indices with the largest mean decrease 

accuracy and Gini values were the NDRE.3 and RERVI.3. 

 

For the classification including texture, of the 30 input features 

with the highest mean decrease accuracy values, 24 were 

textural features. Of these 24, ten were calculated using the 

RedEdge717 band. Calculating textural features using RedEdge 

bands has been helpful in previous freshwater wetland mapping 

studies (Li, Zhao, Xu, 2021). The lowest ranking textural 

features in our classification (of 138 total input features) were 

calculated using the RGB bands, which in Li et al. (2021) were 

found to have similar importance to textural features calculated 

using the RedEdge bands. The most important method of 

calculating textural features was the Mean calculation. All 10 

Mean textural features (1 value per band) were within the top 53 

in mean decrease accuracy and the top 45 in mean decrease 

Gini. 

 

3.2 Validation 

We achieved overall validation accuracies greater than 90.0 % 

for both classifications, but the accuracy was slightly lower 

when we omitted textural features (91.2 %; Table 6) than when 

we included them (96.8 %; Table 6). For the classification 

omitting textural features, the class with the highest error of 

commission (EC; 22.0 %) was the dwarf spike rush class. Other 

classes with EC greater than 10.0 % were the following: green 

algae, cattail stems, soft stem bulrush, terrestrial vegetation, and 

halophytes and semi-halophytes. Classes with the highest user’s 

accuracy of 100 % included submerged bare mud, submerged 

vegetated mud, bare mud, cloudy standing water, and dead 

vegetation. The class with the highest error of omission was the 

soft stem bulrush class, and other classes with relatively high 

errors of omission (EO) were terrestrial vegetation and 

halophytes and semi-halophytes. Classes with the highest 

producer’s accuracy of 100 % were deep estuary water, bare 

mud, and cattail roots. For the classification including texture, 

classes with both 100 % UA and PA included submerged bare 

mud, bare mud, dead vegetation, cattail roots, and soft stem 

bulrush. The class with the highest EC was the halophytes and 

semi-halophytes class. The class with the highest EO was the 

dark terrestrial vegetation class. Confusion between vegetation 

classes was greater in the classification that omitted textural 

features. The validation accuracy of the soft stem bulrush class 

was the most improved after incorporating the textural features 

into the classification. User’s accuracies of the halophytes and 

semi-halophytes classes were lower in the classification using 

textural features. 

 

4. DISCUSSION 

The two resulting classified images from our study both 

displayed many heterogeneous vegetation patches with multiple 

species (Figure 4). They showed that most of the study area was 

covered by dwarf spike rush, cattail roots, green algae, bare 

mud, and submerged vegetated mud (Table 7, Figure 4). The 

restoration project was in its second year at the time of image 

acquisition. Not surprisingly, vegetation present on-site before 

restoration (cattails, soft stem bulrush) were stressed (and dead 

in many areas) by the reintroduction of tidal flow at the 

beginning of restoration. The site contained many bare areas, 

similar to what was observed during the early years of another 

project located in the Bay of Fundy (Boone et al., 2017; Virgin 

et al., 2020). We observed opportunistic brackish species of 

vegetation (dwarf spike rush, green algae, etc.) growing in the 

study area. Detection of halophytic vegetation growing in the 

restoration site in the second year of restoration was promising. 

We expect that as the restoration progresses, the amount of 

halophytic vegetation will increase as it spreads and 

outcompetes the small opportunistic species. The terrestrial 

vegetation classes covered the least area in the thematic images 

and were restricted to a high elevation “island” area near the 

center of the study area (Table 7; Figure 4). The landcovers that 

had similar areas (within 1,000 m2) after classifications with and 

without textural features included submerged bare mud, cloudy 

standing water, dead vegetation, soft stem bulrush, and both 

terrestrial vegetation classes. The classes that increased (by 

more than 1,000 m2) in area after using texture were dwarf spike 

rush, cattail roots, cattail stems, and halophytes and semi-

halophytes. The deep estuary water, submerged vegetated mud, 

bare mud, and green algae classes decreased in area after 

including texture (Table 7). The total landcover area of the two 

classifications were slightly different, likely from pixels along 

the edge of the imagery being differently classified into the 

“null” class (“null” class not presented). 
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Figure 4. Classified image of the Musquash restoration site 

produced with the Random Forest classifier applied 

to (a) 38 spectral bands and vegetation indices, and 

(b) 138 spectral bands, vegetation indices, and 

textural features of the UAV imagery. 

 

Table. 7. Area of each landcover class extracted from the 

classified images. 

Class 

# 
Class name 

Area (m2) 

Texture 

omitted 

Texture 

included 

1 Deep estuary water 17912 16066 

2 Submerged bare mud 11918 12844 

3 Submerged vegetated mud 35429 31321 

4 Bare mud 46277 42804 

5 Green algae 52754 49868 

6 Dwarf spike rush 85130 87811 

7 Cloudy standing water 7258 7254 

8 Dead vegetation 13078 13172 

9 Cattail roots 56908 61448 

10 Cattail stems 12396 16578 

11 Soft stem bulrush 12813 12379 

12 Terrestrial vegetation (light) 878 902 

13 Terrestrial vegetation (dark) 289 253 

14 Halophytes and semi-

halophytes 2150 2,474 

 Total 355191 355174 

 

By combining UAV multispectral imagery and field survey, we 

were able to accurately discriminate landcovers based on 

spectral and textural features of the imagery. Identifying 

landcovers in a salt marsh restoration site can be a helpful tool 

when evaluating a project's restoration trajectory and status. As 

introduced above, critical stages of salt marsh restoration have 

been identified in a nearby, fully saline, salt marsh restoration 

project in Aulac (Boone et al., 2017; Virgin et al., 2020). In this 

salt marsh, stages of restoration included previous vegetation 

die-off (S. pectinata), colonization and spread of bioengineering 

halophytes (S. alterniflora), and finally colonization of high-

elevation halophytes (including S. patens) and formation of 

distinct marsh zonation (Virgin et al. 2020). The classification 

used in the present study would be unable to identify these 

stages because key species S. pectinata and S. alterniflora were 

grouped together in the “halophytes and semi-halophytes” class. 

Nevertheless, our classified landcover maps for the Musquash 

site, which has more vegetation diversity (includes brackish 

species) than the Aulac site is still helpful to assess its 

restoration trajectory. We identified previous vegetation as 

cattails (Typha spp.) and soft-stem bulrush (Schoenoplectus 

tabernaemontani) in the early Musquash restoration, which has 

also been the case during other restorations of freshwater 

impoundments up estuaries within the Bay of Fundy region 

(Bowron et al., 2012). Our landcover maps can monitor the die-

off of previous species by distinguishing between their live and 

dead stems. In addition, our identification of S. pectinata and S. 

alterniflora as a grouped-landcover class is useful in 

determining early aspects of a restoration trajectory for a site 

relatively high up an estuary (we are discovering that 

opportunisitic brackish plants play a more prominent role in the 

early recovery trajectory of such sites). Since our Musquash 

restoration project was young at the time of image acquisition, 

few patches of  S. pectinata and S. alterniflora were available, 

and even fewer of the high-elevation halophyte S. patens, for 

training the imagery. Based on previous restorations in the Bay 

of Fundy region (Bowron et al., 2011; Bowron et al., 2012; 

Virgin et al., 2020), we expect a greater area of Spartina grasses 

and so more area to train our classification algorithm and 

distinguish between these and other halophytic species in 

oncoming years for the Musquash restoration. Another line of 

work will be to classify multispectral imagery of salt marsh 

restoration projects located in more saline sites (where the 

Spartina grasses are more dominant community members) to 

help distinguish between the various halophytic and semi-

halophytic species in the imagery. To summarize, our 

classification algorithms used in the present study are useful in 

identifying the stages of salt marsh restoration in our study area 

at the time of acquisition. However, more work must be done at 

different times of the year and in other locations to refine our 

algorithm so it can be used in many salt marsh situations. 

 

5. CONCLUSIONS 

Mapping vegtation in salt marsh restoration sites is important to 

determine the trajectory of the restoration, assess the value of 

ecosystem services as they develop, model vegetation 

dynamics, and plan future projects. Field sampling methods that 

have been traditionally used to monitor salt marsh restoration 

are time-consuming and do not evaluate the entire site in the 

way remotely sensed imagery does. Our study has shown the 

potential of applying a Random Forests classifier to UAV 

multispectral images to produce accurate landcover maps 

showing the distribution of different vegetation types in a salt 

marsh restoration site in the Musquash Estuary. The study area's 

classification and validation accuracies were improved after 

incorporating textural features into the RF classification. Future 

work is needed to determine how seasonal and site differences 

affect landcover classification in salt marsh restoration sites. 

Also, testing the methodology in natural salt marsh sites to 

assess ecosystem health and quality of services will provide 

comparisons for those undergoing restoration. 
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